1
|
Ficz G, Hore T, Santos F, Lee H, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, Cook S, Andrews S, Branco M, Reik W. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013; 13:351-9. [PMID: 23850245 PMCID: PMC3765959 DOI: 10.1016/j.stem.2013.06.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 01/30/2023]
Abstract
Genome-wide erasure of DNA methylation takes place in primordial germ cells (PGCs) and early embryos and is linked with pluripotency. Inhibition of Erk1/2 and Gsk3β signaling in mouse embryonic stem cells (ESCs) by small-molecule inhibitors (called 2i) has recently been shown to induce hypomethylation. We show by whole-genome bisulphite sequencing that 2i induces rapid and genome-wide demethylation on a scale and pattern similar to that in migratory PGCs and early embryos. Major satellites, intracisternal A particles (IAPs), and imprinted genes remain relatively resistant to erasure. Demethylation involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), impaired maintenance of 5mC and 5hmC, and repression of the de novo methyltransferases (Dnmt3a and Dnmt3b) and Dnmt3L. We identify a Prdm14- and Nanog-binding cis-acting regulatory region in Dnmt3b that is highly responsive to signaling. These insights provide a framework for understanding how signaling pathways regulate reprogramming to an epigenetic ground state of pluripotency.
Collapse
|
brief-report |
12 |
316 |
2
|
Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 2013; 380:41-54. [PMID: 23267834 DOI: 10.1016/j.mce.2012.12.014] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 01/11/2023]
Abstract
The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow.
Collapse
|
Review |
12 |
283 |
3
|
Isono K, Endo TA, Ku M, Yamada D, Suzuki R, Sharif J, Ishikura T, Toyoda T, Bernstein BE, Koseki H. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 2013; 26:565-77. [PMID: 24091011 DOI: 10.1016/j.devcel.2013.08.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/29/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023]
Abstract
The Polycomb-group (PcG) repressive complex-1 (PRC1) forms microscopically visible clusters in nuclei; however, the impact of this cluster formation on transcriptional regulation and the underlying mechanisms that regulate this process remain obscure. Here, we report that the sterile alpha motif (SAM) domain of a PRC1 core component Phc2 plays an essential role for PRC1 clustering through head-to-tail macromolecular polymerization, which is associated with stable target binding of PRC1/PRC2 and robust gene silencing activity. We propose a role for SAM domain polymerization in this repression by two distinct mechanisms: first, through capturing and/or retaining PRC1 at the PcG targets, and second, by strengthening the interactions between PRC1 and PRC2 to stabilize transcriptional repression. Our findings reveal a regulatory mechanism mediated by SAM domain polymerization for PcG-mediated repression of developmental loci that enables a robust yet reversible gene repression program during development.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
237 |
4
|
Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, Nie Y, Cai Y, Zhang YW, Yu LR, Li H, Zahnow CA, Xie W, Chiu Yen RW, Rassool FV, Baylin SB. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell 2017; 31:653-668.e7. [PMID: 28486105 PMCID: PMC5587180 DOI: 10.1016/j.ccell.2017.04.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
An oncogenic role for CHD4, a NuRD component, is defined for initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer. CHD4 recruits repressive chromatin proteins to sites of DNA damage repair, including DNA methyltransferases where it imposes de novo DNA methylation. At TSGs, CHD4 retention helps maintain DNA hypermethylation-associated transcriptional silencing. CHD4 is recruited by the excision repair protein OGG1 for oxidative damage to interact with the damage-induced base 8-hydroxydeoxyguanosine (8-OHdG), while ZMYND8 recruits it to double-strand breaks. CHD4 knockdown activates silenced TSGs, revealing their role for blunting colorectal cancer cell proliferation, invasion, and metastases. High CHD4 and 8-OHdG levels plus low expression of TSGs strongly correlates with early disease recurrence and decreased overall survival.
