1
|
Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology 2012; 143:1442-1460.e1. [PMID: 23000599 PMCID: PMC3611241 DOI: 10.1053/j.gastro.2012.09.032] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022]
Abstract
In the early years of the molecular biology revolution, cancer research was mainly focused on genetic changes (ie, those that altered DNA sequences). Although this has been extremely useful as our understanding of the pathogenesis and biology of cancer has grown and matured, there is another realm in tumor development that does not involve changing the sequence of cellular DNA. This field is called "epigenetics" and broadly encompasses changes in the methylation of cytosines in DNA, changes in histone and chromatin structure, and alterations in the expression of microRNAs, which control the stability of many messenger RNAs and serve as "master regulators" of gene expression. This review focuses on the epigenetics of colorectal cancer and illustrates the impact epigenetics has had on this field.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
190 |
2
|
Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 2013; 38:3-22. [PMID: 22828751 PMCID: PMC3521967 DOI: 10.1038/npp.2012.124] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/25/2022]
Abstract
Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
108 |
3
|
Xu L, Seki M. Recent advances in the detection of base modifications using the Nanopore sequencer. J Hum Genet 2020; 65:25-33. [PMID: 31602005 PMCID: PMC7087776 DOI: 10.1038/s10038-019-0679-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
DNA and RNA modifications have important functions, including the regulation of gene expression. Existing methods based on short-read sequencing for the detection of modifications show difficulty in determining the modification patterns of single chromosomes or an entire transcript sequence. Furthermore, the kinds of modifications for which detection methods are available are very limited. The Nanopore sequencer is a single-molecule, long-read sequencer that can directly sequence RNA as well as DNA. Moreover, the Nanopore sequencer detects modifications on long DNA and RNA molecules. In this review, we mainly focus on base modification detection in the DNA and RNA of mammals using the Nanopore sequencer. We summarize current studies of modifications using the Nanopore sequencer, detection tools using statistical tests or machine learning, and applications of this technology, such as analyses of open chromatin, DNA replication, and RNA metabolism.
Collapse
|
Review |
5 |
92 |
4
|
Abstract
Rhabdomyosarcoma is the most common soft-tissue sarcoma of childhood, and despite clinical advances, subsets of these patients continue to suffer high levels of morbidity and mortality associated with their disease. Recent genetic and molecular characterization of these tumors using sophisticated genomics techniques, including next-generation sequencing experiments, has revealed multiple areas that can be exploited for new molecularly targeted therapies for this disease.
Collapse
|
Research Support, N.I.H., Intramural |
10 |
73 |
5
|
Abstract
Epigenetic alterations such as DNA methylation defects and aberrant covalent histone modifications occur within all cancers and are selected for throughout the natural history of tumor formation, with changes being detectable in early onset, progression, and ultimately recurrence and metastasis. The ascertainment and use of these marks to identify at-risk patient populations, refine diagnostic criteria, and provide prognostic and predictive factors to guide treatment decisions are of growing clinical relevance. Furthermore, the targetable nature of epigenetic modifications provides a unique opportunity to alter treatment paradigms and provide new therapeutic options for patients whose malignancies possess these aberrant epigenetic modifications, paving the way for new and personalized medicine. DNA methylation has proven to be of significant clinical utility for its stability and relative ease of testing. The intent of this review is to elaborate upon well-supported examples of epigenetic precision medicine and how the field is moving forward, primarily in the context of aberrant DNA methylation.
Collapse
|
Review |
7 |
59 |
6
|
Roukos DH. Next-generation sequencing and epigenome technologies: potential medical applications. Expert Rev Med Devices 2011; 7:723-6. [PMID: 21050081 DOI: 10.1586/erd.10.68] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
Editorial |
14 |
57 |
7
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
|
Review |
6 |
55 |
8
|
Messerlian C, Martinez RM, Hauser R, Baccarelli AA. 'Omics' and endocrine-disrupting chemicals - new paths forward. Nat Rev Endocrinol 2017; 13:740-748. [PMID: 28707677 PMCID: PMC7141602 DOI: 10.1038/nrendo.2017.81] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The emerging field of omics - large-scale data-rich biological measurements of the genome - provides new opportunities to advance and strengthen research into endocrine-disrupting chemicals (EDCs). Although some EDCs have been associated with adverse health effects in humans, our understanding of their impact remains incomplete. Progress in the field has been primarily limited by our inability to adequately estimate and characterize exposure and identify sensitive and measurable outcomes during windows of vulnerability. Evolving omics technologies in genomics, epigenomics and mitochondriomics have the potential to generate data that enhance exposure assessment to include the exposome - the totality of the lifetime exposure burden - and provide biology-based estimates of individual risks. Applying omics technologies to expand our knowledge of individual risk and susceptibility will augment biological data in the prediction of variability and response to disease, thereby further advancing EDC research. Together, refined exposure characterization and enhanced disease-risk prediction will help to bridge crucial gaps in EDC research and create opportunities to move the field towards a new vision - precision public health.
