1
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425:415-9. [PMID: 14508493 DOI: 10.1038/nature01957] [Citation(s) in RCA: 3618] [Impact Index Per Article: 164.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2003] [Accepted: 07/25/2003] [Indexed: 02/07/2023]
Abstract
Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Collapse
|
|
22 |
3618 |
2
|
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409:363-6. [PMID: 11201747 DOI: 10.1038/35053110] [Citation(s) in RCA: 3270] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA interference (RNAi) is the mechanism through which double-stranded RNAs silence cognate genes. In plants, this can occur at both the transcriptional and the post-transcriptional levels; however, in animals, only post-transcriptional RNAi has been reported to date. In both plants and animals, RNAi is characterized by the presence of RNAs of about 22 nucleotides in length that are homologous to the gene that is being suppressed. These 22-nucleotide sequences serve as guide sequences that instruct a multicomponent nuclease, RISC, to destroy specific messenger RNAs. Here we identify an enzyme, Dicer, which can produce putative guide RNAs. Dicer is a member of the RNase III family of nucleases that specifically cleave double-stranded RNAs, and is evolutionarily conserved in worms, flies, plants, fungi and mammals. The enzyme has a distinctive structure, which includes a helicase domain and dual RNase III motifs. Dicer also contains a region of homology to the RDE1/QDE2/ARGONAUTE family that has been genetically linked to RNAi.
Collapse
|
|
24 |
3270 |
3
|
Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294:858-62. [PMID: 11679671 DOI: 10.1126/science.1065062] [Citation(s) in RCA: 2409] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Caenorhabditis elegans/genetics
- Cloning, Molecular
- Conserved Sequence
- Endoribonucleases/metabolism
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genome
- Humans
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Helminth/physiology
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
- Ribonuclease III
- Transcription, Genetic
Collapse
|
|
24 |
2409 |
4
|
Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287:664-6. [PMID: 10650002 DOI: 10.1126/science.287.5453.664] [Citation(s) in RCA: 2314] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malfolded proteins in the endoplasmic reticulum (ER) induce cellular stress and activate c-Jun amino-terminal kinases (JNKs or SAPKs). Mammalian homologs of yeast IRE1, which activate chaperone genes in response to ER stress, also activated JNK, and IRE1alpha-/- fibroblasts were impaired in JNK activation by ER stress. The cytoplasmic part of IRE1 bound TRAF2, an adaptor protein that couples plasma membrane receptors to JNK activation. Dominant-negative TRAF2 inhibited activation of JNK by IRE1. Activation of JNK by endogenous signals initiated in the ER proceeds by a pathway similar to that initiated by cell surface receptors in response to extracellular signals.
Collapse
|
|
25 |
2314 |
5
|
Abstract
Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3' ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Collapse
|
research-article |
24 |
2290 |
6
|
Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404:293-6. [PMID: 10749213 DOI: 10.1038/35005107] [Citation(s) in RCA: 2010] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, approximately 25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.
