1
|
Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 2005; 44:9417-29. [PMID: 15996096 DOI: 10.1021/bi0474923] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Four isozymes of pyruvate kinase are differentially expressed in human tissue. Human pyruvate kinase isozyme M2 (hPKM2) is expressed in early fetal tissues and is progressively replaced by the other three isozymes, M1, R, and L, immediately after birth. In most cancer cells, hPKM2 is once again expressed to promote tumor cell proliferation. Because of its almost ubiquitous presence in cancer cells, hPKM2 has been designated as tumor specific PK-M2, and its presence in human plasma is currently being used as a molecular marker for the diagnosis of various cancers. The X-ray structure of human hPKM2 complexed with Mg(2+), K(+), the inhibitor oxalate, and the allosteric activator fructose 1,6-bisphosphate (FBP) has been determined to a resolution of 2.82 A. The active site of hPKM2 is in a partially closed conformation most likely resulting from a ligand-induced domain closure promoted by the binding of FBP. In all four subunits of the enzyme tetramer, a conserved water molecule is observed on the 2-si face of the prospective enolate and supports the hypothesis that a proton-relay system is acting as the proton donor of the reaction (1). Significant structural differences among the human M2, rabbit muscle M1, and the human R isozymes are observed, especially in the orientation of the FBP-activating loop, which is in a closed conformation when FBP is bound. The structural differences observed between the PK isozymes could potentially be exploited as unique structural templates for the design of allosteric drugs against the disease states associated with the various PK isozymes, especially cancer and nonspherocytic hemolytic anemia.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
330 |
2
|
Ralat LA, Manevich Y, Fisher AB, Colman RF. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes. Biochemistry 2006; 45:360-72. [PMID: 16401067 DOI: 10.1021/bi0520737] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutathione S-transferase pi (GST pi) has been shown to reactivate oxidized 1-cysteine peroxiredoxin (1-Cys Prx, Prx VI, Prdx6, and AOP2). We now demonstrate that a heterodimer complex is formed between 1-Cys Prx with a C-terminal His6 tag and GST pi upon incubation of the two proteins at pH 8.0 in buffer containing 20% 1,6-hexanediol to dissociate the homodimers, followed by dialysis against buffer containing 2.5 mM glutathione (GSH) but lacking 1,6-hexanediol. The heterodimer can be purified by chromatography on nickel-nitriloacetic acid agarose in the presence of GSH. N-Terminal sequencing showed that equimolar amounts of the two proteins are present in the isolated complex. In the heterodimer, 1-Cys Prx is fully active toward either H2O2 or phospholipid hydroperoxide, while the GST pi activity is approximately 25% of that of the GST pi homodimer. In contrast, the 1-Cys Prx homodimer lacks peroxidase activity even in the presence of free GSH. The heterodimer is also formed in the presence of S-methylglutathione, but no 1-Cys Prx activity is found under these conditions. The yield of heterodimer is decreased in the absence of 1,6-hexanediol or GSH. Rapid glutathionylation of 1-Cys Prx in the heterodimer is detected by immunoblotting. Subsequently, a disulfide-linked dimer is observed on SDS-PAGE, and the free cysteine content is decreased by 2 per heterodimer. The involvement of particular binding sites in heterodimer formation was tested by site-directed mutagenesis of the two proteins. For 1-Cys Prx, neither Cys47 nor Ser32 is required for heterodimer formation but Cys47 is essential for 1-Cys Prx activation. For GST pi, Cys47 and Tyr7 (at or near the GSH-binding site) are needed for heterodimer formation but three other cysteines are not. We conclude that reactivation of oxidized 1-Cys Prx by GST pi occurs by heterodimerization of 1-Cys Prx and GST pi harboring bound GSH, followed by glutathionylation of 1-Cys Prx and then formation of an intersubunit disulfide. Finally, the GSH-mediated reduction of the disulfide regenerates the reduced active-site sulfhydryl of 1-Cys Prx.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
141 |
3
|
Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 92:225-60. [PMID: 15791939 DOI: 10.1007/b98911] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progress made in lab-scale applications of various coenzyme regeneration systems over the last two decades has mainly focused on the applications of NAD+/NADH- and NADP+/NADPH-dependent oxidoreductase reactions. In situ regeneration systems for these reactions, as well as whole cell, enzymatic, electro-enzymatic, chemical, and photochemical reactions are presented, including details about their efficiency and novelty. The progress of enzyme reaction engineering is also reported.