Collapse
|
research-article |
8 |
135 |
5
|
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 2017; 140:3252-3268. [PMID: 29155979 PMCID: PMC5841035 DOI: 10.1093/brain/awx272] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Collapse
|
research-article |
8 |
129 |
6
|
Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z, Frederick B, Chen Q, Luense LJ, Garcia BA, Dang W, Johnson FB, Adams PD, Schultz DC, Berger SL. Histone Acetyltransferase p300 Induces De Novo Super-Enhancers to Drive Cellular Senescence. Mol Cell 2019; 73:684-698.e8. [PMID: 30773298 DOI: 10.1016/j.molcel.2019.01.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
105 |
7
|
Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 2014; 10:e1004755. [PMID: 25502438 PMCID: PMC4263374 DOI: 10.1371/journal.pgen.1004755] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. Plants rely on cell-surface and intracellular immune receptors to sense pathogen invasion and to mediate defense responses. However, uncontrolled activation of immune responses is harmful to plant growth and development. Small RNAs have recently been shown to fine-tune the expression of intracellular immune receptors and contribute to the regulation of defense signaling in dicot plants, while similar processes have not been well documented in monocot grain crops, such as barley and wheat. Here, we show that, in barley, some members of the miR9863 family target a subset of Mla alleles that confer race-specific disease resistance to the powdery mildew fungus. These miRNAs act on Mla transcripts by cleavage and translational repression. Production of a type of trans-acting small RNAs, designated as phasiRNAs, enhances the effects of miRNA regulation on Mla targets. We propose that Mla-mediated immune signaling is fine-tuned by the miRNAs at later stage of MLA activation to avoid overloading of immune responses in barley cells.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
86 |
8
|
He Y, Hariharan M, Gorkin DU, Dickel DE, Luo C, Castanon RG, Nery JR, Lee AY, Zhao Y, Huang H, Williams BA, Trout D, Amrhein H, Fang R, Chen H, Li B, Visel A, Pennacchio LA, Ren B, Ecker JR. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 2020; 583:752-759. [PMID: 32728242 PMCID: PMC7398276 DOI: 10.1038/s41586-020-2119-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
83 |
9
|
|
Review |
4 |
75 |
10
|
Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD, Grady WM. NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 2013; 9:e1003552. [PMID: 23874207 PMCID: PMC3708790 DOI: 10.1371/journal.pgen.1003552] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/23/2013] [Indexed: 12/03/2022] Open
Abstract
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3. NTRK3 is a neurotrophin receptor and appears to be a dependence receptor in certain tissues. NTRK3 has been previously shown to be an oncogene in breast cancer and possibly hepatocellular carcinoma. Through a genome-wide methylation screen, we unexpectedly found that NTRK3 is commonly methylated in colorectal cancers but not in normal colon samples, which led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. We now demonstrate that NTRK3 is frequently methylated in colorectal adenomas and cancers. Induced NTRK3 expression in the absence of its ligand, NT-3, causes apoptosis and suppresses in vitro anchorage-independent colony formation and in vivo tumor growth. Reintroduction of NT-3 releases colon cancer cells from NTRK3-mediated apoptosis, which is consistent with NTRK3 being a dependence receptor in the colon. Finally, somatic mutations of NTRK3 have been observed in primary human colorectal cancer. We provide evidence that a subset of these mutations inactivate tumor suppressor activities of NTRK3. These findings suggest that NTRK3 is a conditional tumor suppressor gene in the colon that is inactivated by both genetic and epigenetic mechanisms and whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
73 |
11
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
|
Review |
11 |
70 |
12
|
Pokrovskii M, Hall JA, Ochayon DE, Yi R, Chaimowitz NS, Seelamneni H, Carriero N, Watters A, Waggoner SN, Littman DR, Bonneau R, Miraldi ER. Characterization of Transcriptional Regulatory Networks that Promote and Restrict Identities and Functions of Intestinal Innate Lymphoid Cells. Immunity 2019; 51:185-197.e6. [PMID: 31278058 PMCID: PMC6863506 DOI: 10.1016/j.immuni.2019.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) promote tissue homeostasis and immune defense but also contribute to inflammatory diseases. ILCs exhibit phenotypic and functional plasticity in response to environmental stimuli, yet the transcriptional regulatory networks (TRNs) that control ILC function are largely unknown. Here, we integrate gene expression and chromatin accessibility data to infer regulatory interactions between transcription factors (TFs) and genes within intestinal type 1, 2, and 3 ILC subsets. We predicted the "core" TFs driving ILC identities, organized TFs into cooperative modules controlling distinct gene programs, and validated roles for c-MAF and BCL6 as regulators affecting type 1 and type 3 ILC lineages. The ILC network revealed alternative-lineage-gene repression, a mechanism that may contribute to reported plasticity between ILC subsets. By connecting TFs to genes, the TRNs suggest means to selectively regulate ILC effector functions, while our network approach is broadly applicable to identifying regulators in other in vivo cell populations.