Collapse
|
|
25 |
2010 |
7
|
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293:834-8. [PMID: 11452083 DOI: 10.1126/science.1062961] [Citation(s) in RCA: 1986] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The 21-nucleotide small temporal RNA (stRNA) let-7 regulates developmental timing in Caenorhabditis elegans and probably in other bilateral animals. We present in vivo and in vitro evidence that in Drosophila melanogaster a developmentally regulated precursor RNA is cleaved by an RNA interference-like mechanism to produce mature let-7 stRNA. Targeted destruction in cultured human cells of the messenger RNA encoding the enzyme Dicer, which acts in the RNA interference pathway, leads to accumulation of the let-7 precursor. Thus, the RNA interference and stRNA pathways intersect. Both pathways require the RNA-processing enzyme Dicer to produce the active small-RNA component that represses gene expression.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Drosophila melanogaster
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Gene Expression Regulation, Developmental
- HeLa Cells
- Humans
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Double-Stranded/metabolism
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonuclease III
- Transcription, Genetic
- Transfection
Collapse
|
|
24 |
1986 |
8
|
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432:231-5. [PMID: 15531879 DOI: 10.1038/nature03049] [Citation(s) in RCA: 1958] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/16/2004] [Indexed: 12/13/2022]
Abstract
Mature microRNAs (miRNAs) are generated via a two-step processing pathway to yield approximately 22-nucleotide small RNAs that regulate gene expression at the post-transcriptional level. Initial cleavage is catalysed by Drosha, a nuclease of the RNase III family, which acts on primary miRNA transcripts (pri-miRNAs) in the nucleus. Here we show that Drosha exists in a multiprotein complex, the Microprocessor, and begin the process of deconstructing that complex into its constituent components. Along with Drosha, the Microprocessor also contains Pasha (partner of Drosha), a double-stranded RNA binding protein. Suppression of Pasha expression in Drosophila cells or Caenorhabditis elegans interferes with pri-miRNA processing, leading to an accumulation of pri-miRNAs and a reduction in mature miRNAs. Finally, depletion or mutation of pash-1 in C. elegans causes de-repression of a let-7 reporter and the appearance of phenotypic defects overlapping those observed upon examination of worms with lesions in Dicer (dcr-1) or Drosha (drsh-1). Considered together, these results indicate a role for Pasha in miRNA maturation and miRNA-mediated gene regulation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1958 |
9
|
Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35:849-57. [PMID: 6197186 DOI: 10.1016/0092-8674(83)90117-4] [Citation(s) in RCA: 1767] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The RNA moieties of ribonuclease P purified from both E. coli (M1 RNA) and B. subtilis (P-RNA) can cleave tRNA precursor molecules in buffers containing either 60 mM Mg2+ or 10 mM Mg2+ plus 1 mM spermidine. The RNA acts as a true catalyst under these conditions whereas the protein moieties of the enzymes alone show no catalytic activity. However, in buffers containing 5-10 mM Mg2+ (in the absence of spermidine) both kinds of subunits are required for enzymatic activity, as shown previously. In the presence of low concentrations of Mg2+, in vitro, the RNA and protein subunits from one species can complement subunits from the other species in reconstitution experiments. When the precursor to E. coli 4.5S RNA is used as a substrate, only the enzyme complexes formed with M1 RNA from E. coli and the protein moieties from either bacterial species are active.
Collapse
|
|
42 |
1767 |
10
|
Abstract
Since the discovery of interferons (IFNs), considerable progress has been made in describing the nature of the cytokines themselves, the signalling components that direct the cell response and their antiviral activities. Gene targeting studies have distinguished four main effector pathways of the IFN-mediated antiviral response: the Mx GTPase pathway, the 2',5'-oligoadenylate-synthetase-directed ribonuclease L pathway, the protein kinase R pathway and the ISG15 ubiquitin-like pathway. As discussed in this Review, these effector pathways individually block viral transcription, degrade viral RNA, inhibit translation and modify protein function to control all steps of viral replication. Ongoing research continues to expose additional activities for these effector proteins and has revealed unanticipated functions of the antiviral response.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1699 |
11
|
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353:aaf5573. [PMID: 27256883 PMCID: PMC5127784 DOI: 10.1126/science.aaf5573] [Citation(s) in RCA: 1497] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
1497 |
12
|
Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833-7. [PMID: 12193640 DOI: 10.1126/science.1074973] [Citation(s) in RCA: 1483] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Eukaryotic heterochromatin is characterized by a high density of repeats and transposons, as well as by modified histones, and influences both gene expression and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, we deleted the argonaute, dicer, and RNA-dependent RNA polymerase gene homologs, which encode part of the machinery responsible for RNA interference (RNAi). Deletion results in the aberrant accumulation of complementary transcripts from centromeric heterochromatic repeats. This is accompanied by transcriptional de-repression of transgenes integrated at the centromere, loss of histone H3 lysine-9 methylation, and impairment of centromere function. We propose that double-stranded RNA arising from centromeric repeats targets formation and maintenance of heterochromatin through RNAi.