Collapse
|
Review |
20 |
132 |
4
|
O'Brien JR, Raynaud C, Croux C, Girbal L, Soucaille P, Lanzilotta WN. Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 2004; 43:4635-45. [PMID: 15096031 DOI: 10.1021/bi035930k] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular characterization of a B12-independent glycerol dehydratase from Clostridium butyricum has recently been reported [Raynaud, C., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5010-5015]. In this work, we have further characterized this system by biochemical and crystallographic methods. Both the glycerol dehydratase (GD) and the GD-activating enzyme (GD-AE) could be purified to homogeneity under aerobic conditions. In this form, both the GD and GD-AE were inactive. A reconstitution procedure, similar to what has been reported for pyruvate formate lyase activating enzyme (PFL-AE), was employed to reconstitute the activity of the GD-AE. Subsequently, the reconstituted GD-AE could be used to reactivate the GD under strictly anaerobic conditions. We also report here the crystal structure of the inactive GD in the native (2.5 A resolution, Rcryst = 17%, Rfree = 20%), glycerol-bound (1.8 A resolution, Rcryst = 21%, Rfree = 24%), and 1,2-propanediol-bound (2.4 A resolution, Rcryst = 20%, Rfree = 24%) forms. The overall fold of the GD monomer was similar to what has been observed for pyruvate formate lyase (PFL) and anaerobic ribonucleotide reductase (ARNR), consisting of a 10-stranded beta/alpha barrel motif. Clear density was observed for both substrates, and a mechanism for the dehydration reaction is presented. This mechanism clearly supports a concerted pathway for migration of the OH group through a cyclic transition state that is stabilized by partial protonation of the migrating OH group. Finally, despite poor alignment (rmsd approximately 6.8 A) of the 10 core strands that comprise the barrel structure of the GD and PFL, the C-terminal domains of both proteins align well (rmsd approximately 0.7 A) and have structural properties consistent with this being the docking site for the activating enzyme. A single point mutation within this domain, at a strictly conserved arginine residue (R782K) in the GD, resulted in formation of a tight protein-protein complex between the GD and the GD-AE in vivo, thereby supporting this hypothesis.
Collapse
|
Journal Article |
21 |
122 |
5
|
Rosenbaum AI, Cosner CC, Mariani CJ, Maxfield FR, Wiest O, Helquist P. Thiadiazole carbamates: potent inhibitors of lysosomal acid lipase and potential Niemann-Pick type C disease therapeutics. J Med Chem 2010; 53:5281-9. [PMID: 20557099 PMCID: PMC2912405 DOI: 10.1021/jm100499s] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized at the cellular level by abnormal accumulation of cholesterol and other lipids in lysosomal storage organelles. Lysosomal acid lipase (LAL) has been recently identified as a potential therapeutic target for NPC. LAL can be specifically inhibited by a variety of 3,4-disubstituted thiadiazole carbamates. An efficient synthesis of the C(3) oxygenated/C(4) aminated analogues has been developed that furnishes the products in high yields and high degrees of purity. Common intermediates can also be used for the synthesis of the C(3) carbon substituted derivatives. Herein we tested various thiadiazole carbamates, amides, esters, and ketones for inhibition of LAL. In addition, we tested a diverse selection of commercially available non-thiadiazole carbamates. Our studies show that, among the compounds examined herein, only thiadiazole carbamates are effective inhibitors of LAL. We present a mechanism for LAL inhibition by these compounds whereby LAL transiently carbamoylates the enzyme similarly to previously described inhibition of acetylcholinesterase by rivastigmine and other carbamates as well as acylation of various lipases by orlistat.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
66 |
6
|
Abstract
Adenosylcobalamin-dependent diol dehydratase of Klebsiella oxytoca undergoes suicide inactivation by glycerol, a physiological substrate. The coenzyme is modified through irreversible cleavage of its cobalt-carbon bond, resulting in inactivation of the enzyme by tight binding of the modified coenzyme to the active site. Recombinant DdrA and DdrB proteins of K. oxytoca were co-purified to homogeneity from cell-free extracts of Escherichia coli overexpressing the ddrAB genes. They existed as a tight complex, i.e. a putative reactivating factor, with an apparent molecular weight of 150,000. The factor consists of equimolar amounts of the two subunits with Mr of 64,000 (A) and 14,000 (B), encoded by the ddrA and ddrB genes, respectively. Therefore, its subunit structure is most likely A2B2. The factor not only reactivated glycerol-inactivated and O2-inactivated holoenzymes but also activated enzyme-cyanocobalamin complex in the presence of free adenosylcobalamin, ATP, and Mg2+. The reactivating factor mediated ATP-dependent exchange of the enzyme-bound cyanocobalamin for free 5-adeninylpentylcobalamin in the presence of ATP and Mg2+, but the reverse was not the case. Thus, it can be concluded that the inactivated holoenzyme becomes reactivated by exchange of the enzyme-bound, adenine-lacking cobalamins for free adenosylcobalamin, an adenine-containing cobalamin.