Collapse
|
research-article |
6 |
66 |
13
|
Nosaka M, Itoh JI, Nagato Y, Ono A, Ishiwata A, Sato Y. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet 2012; 8:e1002953. [PMID: 23028360 PMCID: PMC3459959 DOI: 10.1371/journal.pgen.1002953] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022] Open
Abstract
RNA silencing is a defense system against “genomic parasites” such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA–directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements. Transposons, which are sometimes referred to as “genomic parasites,” are a major component of eukaryotic genomes. Because transposon activity is often detrimental to host genome stability, most transposons are silenced by the host's defense machinery. The mechanisms of transposon silencing, such as RNA silencing, have been well investigated, but virtually nothing is known about the strategies that transposons have evolved to avoid silencing. In this paper, we demonstrate that a microRNA (miRNA) produced from a transposon suppresses the host's silencing machinery. Generally, small interfering RNAs (siRNAs) produced from transposons trigger silencing of those transposon loci; however, in this case, transposons escape host silencing by producing miRNA. Our analysis provides evidence for a novel mechanism by which transposons reduce host silencing, and it elucidates the front line of host genome–parasitic DNA interaction through the action of two types of small RNAs, siRNA and miRNA, produced from transposons.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
66 |
14
|
Hirose T, Mishima Y, Tomari Y. Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep 2014; 15:489-507. [PMID: 24731943 PMCID: PMC4210095 DOI: 10.1002/embr.201338390] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
Abstract
Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.
Collapse
|
Review |
11 |
63 |
15
|
Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283:3181-93. [PMID: 27248712 DOI: 10.1111/febs.13768] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins offer a breakthrough platform for cheap, programmable, and effective sequence-specific DNA targeting. The CRISPR-Cas system is naturally equipped for targeted DNA cutting through its native nuclease activity. As such, groups researching a broad spectrum of biological organisms have quickly adopted the technology with groundbreaking applications to genomic sequence editing in over 20 different species. However, the biological code of life is not only encoded in genetics but also in epigenetics as well. While genetic sequence editing is a powerful ability, we must also be able to edit and regulate transcriptional and epigenetic code. Taking inspiration from work on earlier sequence-specific targeting technologies such as zinc fingers (ZFs) and transcription activator-like effectors (TALEs), researchers quickly expanded the CRISPR-Cas toolbox to include transcriptional activation, repression, and epigenetic modification. In this review, we highlight advances that extend the CRISPR-Cas toolkit for transcriptional and epigenetic regulation, as well as best practice guidelines for these tools, and a perspective on future applications.
Collapse
|
Review |
9 |
50 |
16
|
Rutter GA, Georgiadou E, Martinez-Sanchez A, Pullen TJ. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity. Diabetologia 2020; 63:1990-1998. [PMID: 32894309 PMCID: PMC7476987 DOI: 10.1007/s00125-020-05205-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1 diabetes and the latter in type 2 diabetes. Deeper understanding of the coupling mechanisms that link glucose metabolism in these cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2 (encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the acyl-CoA thioesterase (ACOT7) and others, are selectively repressed ('disallowed') in beta cells. Furthermore, mutations in genes critical for mitochondrial oxidative metabolism, such as TRL-CAG1-7 encoding tRNALeu, are linked to maternally inherited forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mitochondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may also impair beta cell-beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion. Graphical abstract.
Collapse
|
Review |
5 |
50 |
17
|
Liu Y, Liu K, Yin L, Yu Y, Qi J, Shen WH, Zhu J, Zhang Y, Dong A. H3K4me2 functions as a repressive epigenetic mark in plants. Epigenetics Chromatin 2019; 12:40. [PMID: 31266517 PMCID: PMC6604379 DOI: 10.1186/s13072-019-0285-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In animals, H3K4me2 and H3K4me3 are enriched at the transcription start site (TSS) and function as epigenetic marks that regulate gene transcription, but their functions in plants have not been fully characterized. RESULTS We used chromatin immunoprecipitation sequencing to analyze the rice genome-wide changes to H3K4me1/H3K4me2/H3K4me3 following the loss of an H3K4-specific methyltransferase, SDG701. The knockdown of SDG701 resulted in a global decrease in H3K4me2/H3K4me3 levels throughout the rice genome. An RNA-sequencing analysis revealed that many genes related to diverse developmental processes were misregulated in the SDG701 knockdown mutant. In rice, H3K4me3 and H3K36me3 are positively correlated with gene transcription; however, surprisingly, the H3K4me2 level was negatively associated with gene transcription levels. Furthermore, the H3K4me3 level at the TSS region decreased significantly in the genes that exhibited down-regulated expression in the SDG701 knockdown mutant. In contrast, the genes with up-regulated expression in the mutant were associated with a considerable decrease in H3K4me2 levels over the gene body region. CONCLUSION A comparison of the genome-wide distributions of H3K4me2 in eukaryotes indicated that the H3K4me2 level is not correlated with the gene transcription level in yeast, but is positively and negatively correlated with gene expression in animals and plants, respectively. Our results uncovered H3K4me2 as a novel repressive mark in plants.