Collapse
MESH Headings
- Centromere/physiology
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Methylation
- DNA Transposable Elements
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Gene Deletion
- Gene Silencing
- Genes, Fungal
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Histones/metabolism
- Lysine/metabolism
- Methylation
- Models, Genetic
- RNA, Double-Stranded/metabolism
- RNA, Fungal/metabolism
- RNA, Small Interfering
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Repetitive Sequences, Nucleic Acid
- Ribonuclease III
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Transcription, Genetic
- Transgenes
Collapse
|
|
23 |
1483 |
13
|
Abstract
In animals, the double-stranded RNA-specific endonuclease Dicer produces two classes of functionally distinct, tiny RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs regulate mRNA translation, whereas siRNAs direct RNA destruction via the RNA interference (RNAi) pathway. Here we show that, in human cell extracts, the miRNA let-7 naturally enters the RNAi pathway, which suggests that only the degree of complementarity between a miRNA and its RNA target determines its function. Human let-7 is a component of a previously identified, miRNA-containing ribonucleoprotein particle, which we show is an RNAi enzyme complex. Each let-7-containing complex directs multiple rounds of RNA cleavage, which explains the remarkable efficiency of the RNAi pathway in human cells.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Argonaute Proteins
- Base Pairing
- Base Sequence
- Cell Extracts
- Cytoplasm/metabolism
- DEAD Box Protein 20
- DEAD-box RNA Helicases
- Drosophila melanogaster/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2
- Eukaryotic Initiation Factors
- Gene Silencing
- HeLa Cells
- Humans
- MicroRNAs
- Minor Histocompatibility Antigens
- Models, Genetic
- Nuclear Proteins/metabolism
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA Helicases/metabolism
- RNA, Antisense/chemistry
- RNA, Antisense/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- RNA-Induced Silencing Complex
- Ribonuclease III
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nuclear
Collapse
|
|
23 |
1468 |
14
|
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33:717-26. [PMID: 19217333 PMCID: PMC2696186 DOI: 10.1016/j.molcel.2009.01.026] [Citation(s) in RCA: 1138] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/22/2008] [Accepted: 01/29/2009] [Indexed: 01/16/2023]
Abstract
NEAT1 RNA, a highly abundant 4 kb ncRNA, is retained in nuclei in approximately 10 to 20 large foci that we show are completely coincident with paraspeckles, nuclear domains implicated in mRNA nuclear retention. Depletion of NEAT1 RNA via RNAi eradicates paraspeckles, suggesting that it controls sequestration of the paraspeckle proteins PSP1 and p54, factors linked to A-I editing. Unlike overexpression of PSP1, NEAT1 overexpression increases paraspeckle number, and paraspeckles emanate exclusively from the NEAT1 transcription site. The PSP-1 RNA binding domain is required for its colocalization with NEAT1 RNA in paraspeckles, and biochemical analyses support that NEAT1 RNA binds with paraspeckle proteins. Unlike other nuclear-retained RNAs, NEAT1 RNA is not A-I edited, consistent with a structural role in paraspeckles. Collectively, results demonstrate that NEAT1 functions as an essential structural determinant of paraspeckles, providing a precedent for a ncRNA as the foundation of a nuclear domain.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
1138 |
15
|
Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response. Science 2007; 318:944-9. [PMID: 17991856 PMCID: PMC3670588 DOI: 10.1126/science.1146361] [Citation(s) in RCA: 1129] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1129 |
16
|
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16:948-58. [PMID: 11959843 PMCID: PMC152352 DOI: 10.1101/gad.981002] [Citation(s) in RCA: 1122] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) was first recognized in Caenorhabditis elegans as a biological response to exogenous double-stranded RNA (dsRNA), which induces sequence-specific gene silencing. RNAi represents a conserved regulatory motif, which is present in a wide range of eukaryotic organisms. Recently, we and others have shown that endogenously encoded triggers of gene silencing act through elements of the RNAi machinery to regulate the expression of protein-coding genes. These small temporal RNAs (stRNAs) are transcribed as short hairpin precursors (approximately 70 nt), processed into active, 21-nt RNAs by Dicer, and recognize target mRNAs via base-pairing interactions. Here, we show that short hairpin RNAs (shRNAs) can be engineered to suppress the expression of desired genes in cultured Drosophila and mammalian cells. shRNAs can be synthesized exogenously or can be transcribed from RNA polymerase III promoters in vivo, thus permitting the construction of continuous cell lines or transgenic animals in which RNAi enforces stable and heritable gene silencing.