Collapse
|
|
26 |
64 |
7
|
Baaghil S, Lewin A, Moore GR, Le Brun NE. Core Formation in Escherichia coli Bacterioferritin Requires a Functional Ferroxidase Center. Biochemistry 2003; 42:14047-56. [PMID: 14636073 DOI: 10.1021/bi035253u] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterioferritin from Escherichia coli is able to accumulate large quantities of iron in the form of an inorganic iron(III) mineral core. Core formation in the wild-type protein and a number of ferroxidase center variants was studied to determine key features of the core formation process and, in particular, the role played by the ferroxidase center. Core formation rates were found to be iron(II)-dependent and also depended on the amount of iron already present in the core, indicating the importance of the core surface in the mineralization reaction. Core formation was also found to be pH-dependent in terms of both rate and iron-loading characteristics, occurring with maximum efficiency at pH 6.5. Even at this optimum pH, however, the effective iron capacity was approximately 2700 per molecule, i.e., well below the theoretical limit of approximately 4500, suggesting that competing oxidation/precipitation processes have a major influence on the amount of iron accumulated. Disruption of the ferroxidase center, by site-directed mutagenesis or by chemical inhibition with zinc(II), had a profound effect on core formation. Effective iron capacities were found to be linked to iron(II) oxidation rates, and in zinc(II)-inhibited wild-type and E18A bacterioferritins core formation was severely restricted. Zinc(II) was also able, even at low stoichiometries (12-60 ions/protein), to significantly inhibit further core formation in protein already containing a substantial core, indicating the importance of the ferroxidase center throughout the core formation process. A mechanism is proposed that incorporates essential roles for the core surface and the ferroxidase center. A central feature of this mechanism is that dioxygen cannot readily gain access to the core, perhaps because the channels through the bacterioferritin coat are hydrophilic and dioxygen is nonpolar.
Collapse
|
|
22 |
55 |
8
|
Mori K, Toraya T. Mechanism of reactivation of coenzyme B12-dependent diol dehydratase by a molecular chaperone-like reactivating factor. Biochemistry 1999; 38:13170-8. [PMID: 10529189 DOI: 10.1021/bi9911738] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of reactivation of diol dehydratase by its reactivating factor was investigated in vitro by using enzyme. cyanocobalamin complex as a model for inactivated holoenzyme. The factor mediated the exchange of the enzyme-bound, adenine-lacking cobalamins for free, adenine-containing cobalamins through intermediate formation of apoenzyme. The factor showed extremely low but distinct ATP-hydrolyzing activity. It formed a tight complex with apoenzyme in the presence of ADP but not at all in the presence of ATP. Incubation of the enzyme.cyanocobalamin complex with the reactivating factor in the presence of ADP brought about release of the enzyme-bound cobalamin, leaving the tight apoenzyme-reactivating factor complex. Although the resulting complex was inactive even in the presence of added adenosylcobalamin, it dissociated by incubation with ATP, forming the apoenzyme, which was reconstitutable into active holoenzyme with added coenzyme. Thus, it was established that the reactivation of the inactivated holoenzyme by the factor in the presence of ATP and Mg2+ takes place in two steps: ADP-dependent cobalamin release and ATP-dependent dissociation of the apoenzyme.factor complex. ATP plays dual roles as a precursor of ADP in the first step and as an effector to change the factor into the low-affinity form for diol dehydratase. The enzyme-bound adenosylcobalamin was also susceptible to exchange with free adeninylpentylcobalamin, although to a much lesser degree. The mechanism for discrimination of adenine-containing cobalamins from adenine-lacking cobalamins was explained in terms of formation equilibrium constants of the cobalamin.enzyme.reactivating factor ternary complexes. We propose that the reactivating factor is a new type of molecular chaperone that participates in reactivation of the inactivated enzymes.
Collapse
|
|
26 |
52 |
9
|
Zhang G, Dai J, Wang L, Dunaway-Mariano D, Tremblay LW, Allen KN. Catalytic Cycling in β-Phosphoglucomutase: A Kinetic and Structural Analysis,. Biochemistry 2005; 44:9404-16. [PMID: 15996095 DOI: 10.1021/bi050558p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine beta-PGM activation by the Mg(2+) cofactor, beta-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 A resolution X-ray crystal structure of the Mg(2+)-beta-PGM complex is examined in the context of previously reported structures of the Mg(2+)-alpha-d-galactose-1-phosphate-beta-PGM, Mg(2+)-phospho-beta-PGM, and Mg(2+)-beta-glucose-6-phosphate-1-phosphorane-beta-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity. Comparison of the ligands to Mg(2+) in the different complexes shows that a single Mg(2+) coordination site must alternatively accommodate water, phosphate, and the phosphorane intermediate during catalytic turnover. Limited involvement of the HAD family metal-binding loop in Mg(2+) anchoring in beta-PGM is consistent with the relatively loose binding indicated by the large K(m) for Mg(2+) activation (270 +/- 20 microM) and with the retention of activity found in the E169A/D170A double loop mutant. Comparison of the relative positions of cap and core domains in the different complexes indicated that interaction of cap domain Arg49 with the "nontransferring" phosphoryl group of the substrate ligand might stabilize the cap-closed conformation, as required for active site desolvation and alignment of Asp10 for acid-base catalysis. Kinetic analyses of the specificity of beta-PGM toward phosphoryl group donors and the specificity of phospho-beta-PGM toward phosphoryl group acceptors were carried out. The results support a substrate induced-fit mechanism of beta-PGM catalysis, which allows phosphomutase activity to dominate over the intrinsic phosphatase activity. Last, we present evidence that the autophosphorylation of beta-PGM by the substrate beta-G1P accounts for the origin of phospho-beta-PGM in the cell.