Collapse
|
research-article |
6 |
49 |
18
|
Yeh CM, Shay J, Zeng TC, Chou JL, Huang THM, Lai HC, Chan MWY. Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol 2014; 45:2101-7. [PMID: 25175925 DOI: 10.3892/ijo.2014.2627] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death and the most deadly gynecological malignancy in women. Epigenetic modifications play an important role in regulating gene transcription. Specifically, aberrant promoter hypermethylation has been implicated as a hallmark of cancer. In order to identify genes that are differentially methylated in ovarian cancer, we performed meDIP-chip in various ovarian cancer cell lines using Agilent 244K CpG island microarray. One of the targets, ARNTL which is a core component of the circadian clock is methylated in a sub-set of ovarian cancer cell lines. Combined bisulfite restriction analysis (COBRA) confirmed the results of the microarray. Additional analysis using ChIP-PCR revealed that promoter of ARNTL is enriched with the repressive histone mark H3K27me3 in CP70 and MCP2 ovarian cancer cells. Treatment with the EZH2 inhibitor (GSK126) significantly restored ARNTL expression in these cells (CP70 and MCP2). Further functional analysis demonstrated that overexpression of ARNTL inhibited cell growth and enhanced chemosensitivity of cisplatin in ovarian cancer cells. Finally, overexpression of ARNTL restored the rhythmic activity of c-MYC in ovarian cancer cells. These results suggested that ARNTL may be a tumor suppressor and is epigenetically silenced in ovarian cancer.
Collapse
|
|
11 |
49 |
19
|
Jain D, Meydan C, Lange J, Claeys Bouuaert C, Lailler N, Mason CE, Anderson KV, Keeney S. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet 2017; 13:e1006964. [PMID: 28854222 PMCID: PMC5607212 DOI: 10.1371/journal.pgen.1006964] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/20/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
Transcriptional silencing by heritable cytosine-5 methylation is an ancient strategy to repress transposable elements. It was previously thought that mammals possess four DNA methyltransferase paralogs-Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l-that establish and maintain cytosine-5 methylation. Here we identify a fifth paralog, Dnmt3c, that is essential for retrotransposon methylation and repression in the mouse male germline. From a phenotype-based forward genetics screen, we isolated a mutant mouse called 'rahu', which displays severe defects in double-strand-break repair and homologous chromosome synapsis during male meiosis, resulting in sterility. rahu is an allele of a transcription unit (Gm14490, renamed Dnmt3c) that was previously mis-annotated as a Dnmt3-family pseudogene. Dnmt3c encodes a cytosine methyltransferase homolog, and Dnmt3crahu mutants harbor a non-synonymous mutation of a conserved residue within one of its cytosine methyltransferase motifs, similar to a mutation in human DNMT3B observed in patients with immunodeficiency, centromeric instability and facial anomalies syndrome. The rahu mutation lies at a potential dimerization interface and near the potential DNA binding interface, suggesting that it compromises protein-protein and/or protein-DNA interactions required for normal DNMT3C function. Dnmt3crahu mutant males fail to establish normal methylation within LINE and LTR retrotransposon sequences in the germline and accumulate higher levels of transposon-derived transcripts and proteins, particularly from distinct L1 and ERVK retrotransposon families. Phylogenetic analysis indicates that Dnmt3c arose during rodent evolution by tandem duplication of Dnmt3b, after the divergence of the Dipodoidea and Muroidea superfamilies. These findings provide insight into the evolutionary dynamics and functional specialization of the transposon suppression machinery critical for mammalian sexual reproduction and epigenetic regulation.