Collapse
|
Review |
8 |
46 |
9
|
Zheng H, Fu R, Wang JT, Liu Q, Chen H, Jiang SW. Advances in the techniques for the prediction of microRNA targets. Int J Mol Sci 2013; 14:8179-87. [PMID: 23591837 PMCID: PMC3645737 DOI: 10.3390/ijms14048179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding, endogenous RNA molecules that play important roles in a variety of normal and diseased biological processes by post-transcriptionally regulating the expression of target genes. They can bind to target messenger RNA (mRNA) transcripts of protein-coding genes and negatively control their translation or cause mRNA degradation. miRNAs have been found to actively regulate a variety of cellular processes, including cell proliferation, death, and metabolism. Therefore, their study is crucial for the better understanding of cellular functions in eukaryotes. To better understand the mechanisms of miRNA: mRNA interaction and their cellular functions, it is important to identify the miRNA targets accurately. In this paper, we provide a brief review for the advances in the animal miRNA target prediction methods and available resources to facilitate further study of miRNAs and their functions.
Collapse
|
Review |
12 |
41 |
10
|
Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su LJ, Ross S, Pilch S, Winn DM, Khoury MJ. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 2014; 23:223-33. [PMID: 24326628 PMCID: PMC3925982 DOI: 10.1158/1055-9965.epi-13-0573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005 through December 2012) and in the scientific literature published during the same period, irrespective of support from the NCI. Blood cells and tumor tissue were the most commonly used biospecimens in these studies, although buccal cells, cervical cells, sputum, and stool samples were also used. DNA methylation profiling was the focus of the majority of studies, but several studies also measured microRNA profiles. We illustrate here the current status of epidemiologic studies that are evaluating epigenetic changes in large populations. The incorporation of epigenomic assessments in cancer epidemiology studies has and is likely to continue to provide important insights into the field of cancer research.
Collapse
|
Review |
11 |
37 |
11
|
Angarica VE, Del Sol A. Bioinformatics Tools for Genome-Wide Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:489-512. [PMID: 28523562 DOI: 10.1007/978-3-319-53889-1_25] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.
Collapse
|
Review |
8 |
33 |
12
|
Bramswig NC, Kaestner KH. Epigenetics and diabetes treatment: an unrealized promise? Trends Endocrinol Metab 2012; 23:286-91. [PMID: 22424897 PMCID: PMC3367121 DOI: 10.1016/j.tem.2012.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 01/19/2023]
Abstract
Epigenetic mechanisms may contribute to the pathogenesis of complex diseases. Early or late environmental influences such as intrauterine malnutrition or sedentary lifestyle have been shown to lead to an increased risk of diabetes. Recently, epigenetic mechanisms were shown to be involved in endocrine cell differentiation and islet function. Genomic profiling of pancreatic islets in non-diabetic and diabetic states is needed in order to dissect the contribution of epigenetic mechanisms to the declining proliferation potential of β cells that we see with aging or the β-cell failure observed in diabetes. In-depth understanding of epigenetic landscapes can help to improve protocols for in vitro differentiation towards the β-cell fate, enhance β-cell proliferation, and lead to the discovery of novel therapeutic targets.