Collapse
|
|
20 |
47 |
10
|
Mori K, Bando R, Hieda N, Toraya T. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J Bacteriol 2004; 186:6845-54. [PMID: 15466038 PMCID: PMC522198 DOI: 10.1128/jb.186.20.6845-6854.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The holoenzyme of adenosylcobalamin-dependent ethanolamine ammonia lyase undergoes suicidal inactivation during catalysis as well as inactivation in the absence of substrate. The inactivation involves the irreversible cleavage of the Co-C bond of the coenzyme. We found that the inactivated holoenzyme undergoes rapid and continuous reactivation in the presence of ATP, Mg2+, and free adenosylcobalamin in permeabilized cells (in situ), homogenate, and cell extracts of Escherichia coli. The reactivation was observed in the permeabilized E. coli cells carrying a plasmid containing the E. coli eut operon as well. From coexpression experiments, it was demonstrated that the eutA gene, adjacent to the 5' end of ethanolamine ammonia lyase genes (eutBC), is essential for reactivation. It encodes a polypeptide consisting of 467 amino acid residues with predicted molecular weight of 49,599. No evidence was obtained that shows the presence of the auxiliary protein(s) potentiating the reactivation or associating with EutA. It was demonstrated with purified recombinant EutA that both the suicidally inactivated and O2-inactivated holoethanolamine ammonia lyase underwent rapid reactivation in vitro by EutA in the presence of adenosylcobalamin, ATP, and Mg2+. The inactive enzyme-cyanocobalamin complex was also activated in situ and in vitro by EutA under the same conditions. Thus, it was concluded that EutA is the only component of the reactivating factor for ethanolamine ammonia lyase and that reactivation and activation occur through the exchange of modified coenzyme for free intact adenosylcobalamin.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
45 |
11
|
Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A. Enzyme reactivation by hydrogen peroxide in heme-based tryptophan dioxygenase. J Biol Chem 2011; 286:26541-54. [PMID: 21632548 PMCID: PMC3143619 DOI: 10.1074/jbc.m111.253237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/29/2011] [Indexed: 11/06/2022] Open
Abstract
An intriguing mystery about tryptophan 2,3-dioxygenase is its hydrogen peroxide-triggered enzyme reactivation from the resting ferric oxidation state to the catalytically active ferrous form. In this study, we found that such an odd Fe(III) reduction by an oxidant depends on the presence of L-Trp, which ultimately serves as the reductant for the enzyme. In the peroxide reaction with tryptophan 2,3-dioxygenase, a previously unknown catalase-like activity was detected. A ferryl species (δ = 0.055 mm/s and ΔE(Q) = 1.755 mm/s) and a protein-based free radical (g = 2.0028 and 1.72 millitesla linewidth) were characterized by Mössbauer and EPR spectroscopy, respectively. This is the first compound ES-type of ferryl intermediate from a heme-based dioxygenase characterized by EPR and Mössbauer spectroscopy. Density functional theory calculations revealed the contribution of secondary ligand sphere to the spectroscopic properties of the ferryl species. In the presence of L-Trp, the reactivation was demonstrated by enzyme assays and by various spectroscopic techniques. A Trp-Trp dimer and a monooxygenated L-Trp were both observed as the enzyme reactivation by-products by mass spectrometry. Together, these results lead to the unraveling of an over 60-year old mystery of peroxide reactivation mechanism. These results may shed light on how a metalloenzyme maintains its catalytic activity in an oxidizing environment.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
42 |
12
|
Lee S, Greenwald RB, McGuire J, Yang K, Shi C. Drug delivery systems employing 1,6-elimination: releasable poly(ethylene glycol) conjugates of proteins. Bioconjug Chem 2001; 12:163-9. [PMID: 11312676 DOI: 10.1021/bc000064z] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using lysozyme as a representative protein substrate that loses its activity when PEGylation takes place on the epsilon-amino group of lysine residues, various amounts of a novel releasable PEG linker (rPEG) were conjugated to the protein. rPEG-lysozyme conjugates were relatively stable in pH 7.4 buffer for over 24 h. However, regeneration of native protein from the rPEG conjugates occurred in a predictable manner during incubation in high pH buffer or rat plasma, as demonstrated by enzymatic activity and structural characterization. The rates of regeneration were also correlated with PEG number: native lysozyme was released more rapidly from the monosubstituted conjugate than from the disubstituted conjugate, suggesting possible steric hindrance to the approach of cleaving enzymes. Recovery of normal activity and structure for the regenerated native lysozyme was shown by a variety of assays.