Collapse
|
research-article |
8 |
49 |
20
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
|
Review |
11 |
48 |
21
|
Shalginskikh N, Poleshko A, Skalka AM, Katz RA. Retroviral DNA methylation and epigenetic repression are mediated by the antiviral host protein Daxx. J Virol 2013; 87:2137-50. [PMID: 23221555 PMCID: PMC3571491 DOI: 10.1128/jvi.02026-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/28/2012] [Indexed: 12/23/2022] Open
Abstract
Integrated retroviral DNA is subject to epigenetic transcriptional silencing at different frequencies. This process is mediated by repressive DNA methylation and histone modifications on viral chromatin. However, the detailed mechanisms by which retroviral silencing is initiated and maintained are not well understood. Using a model system in which avian sarcoma virus (ASV) DNA is epigenetically repressed in mammalian cells, we previously found that a cellular scaffolding protein, Daxx, acts as an antiretroviral factor that promotes epigenetic repression through recruitment of histone deacetylases (HDACs). Here we show that human Daxx protein levels are increased in response to retroviral infection and that Daxx acts at the time of infection to initiate epigenetic repression. Consistent with a rapid and active antiviral epigenetic response, we found that repressive histone marks and long terminal repeat (LTR) DNA methylation could be detected within 12 h to 3 days postinfection, respectively. Daxx was also found to be required for long-term ASV silencing maintenance and full viral DNA methylation, and it was physically associated with both viral DNA and DNA methyltransferases (DNMTs). These findings support a model in which incoming retroviral protein-DNA complexes are detected by Daxx, and the integrated provirus is rapidly chromatinized and repressed by DNA methylation and histone modification as part of an antiviral response. These results uncover a possible direct and active antiviral mechanism by which DNMTs can be recruited to retroviral DNA.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
43 |
22
|
Fisher JB, Peterson J, Reimer M, Stelloh C, Pulakanti K, Gerbec ZJ, Abel AM, Strouse JM, Strouse C, McNulty M, Malarkannan S, Crispino JD, Milanovich S, Rao S. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia 2017; 31:712-719. [PMID: 27554164 PMCID: PMC5332284 DOI: 10.1038/leu.2016.240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Acute myelogenous leukemia (AML) is a high-risk hematopoietic malignancy caused by a variety of mutations, including genes encoding the cohesin complex. Recent studies have demonstrated that reduction in cohesin complex levels leads to enhanced self-renewal in hematopoietic stem and progenitors (HSPCs). We sought to delineate the molecular mechanisms by which cohesin mutations promote enhanced HSPC self-renewal as this represents a critical initial step during leukemic transformation. We verified that RNAi against the cohesin subunit Rad21 causes enhanced self-renewal of HSPCs in vitro through derepression of polycomb repressive complex 2 (PRC2) target genes, including Hoxa7 and Hoxa9. Importantly, knockdown of either Hoxa7 or Hoxa9 suppressed self-renewal, implying that both are critical downstream effectors of reduced cohesin levels. We further demonstrate that the cohesin and PRC2 complexes interact and are bound in close proximity to Hoxa7 and Hoxa9. Rad21 depletion resulted in decreased levels of H3K27me3 at the Hoxa7 and Hoxa9 promoters, consistent with Rad21 being critical to proper gene silencing by recruiting the PRC2 complex. Our data demonstrates that the cohesin complex regulates PRC2 targeting to silence Hoxa7 and Hoxa9 and negatively regulate self-renewal. Our studies identify a novel epigenetic mechanism underlying leukemogenesis in AML patients with cohesin mutations.