Collapse
|
Review |
13 |
32 |
13
|
Dupras C, Ravitsky V. Epigenetics in the Neoliberal "Regime of Truth": A Biopolitical Perspective on Knowledge Translation. Hastings Cent Rep 2015; 46:26-35. [PMID: 26659400 DOI: 10.1002/hast.522] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent findings in epigenetics have been attracting much attention from social scientists and bioethicists because they reveal the molecular mechanisms by which exposure to socioenvironmental factors, such as pollutants and social adversity, can influence the expression of genes throughout life. Most surprisingly, some epigenetic modifications may also be heritable via germ cells across generations. Epigenetics may be the missing molecular evidence of the importance of using preventive strategies at the policy level to reduce the incidence and prevalence of common diseases. But while this "policy translation" of epigenetics introduces new arguments in favor of public health strategies and policy-making, a more "clinical translation" of epigenetics is also emerging. It focuses on the biochemical mechanisms and epigenetic variants at the origin of disease, leading to novel biomedical means of assessing epigenetic susceptibility and reversing detrimental epigenetic variants. In this paper, we argue that the impetus to create new biomedical interventions to manipulate and reverse epigenetic variants is likely to garner more attention than effective social and public health interventions and therefore also to garner a greater share of limited public resources. This is likely to happen because of the current biopolitical context in which scientific findings are translated. This contemporary neoliberal "regime of truth," to use a term from Michel Foucault, greatly influences the ways in which knowledge is being interpreted and implemented. Building on sociologist Thomas Lemke's Foucauldian "analytics of biopolitics" and on literature from the field of science and technology studies, we present two sociological trends that may impede the policy translation of epigenetics: molecularization and biomedicalization. These trends, we argue, are likely to favor the clinical translation of epigenetics-in other words, the development of new clinical tools fostering what has been called "personalized" or "precision" medicine. In addition, we argue that an overemphasized clinical translation of epigenetics may further reinforce this biopolitical landscape through four processes closely related to neoliberal pathways of thinking: the internalization and isolation (aspects of liberal individualism) of socioenvironmental determinants of health and increased opportunities for commodification and technologicalization (aspects of economic liberalism) of health care interventions.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
30 |
14
|
Abstract
Retinoblastoma is a rare pediatric cancer of the retina. Nearly all retinoblastomas are initiated through the biallelic inactivation of the retinoblastoma tumor susceptibility gene (RB1). Whole-genome sequencing has made it possible to identify secondary genetic lesions following RB1 inactivation. One of the major discoveries from retinoblastoma sequencing studies is that some retinoblastoma tumors have stable genomes. Subsequent epigenetic studies showed that changes in the epigenome contribute to the rapid progression of retinoblastoma following RB1 gene inactivation. In addition, gene amplification and elevated expression of p53 antagonists, MDM2 and MDM4, may also play an important role in retinoblastoma tumorigenesis. The knowledge gained from these recent molecular, cellular, genomic, and epigenomic analyses are now being integrated to identify new therapeutic approaches that can help save lives and vision in children with retinoblastoma, with fewer long-term side effects.
Collapse
|
Review |
10 |
28 |
15
|
Relton CL, Hartwig FP, Davey Smith G. From stem cells to the law courts: DNA methylation, the forensic epigenome and the possibility of a biosocial archive. Int J Epidemiol 2015; 44:1083-93. [PMID: 26424516 PMCID: PMC5279868 DOI: 10.1093/ije/dyv198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The growth in epigenetics continues to attract considerable cross-disciplinary interest, apparently representing an opportunity to move beyond genomics towards the goal of understanding phenotypic variability from molecular through organismal to the societal level. The epigenome may also harbour useful information about life-time exposures (measured or unmeasured) irrespective of their influence on health or disease, creating the potential for a person-specific biosocial archive . Furthermore such data may prove of use in providing identifying information, providing the possibility of a future forensic epigenome . The mechanisms involved in ensuring that environmentally induced epigenetic changes perpetuate across the life course remain unclear. Here we propose a potential role of adult stem cells in maintaining epigenetic states provides a useful basis for formulating such epidemiologically-relevant concepts.
Collapse
|
Editorial |
10 |
27 |
16
|
Abstract
Cancer disparities in incidence and death rates exist among various racial and ethnic groups. These disparities are thought to be due to socioeconomic status, culture, diet, stress, the environment, and biology. Biological functions, such as epigenetic processes, are affected by all these causal factors and extend throughout the life course. Epigenetic processes, in particular DNA methylation, may play a role in the induction of phenotypes with increased cancer risk due to exposure to these multiple factors. DNA methylation is known to cause changes in gene expression of key regulatory genes in cancer. There are limited studies in which epigenetic changes have been explored to address cancer disparities in various racial and ethnic populations. These few studies have reported significant epigenetic differences in various racial and ethnic groups that could account for the differences seen in tumor initiation, progression, aggressiveness, and outcome of these cancers. Genes differentially methylated among these racially and ethnically diverse populations were involved in important cellular functions, such as tumor growth, tumor suppression, hormone receptors, and genes involved in tumor metastasis. Epigenetic research with the advancement in technology has helped identify biomarkers, therapeutic targets, and understand cancer causation in the general population. Unfortunately, these advances in technology have not been applied to explore the basis for cancer health disparities. More research in epigenetics is needed that will enhance our understanding of the determinants of cancer across various diverse populations and ultimately reduce cancer health disparities.