Collapse
|
|
24 |
42 |
13
|
Kurganov BI, Kornilaev BA, Chebotareva NA, Malikov VP, Orlov VN, Lyubarev AE, Livanova NB. Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b. Biochemistry 2000; 39:13144-52. [PMID: 11052666 DOI: 10.1021/bi000975w] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.
Collapse
|
|
25 |
37 |
14
|
Aráoz R, Anhalt E, René L, Badet-Denisot MA, Courvalin P, Badet B. Mechanism-based inactivation of VanX, a D-alanyl-D-alanine dipeptidase necessary for vancomycin resistance. Biochemistry 2000; 39:15971-9. [PMID: 11123924 DOI: 10.1021/bi001408b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
VanX is a zinc-dependent D-Ala-D-Ala amino dipeptidase required for high-level resistance to vancomycin. The enzyme is also able to process dipeptides with bulky C-terminal amino acids [Wu, Z., Wright, G. D., and Walsh, C. T. (1995) Biochemistry 34, 2455-2463]. We took advantage of this observation to design and synthesize the dipeptide-like D-Ala-D-Gly(SPhip-CHF(2))-OH (7) as a potential mechanism-based inhibitor. VanX-mediated peptide cleavage generates a highly reactive 4-thioquinone fluoromethide which is able to covalently react with enzyme nucleophilic residues, resulting in irreversible inhibition. Inhibition of VanX by 7 was time-dependent (K(irr) = 30+/-1 microM; k(inact) = 7.3+/- 0.3 min(-1)) and active site-directed, as deduced from substrate protection experiments. Nucleophilic compounds such as sodium azide, potassium cyanide, and glutathione did not protect the enzyme from inhibition, indicating that the generated nucleophile inactivates VanX before leaving the active site. The failure to reactivate the dead enzyme by gel filtration or pH modification confirmed the covalent nature of the reaction that leads to inactivation. Inactivation was associated with the elimination of fluoride ion as deduced from (19)F NMR spectroscopy analysis and with the production of fluorinated thiophenol dimer 12. These data are consistent with suicide inactivation of VanX by dipeptide 7. The small size of the VanX active site and the presence of a number of nucleophilic side chains at the opening of the active site gorge [Bussiere, D. E., et al. (1998) Mol. Cell 2, 75-84] associated with the high observed partition ratio of 7500+/-500 suggest that the inhibitor is likely to react at the entrance of the active site cavity.
Collapse
|
|
25 |
36 |
15
|
Horovitz A, Bochkareva ES, Yifrach O, Girshovich AS. Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis. J Mol Biol 1994; 238:133-8. [PMID: 7908986 DOI: 10.1006/jmbi.1994.1275] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A search for co-ordinated amino acid changes in the hsp60 family of chaperonins suggested that cysteine residues at positions 137 and 518 in the Escherichia coli chaperonin GroEL may interact with each other. In order to determine whether this interaction indeed exists we constructed a double-mutant cycle comprising wild-type GroEL, the single mutants Cys137-->Ser and Cys518-->Ser and the corresponding double mutant. The effects of the two mutations on the function of GroEL, in assisting the refolding of a non-folded protein substrate (rhodanese), are shown to be non-additive. It is also shown that ADP by itself specifically destabilizes the Cys518-->Ser mutant GroEL particle with this effect being suppressed in the double mutant. The observed pattern of co-ordinated mutations in the hsp60 family of chaperonins is thus shown to reflect a real interaction, though most likely indirect, between Cys137 and Cys518 in GroEL. Our study demonstrates that patterns of co-ordinated mutations combined with double-mutant cycle analysis can provide structural information on interactions in a protein without an available three-dimensional structure at atomic resolution.