Collapse
|
research-article |
8 |
41 |
23
|
Au SLK, Wong CCL, Lee JMF, Wong CM, Ng IOL. EZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers. PLoS One 2013; 8:e68226. [PMID: 23826380 PMCID: PMC3694912 DOI: 10.1371/journal.pone.0068226] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
39 |
24
|
Nilsson EM, Laursen KB, Whitchurch J, McWilliam A, Ødum N, Persson JL, Heery DM, Gudas LJ, Mongan NP. MiR137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget 2015; 6:35710-25. [PMID: 26461474 PMCID: PMC4742136 DOI: 10.18632/oncotarget.5958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/12/2015] [Indexed: 01/02/2023] Open
Abstract
Androgens and the androgen receptor (AR) play crucial roles in male development and the pathogenesis and progression of prostate cancer (PCa). The AR functions as a ligand dependent transcription factor which recruits multiple enzymatically distinct epigenetic coregulators to facilitate transcriptional regulation in response to androgens. Over-expression of AR coregulators is implicated in cancer. We have shown that over-expression of KDM1A, an AR coregulator, contributes to PCa recurrence by promoting VEGFA expression. However the mechanism(s) whereby AR coregulators are increased in PCa remain poorly understood. In this study we show that the microRNA hsa-miR-137 (miR137) tumor suppressor regulates expression of an extended network of transcriptional coregulators including KDM1A/LSD1/AOF1, KDM2A/JHDM1A/FBXL11, KDM4A/JMJD2A, KDM5B JARID1B/PLU1, KDM7A/JHDM1D/PHF8, MED1/TRAP220/DRIP205 and NCoA2/SRC2/TIF2. We show that expression of miR137 is increased by androgen in LnCaP androgen PCa responsive cells and that the miR137 locus is epigenetically silenced in androgen LnCaP:C4-2 and PC3 independent PCa cells. In addition, we found that restoration of miR137 expression down-regulates expression of VEGFA, an AR target gene, which suggests a role of miR137 loss also in cancer angiogenesis. Finally we show functional inhibition of miR137 function enhanced androgen induction of PSA/KLK3 expression. Our data indicate that miR137 functions as an androgen regulated suppressor of androgen signaling by modulating expression of an extended network of transcriptional coregulators. Therefore, we propose that epigenetic silencing of miR137 is an important event in promoting androgen signaling during prostate carcinogenesis and progression.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
36 |
25
|
Krause C, Geißler C, Tackenberg H, El Gammal AT, Wolter S, Spranger J, Mann O, Lehnert H, Kirchner H. Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes. Diabetologia 2020; 63:2182-2193. [PMID: 32710190 PMCID: PMC7476982 DOI: 10.1007/s00125-020-05212-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS IRS2 is an important molecular switch that mediates insulin signalling in the liver. IRS2 dysregulation is responsible for the phenomenon of selective insulin resistance that is observed in type 2 diabetes. We hypothesise that epigenetic mechanisms are involved in the regulation of IRS2 in the liver of obese and type 2 diabetic individuals. METHODS DNA methylation of seven CpG sites was studied by bisulphite pyrosequencing and mRNA and microRNA (miRNA) expression was assessed by quantitative real-time PCR in liver biopsies of 50 obese non-diabetic and 31 obese type 2 diabetic participants, in a cross-sectional setting. Methylation-sensitive luciferase assays and electrophoretic mobility shift assays were performed. Furthermore, HepG2 cells were treated with insulin and high glucose concentrations to induce miRNA expression and IRS2 downregulation. RESULTS We found a significant downregulation of IRS2 expression in the liver of obese individuals with type 2 diabetes (0.84 ± 0.08-fold change; p = 0.0833; adjusted p value [pa] = 0.0417; n = 31) in comparison with non-diabetic obese participants (n = 50). This downregulation correlated with hepatic IRS2 DNA methylation at CpG5. Additionally, CpG6, which is located in intron 1 of IRS2, was hypomethylated in type 2 diabetes; this site spans the sterol regulatory element binding transcription factor 1 (SREBF1) recognition motif, which likely acts as transcriptional repressor. The adjacent polymorphism rs4547213 (G>A) was significantly associated with DNA methylation at a specificity-protein-1 (SP1) binding site (CpG3). Moreover, DNA methylation of cg25924746, a CpG site located in the shore region of the IRS2 promoter-associated CpG island, was increased in the liver of individuals with type 2 diabetes, as compared with those without diabetes. A second epigenetic mechanism, upregulation of hepatic miRNA hsa-let-7e-5p (let-7e-5p) in obese individuals with type 2 diabetes (n = 29) vs non-diabetic obese individuals (n = 49) (1.2 ± 0.08-fold change; p = 0.0332; pa = 0.0450), is likely to act synergistically with altered IRS2 DNA methylation to decrease IRS2 expression. Mechanistic in vitro experiments demonstrated an acute upregulation of let-7e-5p expression and simultaneous IRS2 downregulation in a liver (HepG2) cell line upon hyperinsulinaemic and hyperglycaemic conditions. CONCLUSIONS/INTERPRETATION Our study highlights a new multi-layered epigenetic network that could be involved in subtle dysregulation of IRS2 in the liver of individuals with type 2 diabetes. This might lead to fine-tuning of IRS2 expression and is likely to be supplementary to the already known factors regulating IRS2 expression. Thereby, our findings could support the discovery of new diagnostic and therapeutic strategies for type 2 diabetes. Graphical abstract.
Collapse
|
research-article |
5 |
35 |