Collapse
|
Review |
13 |
26 |
17
|
Abstract
PURPOSE OF REVIEW The purpose of review is to describe the recent advances in the field of human epigenetics. RECENT FINDINGS With the completion of the genome project in 2003, high expectations existed for the DNA sequence information to provide answers about the causative mutations for common diseases. However, this was not completely the case. Another interesting finding that resulted from the genome project was that the perceived level of complexity of humans was not accompanied with a relative increase in the number of genes when compared to 'lower species'. Epigenetics is able to provide answers to previously unanswered health-related questions and can explain differences in level of complexity between organisms. Epigenetic studies accomplished in the last few years have exposed a very complex multilayered regulatory mechanism that is able to answer previously puzzling questions in biology. SUMMARY Understanding and interpretation of the role for epigenetic modifications in the human genome has progressed rapidly over the past decade with the advancement of microarray-based and sequence-based technologies. The complex interaction between DNA methylation, histone modifications, protein complexes and microRNAs has become better appreciated in the context of both local and long range epigenetic control of transcription in both normal cellular differentiation and tumorigenesis.
Collapse
|
Review |
15 |
25 |
18
|
Abstract
The future of medicine is discussed in the context of epigenetic influences during the entire life course and the lived experiences of each person, avoiding as much as possible the "medicalization" of the individual and taking a more humanistic view. The reciprocal communication between brain and body via the neuroendocrine, autonomic, metabolic and immune systems and the plasticity of brain architecture provide the basis for devising better "top down" interventions that engage the whole person in working towards his or her welfare. The life course perspective emphasizes the importance of intervening early in life to prevent adverse early life experiences, including the effects of poverty, that can have lifelong consequences, referred to as "biological embedding". In the spirit of integrative, humanistic medicine, treatments that "open windows of plasticity" allow targeted behavioral interventions to redirect brain and body functions and behavior in healthier directions. Policies of government and the private sector, particularly at the local, community level, can create a supporting environment for such interventions. See "Common Ground for Health: Personalized, Precision and Social Medicine McEwen & Getz - https://www.youtube.com/watch?v=IRy_uUWyrEw.
Collapse
|
Historical Article |
8 |
21 |
19
|
|
News |
11 |
15 |
20
|
Shukla A, Huangfu D. Decoding the noncoding genome via large-scale CRISPR screens. Curr Opin Genet Dev 2018; 52:70-76. [PMID: 29913329 DOI: 10.1016/j.gde.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Large portions of the human genome harbor functional noncoding elements, which can regulate a variety of biological processes and have important implications for disease risk and therapeutic outcomes. However, assigning specific functions to noncoding sequences remains a major challenge. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) systems have emerged as a powerful approach for targeted genome and epigenome perturbation. CRISPR systems are now harnessed for high-throughput screening of the noncoding genome to uncover functional regulatory elements and to define their precise functions with superior speed. Here, we summarize the various tools developed for such screens in mammalian systems and discuss screening methods and technical considerations. We further highlight screens that are already transforming our understanding of gene regulation and disease mechanisms, consider the impact of such discoveries on the development of new therapeutics, and provide our viewpoint on the challenges for future development of the field.
Collapse
|
Review |
7 |
15 |
21
|
Bassir Nia A, Eveleth MC, Gabbay JM, Hassan YJ, Zhang B, Perez-Rodriguez MM. Past, present, and future of genetic research in borderline personality disorder. Curr Opin Psychol 2018; 21:60-68. [PMID: 29032046 PMCID: PMC5847441 DOI: 10.1016/j.copsyc.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
Abstract
Borderline Personality Disorder (BPD) is a major mental illness with a lifetime prevalence of approximately 1-3%, characterized by a persistent pattern of instability in relationships, mood, impulse regulation, and sense of self. This results in impulsive self-damaging behavior, high suicide rates, and severe functional impairment. BPD has a complex, multifactorial etiology, resulting from an interaction among genetic and environmental substrates, and has moderate to high heritability based on twin and family studies. However, our understanding of the genetic architecture of BPD is very limited. This is a critical obstacle since genetics can pave the way for identifying new treatment targets and developing preventive and disease-modifying pharmacological treatments which are currently lacking. We review genetic studies in BPD, with a focus on limitations and challenges and future directions. Genetic research in BPD is still in its very early stages compared to other major psychiatric disorders. Most early genetic studies in BPD were non-replicated association studies in small samples, focused on single candidate genes. More recently, there has been one genome-wide linkage study and a genome-wide association study (GWAS) of subclinical BPD traits and a first GWAS in a relatively modest sample of patients fulfilling full diagnostic criteria for the disorder. Although there are adequate animal models for some of the core dimensions of BPD, there is a lack of translational research including data from animal models in BPD. Research in more pioneering fields, such as imaging genetics, deep sequencing and epigenetics, holds promise for elucidating the pathophysiology of BPD and identifying new treatment targets.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