Collapse
|
|
31 |
36 |
16
|
Wang J, Gu J, Leszczynski J, Feliks M, Sokalski WA. Oxime-Induced Reactivation of Sarin-Inhibited AChE: A Theoretical Mechanisms Study. J Phys Chem B 2007; 111:2404-8. [PMID: 17298091 DOI: 10.1021/jp067741s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oximes (especially oximate anions) are used as potential reactivators of OP-inhibited AChE due to their unique alpha-effect nucleophilic reactivity. In the present study, by applying the DFT approach at the B3LYP/6-311G(d,p) level and the Møller-Plesset perturbation theory at the MP2/6-311G(d,p) level, the formoximate-induced reactivation patterns of the sarin-AChE adduct and the corresponding reaction mechanism have been investigated. The potential energy surface along the pathway of the reactivation reaction of sarin-inhibited AChE by oxime reveals that the reaction can occur quickly due to the relatively low energy barriers. A two-step process is a major pathway proposed for the studied reactivation reaction. Through the nucleophilic attack, the oximate first binds to the sarin-AChE adduct to form a relatively stable phosphorus complex. The regeneration of the serine takes place subsequently through an elimination step, which is expected to be competitive with the nucleophilic attacking process. The polarizable continuum model (PCM) has been applied to evaluate the solvate effects on the pathway. It is concluded that the reaction energy barriers are also low enough for the reaction to easily occur in solvent. The results derived from both the gas-phase model and the aqueous solvation model suggest that the studied oximate anion is an efficient antidote reagent for sarin-inhibited AChE.
Collapse
|
|
18 |
33 |
17
|
Mak KKW, Wollenberger U, Scheller FW, Renneberg R. An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration. Biosens Bioelectron 2003; 18:1095-100. [PMID: 12788551 DOI: 10.1016/s0956-5663(02)00245-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A biosensor for detection of formate at submicromolar concentrations has been developed by co-immobilizing formate dehydrogenase (FDH, E.C. 1.2.1.2), salicylate hydroxylase (SHL, E.C. 1.14.13.1) and NAD(+) linked to polyethylene glycol (PEG-NAD(+)) in a poly(vinyl alcohol) (PVA) matrix in front of a Clark-electrode. The principle of the bi-enzyme scheme is as follows: formate dehydrogenase converts formate into carbon dioxide using PEG-NAD(+). Corresponding PEG-NADH produced is then oxidized to PEG-NAD(+) by salicylate hydroxylase using sodium salicylate and oxygen. The oxygen consumption is monitored with the Clark-electrode. The advantages of this biosensor approach are the effective re-oxidation of PEG-NADH, and the entrapment of PEG-NAD(+) resulting in avoiding the addition of expensive cofactor to the working medium for each measurement. This bi-enzyme sensor has achieved a linear range of 1-300 microM and a detection limit of 1.98 x 10(-7) M for formate (S/N=3), with the response time of 4 min. The working stability is limited to 7 days due to the inactivation of the enzymes. Only sodium salicylate was needed in milli-molar amounts.
Collapse
|
Comparative Study |
22 |
33 |
18
|
Kweon DH, Lee DH, Han NS, Seo JH. Solid-phase refolding of cyclodextrin glycosyltransferase adsorbed on cation-exchange resin. Biotechnol Prog 2004; 20:277-83. [PMID: 14763853 DOI: 10.1021/bp0341895] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression with a fusion partner is now a popular scheme to produce a protein of interest because it provides a generic tool for expression and purification. In our previous study, a strong polycationic tail has been harnessed for an efficient purification scheme. Here, the same polycation tail attached to a protein of interest is shown to hold versatility for a solid-phase refolding method that utilizes a charged adsorbent as a supporting material. Cyclodextrin glycosyltransferase (CGTase) fused with 10 lysine residues at the C-terminus (CGTK10ase) retains the ability to bind to a cation exchanger even in a urea-denatured state. When the denatured and adsorbed CGTK10ase is induced to refold, the bound CGTK10ase aggregates little even at a g/L range. The renatured CGTK10ase can also be simply recovered from the solid support by adding high concentration of NaCl. The CGTK10ase refolded on a solid support retains specific enzyme activity virtually identical to that of the native CGTK10ase. Several factors that are important in improving the refolding efficiency are explored. Experimental results indicate that nonspecific electrostatic interactions between the charge of the ion exchanger and the local charge of CGTase other than the polycationic tag should be reduced to obtain higher refolding yield. The solid-phase refolding method utilizing a strong polycationic tag resulted in a remarkable increase in the refolding performance. Taken together with the previous report in which a series of polycations were explored for efficient purification, expression of a target protein fused with a strong polycation provides a straightforward protein preparation scheme.
Collapse
|
Validation Study |
21 |
31 |
19
|
Llinás A, Ahmed N, Cordaro M, Laws AP, Frère JM, Delmarcelle M, Silvaggi NR, Kelly JA, Page MI. Inactivation of Bacterial dd-Peptidase by β-Sultams. Biochemistry 2005; 44:7738-46. [PMID: 15909988 DOI: 10.1021/bi050110o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acyl-beta-sultams are time-dependent, irreversible active site-directed inhibitors of Streptomyces R61 DD-peptidase. The rate of inactivation is first order with respect to beta-sultam concentration, and the second-order rate constants show a dependence on pH similar to that for the hydrolysis of a substrate. Inactivation is due to the formation of a stable 1:1 enzyme-inhibitor complex as a result of the active site serine being sulfonylated by the beta-sultam as shown by ESI-MS analysis and by X-ray crystallography. A striking feature of the sulfonyl enzyme is that the inhibitor is not bound to the oxyanion hole but interacts extensively with the "roof" of the active site where the Arg 285 is located.