Collapse
|
research-article |
23 |
1122 |
17
|
Abstract
A major pathway of eukaryotic messenger RNA (mRNA) turnover begins with deadenylation, followed by decapping and 5' to 3' exonucleolytic decay. We provide evidence that mRNA decapping and 5' to 3' degradation occur in discrete cytoplasmic foci in yeast, which we call processing bodies (P bodies). First, proteins that activate or catalyze decapping are concentrated in P bodies. Second, inhibiting mRNA turnover before decapping leads to loss of P bodies; however, inhibiting turnover at, or after, decapping, increases the abundance and size of P bodies. Finally, mRNA degradation intermediates are localized to P bodies. These results define the flux of mRNAs between polysomes and P bodies as a critical aspect of cytoplasmic mRNA metabolism and a possible site for regulation of mRNA degradation.
Collapse
|
research-article |
22 |
1058 |
18
|
Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001; 293:1146-50. [PMID: 11498593 DOI: 10.1126/science.1064023] [Citation(s) in RCA: 1046] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Double-stranded RNA induces potent and specific gene silencing through a process referred to as RNA interference (RNAi) or posttranscriptional gene silencing (PTGS). RNAi is mediated by RNA-induced silencing complex (RISC), a sequence-specific, multicomponent nuclease that destroys messenger RNAs homologous to the silencing trigger. RISC is known to contain short RNAs ( approximately 22 nucleotides) derived from the double-stranded RNA trigger, but the protein components of this activity are unknown. Here, we report the biochemical purification of the RNAi effector nuclease from cultured Drosophila cells. The active fraction contains a ribonucleoprotein complex of approximately 500 kilodaltons. Protein microsequencing reveals that one constituent of this complex is a member of the Argonaute family of proteins, which are essential for gene silencing in Caenorhabditis elegans, Neurospora, and Arabidopsis. This observation begins the process of forging links between genetic analysis of RNAi from diverse organisms and the biochemical model of RNAi that is emerging from Drosophila in vitro systems.
Collapse
|
|
24 |
1046 |
19
|
Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 1983; 166:477-535. [PMID: 6864790 DOI: 10.1016/s0022-2836(83)80282-4] [Citation(s) in RCA: 1043] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
42 |
1043 |
20
|
Hollien J, Weissman JS. Decay of Endoplasmic Reticulum-Localized mRNAs During the Unfolded Protein Response. Science 2006; 313:104-7. [PMID: 16825573 DOI: 10.1126/science.1129631] [Citation(s) in RCA: 997] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The unfolded protein response (UPR) allows the endoplasmic reticulum (ER) to recover from the accumulation of misfolded proteins, in part by increasing its folding capacity. Inositol-requiring enzyme-1 (IRE1) promotes this remodeling by detecting misfolded ER proteins and activating a transcription factor, X-box-binding protein 1, through endonucleolytic cleavage of its messenger RNA (mRNA). Here, we report that IRE1 independently mediates the rapid degradation of a specific subset of mRNAs, based both on their localization to the ER membrane and on the amino acid sequence they encode. This response is well suited to complement other UPR mechanisms because it could selectively halt production of proteins that challenge the ER and clear the translocation and folding machinery for the subsequent remodeling process.