14 |
22
|
Karlsson H, Merisaari H, Karlsson L, Scheinin NM, Parkkola R, Saunavaara J, Lähdesmäki T, Lehtola SJ, Keskinen M, Pelto J, Lewis JD, Tuulari JJ. Association of Cumulative Paternal Early Life Stress With White Matter Maturation in Newborns. JAMA Netw Open 2020; 3:e2024832. [PMID: 33231637 PMCID: PMC7686861 DOI: 10.1001/jamanetworkopen.2020.24832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Early life stress (ELS) has been shown to affect brain development and health outcomes. Recent animal studies have linked paternal early stress exposures with next-generation outcomes. Epigenetic inheritance through the male germline has been suggested to be one of the mechanisms. OBJECTIVES To test whether paternal ELS, as measured using the Trauma and Distress Scale, is associated with neonate brain development. DESIGN, SETTING, AND PARTICIPANTS This cohort study included data from participants from the prospective 2-generation FinnBrain Birth Cohort, which was collected from 2011 to 2015. Pregnant women and the fathers were consecutively recruited at gestational week 12 from maternity clinics in Finland. Magnetic resonance imaging data were analyzed in 2019. Participants in this study were 72 families (infant, father, mother). EXPOSURE Paternal exposure to ELS. MAIN OUTCOMES AND MEASURES Fractional anisotropy (FA) values in the major white-matter tracts of the newborn brain. RESULTS A total of 72 trios (infant, mother, and father) were analyzed. At the time of delivery, the mean (SD) age was 31.0 (4.4) years for fathers and 30.3 (4.5) years for mothers. Forty-one infants (57%) were boys; mean (SD) child age at inclusion was 26.9 (7.2) days from birth and 205 (8) days from estimated conception. Increasing levels of paternal ELS were associated with higher FA values in the newborn brain in the body of the corpus callosum, right superior corona radiata, and retrolenticular parts of the internal capsule. This association persisted after controlling for maternal ELS, maternal socioeconomic status (SES), maternal body mass index, maternal depressive symptoms during pregnancy, child sex, and child age from birth and gestation corrected age when imaged. In additional region-of-interest analyses, the association between FA values and paternal Trauma and Distress Scale sum scores remained statistically significant in the earliest maturing regions of the brain, eg, the genu of the corpus callosum (in the regression models, β = 0.00096; 95% CI, 0.00034-0.00158; P = .003) and the splenium (β = 0.00090; 95% CI, 0.00000-0.00180; P = .049). CONCLUSIONS AND RELEVANCE This cohort study found a statistically significant association between paternal ELS and offspring brain development. This finding may have far-reaching implications in pediatrics, as it suggests the possibility of a novel route of intergenerational inheritance of ELS on next-generation brain development.
Collapse
|
research-article |
5 |
10 |
23
|
Wu PY, Chandramohan R, Phan JH, Mahle WT, Gaynor JW, Maher KO, Wang MD. Cardiovascular transcriptomics and epigenomics using next-generation sequencing: challenges, progress, and opportunities. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:701-10. [PMID: 25518043 PMCID: PMC4983435 DOI: 10.1161/circgenetics.113.000129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
Research Support, N.I.H., Extramural |
11 |
10 |
24
|
Nicolosi G, Ruivenkamp G. The epigenetic turn. Some notes about the epistemological change of perspective in biosciences. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2012; 15:309-19. [PMID: 21858613 DOI: 10.1007/s11019-011-9342-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article compares two different bodies of theories concerning the role of the genome in life processes. The first group of theories can be indicated as referring to the gene-centric paradigm. Dominated by an informational myth and a mechanistic Cartesian body/mind and form/substance dualism, this considers the genome as an ensemble of discrete units of information governing human body and behavior, and remains hegemonic in life sciences and in the public imagination. The second body of theories employs the principle of the extraordinary plasticity of the (body-)organism and emphasizes the value of the (body-)organism-environment mutual interchange, known as 'the epigenetic approach'. This approach is outlined, showing a gradual, paradigmatic shift from the genecentric towards an epigenetic approach can be observed in the 'scientific landscape' over the last 20 years. The article concludes by formulating the argument that this 'epigenetic turn' in life sciences has some important implication for renewing epistemological basis of social sciences.
Collapse
|
|
13 |
8 |
25
|
Drake JL, Varsano N, Mass T. Genetic basis of stony coral biomineralization: History, trends and future prospects. J Struct Biol 2021; 213:107782. [PMID: 34455069 PMCID: PMC7611647 DOI: 10.1016/j.jsb.2021.107782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.
Collapse
|
Review |
4 |
6 |