Collapse
|
|
20 |
28 |
20
|
Quinn DM, Topczewski J, Yasapala N, Lodge A. Why is Aged Acetylcholinesterase So Difficult to Reactivate? Molecules 2017; 22:molecules22091464. [PMID: 28869561 PMCID: PMC6151809 DOI: 10.3390/molecules22091464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022] Open
Abstract
Organophosphorus agents are potent inhibitors of acetylcholinesterase. Inhibition involves successive chemical events. The first is phosphylation of the active site serine to produce a neutral adduct, which is a close structural analog of the acylation transition state. This adduct is unreactive toward spontaneous hydrolysis, but in many cases can be reactivated by nucleophilic medicinal agents, such as oximes. However, the initial phosphylation reaction may be followed by a dealkylation reaction of the incipient adduct. This reaction is called aging and produces an anionic phosphyl adduct with acetylcholinesterase that is refractory to reactivation. This review considers why the anionic aged adduct is unreactive toward nucleophiles. An alternate approach is to realkylate the aged adduct, which would render the adduct reactivatable with oxime nucleophiles. However, this approach confronts a considerable—and perhaps intractable—challenge: the aged adduct is a close analog of the deacylation transition state. Consequently, the evolutionary mechanisms that have led to transition state stabilization in acetylcholinesterase catalysis are discussed herein, as are the challenges that they present to reactivation of aged acetylcholinesterase.
Collapse
|
Review |
8 |
26 |
21
|
Kropp TJ, Glynn P, Richardson RJ. The mipafox-inhibited catalytic domain of human neuropathy target esterase ages by reversible proton loss. Biochemistry 2004; 43:3716-22. [PMID: 15035642 DOI: 10.1021/bi049960e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging of organophosphorus (OP)-compound-inhibited neuropathy target esterase (NTE) is the critical event that initiates OP-compound-induced delayed neurotoxicity (OPIDN). Aging has classically been considered to involve side-group loss from phosphylated NTE, rendering the enzyme refractory to reactivation. N,N'-Diisopropylphosphorodiamidofluoridate (mipafox, MIP)-inhibited NTE has been thought to age quickly; however, it can be reactivated under acidic conditions. The present study was undertaken to determine whether MIP-inhibited human recombinant NTE esterase domain (NEST) ages classically by isopropylamine loss. Diisopropylphosphorofluoridate (DFP), the oxygen analogue of MIP, was used for comparison. Kinetic values for DFP against NEST were as follows: k(i) = 17 200 +/- 180 M(-1) min(-1); reactivation t(1/2) approximately 90 min at pH 8.0 and approximately 60 min at pH 5.2; k(4) = 0.108 +/- 0.041 min(-1) at pH 8.0 and 0.181 +/- 0.034 min(-1) at pH 5.2. Kinetic values for MIP against NEST were as follows: k(i) = 1880 +/- 61 M(-1) min(-1); reactivation t(1/2) = 0 min at pH 8.0 and approximately 60 min at pH 5.2; aging was complete at all time points tested at pH 8.0, but no aging occurred at pH 5.2. Mass spectrometry revealed a mass shift of 123.0 +/- 0.6 Da for the active site peptide peak of aged DFP-inhibited NEST, corresponding to a monoisopropyl phosphate adduct. In contrast, the analogous mass shift for aged MIP-inhibited NEST was 162.8 +/- 0.6 Da, corresponding to the intact N,N'-diisopropylphosphorodiamido adduct. Thus, MIP-inhibited NEST does not age by isopropylamine loss. However, because kinetically aged MIP-inhibited NEST yields an intact adduct capable of reversible deprotonation, aging could occur by proton loss. Indeed, MIP-inhibited NEST does not age at pH 5.2 but ages immediately and completely at pH 8.0. Therefore, we conclude that the MIP-NEST conjugate ages by deprotonation rather than classical side-group loss.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
23 |
22
|
Yazdanparast R, Khodagholi F, Khodarahmi R. Artificial chaperone-assisted refolding of chemically denatured alpha-amylase. Int J Biol Macromol 2005; 35:257-63. [PMID: 15862864 DOI: 10.1016/j.ijbiomac.2005.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 11/17/2022]
Abstract
It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
23 |
23
|