Collapse
|
|
19 |
997 |
21
|
Abstract
The innate immune system is essential for the initial detection of invading viruses and subsequent activation of adaptive immunity. Three classes of receptors, designated retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), Toll-like receptors (TLRs), and nucleotide oligomerization domain (NOD)-like receptors (NLRs), sense viral components, such as double-stranded RNA (dsRNA), single-stranded RNA, and DNA. RLRs and TLRs play essential roles in the production of type I interferons (IFNs) and proinflammatory cytokines in cell type-specific manners. While the RLRs play essential roles in the recognition of RNA viruses in various cells, plasmacytoid dendritic cells utilize TLRs for detecting virus invasion. NLRs play a role in the production of mature interleukin-1 beta to dsRNA stimulation. Activation of innate immune cells is critical for mounting adaptive immune responses. In this review, we discuss recent advances in our understanding of the mechanisms of viral RNA recognition by these different types of receptors and its relation to acquired immune responses.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
951 |
22
|
Abstract
A mechanism is proposed for the RNA-catalyzed reactions involved in RNA splicing and RNase P hydrolysis of precursor tRNA. The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I. One metal ion activates the attacking water or sugar hydroxyl, while the other coordinates and stabilizes the oxyanion leaving group. Both ions act as Lewis acids and stabilize the expected pentacovalent transition state. The symmetry of a two-metal-ion catalytic site fits well with the known reaction pathway of group I self-splicing introns and can also be reconciled with emerging data on group II self-splicing introns, the spliceosome, and RNase P. The role of the RNA is to position the two catalytic metal ions and properly orient the substrates via three specific binding sites.
Collapse
|
research-article |
32 |
916 |
23
|
Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SIS, Moazed D. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Science 1998; 303:672-6. [PMID: 14704433 PMCID: PMC3244756 DOI: 10.1126/science.1093686] [Citation(s) in RCA: 912] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
27 |
912 |
24
|
Abstract
With the discovery of RNA interference (RNAi) and related phenomena, new regulatory roles attributed to RNA continue to emerge. Here we show, in mammalian tissue culture, that a short interfering RNA (siRNA) can repress expression of a target mRNA with partially complementary binding sites in its 3' UTR, much like the demonstrated function of endogenously encoded microRNAs (miRNAs). The mechanism for this repression is cooperative, distinct from the catalytic mechanism of mRNA cleavage by siRNAs. The use of siRNAs to study translational repression holds promise for dissecting the sequence and structural determinants and general mechanism of gene repression by miRNAs.
Collapse
|
research-article |
22 |
906 |
25
|
Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005; 7:719-23. [PMID: 15937477 PMCID: PMC1855297 DOI: 10.1038/ncb1274] [Citation(s) in RCA: 891] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 05/20/2005] [Indexed: 12/22/2022]
Abstract
Small RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs) can silence target genes through several different effector mechanisms. Whereas siRNA-directed mRNA cleavage is increasingly understood, the mechanisms by which miRNAs repress protein synthesis are obscure. Recent studies have revealed the existence of specific cytoplasmic foci, referred to herein as processing bodies (P-bodies), which contain untranslated mRNAs and can serve as sites of mRNA degradation. Here we demonstrate that Argonaute proteins--the signature components of the RNA interference (RNAi) effector complex, RISC--localize to mammalian P-bodies. Moreover, reporter mRNAs that are targeted for translational repression by endogenous or exogenous miRNAs become concentrated in P-bodies in a miRNA-dependent manner. These results provide a link between miRNA function and mammalian P-bodies and suggest that translation repression by RISC delivers mRNAs to P-bodies, either as a cause or as a consequence of inhibiting protein synthesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
891 |