Tobimatsu T, Kajiura H, Toraya T. Specificities of reactivating factors for adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase. Arch Microbiol 2000; 174:81-8. [PMID: 10985746 DOI: 10.1007/s002030000179] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosylcobalamin-dependent glycerol and diol dehydratases undergo inactivation by the physiological substrate glycerol during catalysis. In the permeabilized cells of Klebsiella pneumoniae, Klebsiella oxytoca, and recombinant Escherichia coli, glycerol-inactivated glycerol dehydratase and diol dehydratase are reactivated by their respective reactivating factors in the presence of ATP, Mg2+, and adenosylcobalamin. Both of the reactivating factors consist of two subunits. To examine the specificities of the reactivating factors, their genes or their hybrid genes were co-expressed with dehydratase genes in E. coli cells in various combinations. The reactivating factor of K. oxytoca for diol dehydratase efficiently cross-reactivated the inactivated glycerol dehydratase, whereas the reactivating factor of K. pneumoniae for glycerol dehydratase hardly cross-reactivated the inactivated diol dehydratase. Both of the two hybrid reactivating factors rapidly reactivated the inactivated glycerol dehydratase. In contrast, the hybrid reactivating factor containing the large subunit of the glycerol dehydratase reactivating factor hardly reactivated the inactivated diol dehydratase. These results indicate that the glycerol dehydratase reactivating factor is much more specific for the dehydratase partner than the diol dehydratase reactivating factor and that a large subunit of the reactivating factors principally determines the specificity for a dehydratase.
Collapse
|
|
25 |
22 |
24
|
Maxwell DM, Lieske CN, Brecht KM. Oxime-induced reactivation of carboxylesterase inhibited by organophosphorus compounds. Chem Res Toxicol 1994; 7:428-33. [PMID: 8075376 DOI: 10.1021/tx00039a022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A structure-activity analysis of the ability of oximes to reactivate rat plasma carboxylesterase (CaE) that was inhibited by organophosphorus (OP) compounds revealed that uncharged oximes, such as 2,3-butanedione monoxime (diacetylmonoxime) or monoisonitrosoacetone, were better reactivators than cationic oximes. Cationic oximes that are excellent reactivators of OP-inhibited acetylcholinesterase, such as pyridine-2-aldoxime or the bis-pyridine aldoximes, HI-6 and TMB-4, produced poor reactivation of OP-inhibited CaE. The best uncharged reactivator was 2,3-butanedione monoxime, which produced complete reactivation at 0.3 mM in 2 h of CaE that was inhibited by phosphinates, alkoxy-containing phosphates, and alkoxy-containing phosphonates. Complete reactivation of CaE could be achieved even after inhibition by phosphonates with highly branched alkoxy groups, such as sarin and soman, that undergo rapid aging with acetylcholinesterase. CaE that was inhibited by phosphonates or phosphates that contained aryloxy groups were reactivated to a lesser extent. The cause of this decreased reactivation appears to be an oxime-induced aging reaction that competes with the reactivation reaction. This oxime-induced aging reaction is accelerated by electron-withdrawing substituents on the aryloxy groups of phosphonates and by the presence of multiple aryloxy groups on phosphates. Thus, reactivation and aging of OP-inhibited CaE differ from the same processes for OP-inhibited acetylcholinesterase in both their oxime specificity and inhibitor specificity and, presumably, in their underlying mechanisms.
Collapse
|
|
31 |
22 |
25
|
Woycechowsky KJ, Hook BA, Raines RT. Catalysis of protein folding by an immobilized small-molecule dithiol. Biotechnol Prog 2003; 19:1307-14. [PMID: 12892495 DOI: 10.1021/bp0257123] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isomerization of non-native disulfide bonds often limits the rate of protein folding. Small-molecule dithiols can catalyze this process. Here, a symmetric trithiol, tris(2-mercaptoacetamidoethyl)amine, is designed on the basis of criteria known to be important for efficient catalysis of oxidative protein folding. The trithiol is synthesized and attached to two distinct solid supports via one of its three sulfhydryl groups. The resulting immobilized dithiol has an apparent disulfide E degrees ' = -208 mV, which is close to that of protein disulfide isomerase (E degrees ' = -180 mV). Incubation of the dithiol immobilized on a TentaGel resin with a protein containing non-native disulfide bonds produced only a 2-fold increase in native protein. This dithiol appeared to be inaccessible to protein. In contrast, incubation of the dithiol immobilized on styrene-glycidyl methacrylate microspheres with the non-native protein produced a 17-fold increase in native protein. This increase was 1.5-fold greater than that of a monothiol immobilized on the microspheres. Thus, the choice of both the solid support and thiol can affect catalysis of protein folding. The use of dithiol-decorated microspheres is an effective new strategy for preparative protein folding in vitro.
Collapse
|
Evaluation Study |
22 |
18 |