1
|
Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schütz G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 1995; 9:1608-21. [PMID: 7628695 DOI: 10.1101/gad.9.13.1608] [Citation(s) in RCA: 660] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of the glucocorticoid receptor (GR) in glucocorticoid physiology and during development was investigated by generation of GR-deficient mice by gene targeting. GR -/- mice die within a few hours after birth because of respiratory failure. The lungs at birth are severely atelectatic, and development is impaired from day 15.5 p.c. Newborn livers have a reduced capacity to activate genes for key gluconeogenic enzymes. Feedback regulation via the hypothalamic-pituitary-adrenal axis is severely impaired resulting in elevated levels of plasma adrenocorticotrophic hormone (15-fold) and plasma corticosterone (2.5-fold). Accordingly, adrenal glands are enlarged because of hypertrophy of the cortex, resulting in increased expression of key cortical steroid biosynthetic enzymes, such as side-chain cleavage enzyme, steroid 11 beta-hydroxylase, and aldosterone synthase. Adrenal glands lack a central medulla and synthesize no adrenaline. They contain no adrenergic chromaffin cells and only scattered noradrenergic chromaffin cells even when analyzed from the earliest stages of medulla development. These results suggest that the adrenal medulla may be formed from two different cell populations: adrenergic-specific cells that require glucocorticoids for proliferation and/or survival, and a smaller noradrenergic population that differentiates normally in the absence of glucocorticoid signaling.
Collapse
MESH Headings
- Adrenal Cortex/embryology
- Adrenal Cortex/pathology
- Adrenal Medulla/abnormalities
- Adrenal Medulla/embryology
- Animals
- Animals, Newborn
- Cell Line
- Corticosterone/blood
- Embryo, Mammalian
- Epinephrine/biosynthesis
- Epinephrine/deficiency
- Exons
- Female
- Heterozygote
- Humans
- Hypertrophy
- In Situ Hybridization
- Infant, Newborn
- Lung/embryology
- Lung/pathology
- Lung/physiology
- Male
- Mice
- Mice, Mutant Strains
- Pregnancy
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Recombination, Genetic
- Reference Values
- Respiratory Distress Syndrome, Newborn/embryology
- Respiratory Distress Syndrome, Newborn/genetics
- Restriction Mapping
- Signal Transduction
- Stem Cells/physiology
Collapse
|
|
30 |
660 |
2
|
Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA. A distinct role for norepinephrine in memory retrieval. Cell 2004; 117:131-43. [PMID: 15066288 DOI: 10.1016/s0092-8674(04)00259-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 02/09/2004] [Accepted: 02/11/2004] [Indexed: 11/18/2022]
Abstract
A role for norepinephrine in learning and memory has been elusive and controversial. A longstanding hypothesis states that the adrenergic nervous system mediates enhanced memory consolidation of emotional events. We tested this hypothesis in several learning tasks using mutant mice conditionally lacking norepinephrine and epinephrine, as well as control mice and rats treated with adrenergic receptor agonists and antagonists. We find that adrenergic signaling is critical for the retrieval of intermediate-term contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories in general. The role of norepinephrine in retrieval requires signaling through the beta(1)-adrenergic receptor in the hippocampus. The results demonstrate that mechanisms of memory retrieval can vary over time and can be different from those required for acquisition or consolidation. These findings may be relevant to symptoms in several neuropsychiatric disorders as well as the treatment of cardiac failure with beta blockers.
Collapse
MESH Headings
- Adrenergic Agonists/pharmacology
- Adrenergic beta-Antagonists/adverse effects
- Animals
- Conditioning, Classical
- Dose-Response Relationship, Drug
- Emotions/physiology
- Epinephrine/deficiency
- Epinephrine/genetics
- Epinephrine/physiology
- Female
- Hippocampus/drug effects
- Hippocampus/metabolism
- In Vitro Techniques
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory/drug effects
- Memory/physiology
- Memory Disorders/genetics
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Norepinephrine/deficiency
- Norepinephrine/genetics
- Norepinephrine/physiology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Space Perception/drug effects
- Space Perception/physiology
- Synaptic Transmission/physiology
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
297 |
3
|
Abstract
The roles of norepinephrine (NE) and epinephrine in behavior were investigated by targeted disruption of the dopamine beta-hydroxylase (Dbh) gene, thereby eliminating these compounds in vivo. Most heterozygous pups born to Dbh-/- females died within several days of birth and were often found scattered within the bedding. Potential causes including deficits in olfaction and lactation were not apparent. A deficit in maternal behavior was confirmed by the lack of pup retrieval exhibited by Dbh-/- virgin females. Restoration of NE shortly before but not after birth induced females that previously abandoned their litters to act maternally. Our results suggest that NE is responsible for long-lasting changes that promote maternal behavior during both development and parturition in mice.
Collapse
|
|
28 |
125 |
4
|
Robertson D, Haile V, Perry SE, Robertson RM, Phillips JA, Biaggioni I. Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension 1991; 18:1-8. [PMID: 1677640 DOI: 10.1161/01.hyp.18.1.1] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dopamine beta-hydroxylase (DBH) deficiency is a genetic disorder in which affected patients cannot synthesize norepinephrine, epinephrine, and octopamine in either the central nervous system or the peripheral autonomic neurons. Dopamine acts as a false neurotransmitter in their noradrenergic neurons. Neonates with DBH deficiency have had episodic hypothermia, hypoglycemia, and hypotension, but survivors sometimes cope relatively well until late childhood when overwhelming orthostatic hypotension profoundly limits their activities. The hypotension may be so severe that clonic seizures supervene. Most currently recognized patients are young or middle-aged adults. The diagnosis is established by the observation of severe orthostatic hypotension in a patient whose plasma norepinephrine/dopamine ratio is much less than one.
Collapse
|
Review |
34 |
95 |
5
|
Kjaer M, Howlett K, Langfort J, Zimmerman-Belsing T, Lorentsen J, Bulow J, Ihlemann J, Feldt-Rasmussen U, Galbo H. Adrenaline and glycogenolysis in skeletal muscle during exercise: a study in adrenalectomised humans. J Physiol 2000; 528 Pt 2:371-8. [PMID: 11034626 PMCID: PMC2270141 DOI: 10.1111/j.1469-7793.2000.00371.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Accepted: 07/07/2000] [Indexed: 11/27/2022] Open
Abstract
The role of adrenaline in regulating muscle glycogenolysis and hormone-sensitive lipase (HSL) activity during exercise was examined in six adrenaline-deficient bilaterally adrenalectomised, adrenocortico-hormonal-substituted humans (Adr) and in six healthy control individuals (Con). Subjects cycled for 45 min at approximately 70% maximal pulmonary O2 uptake (VO2,max) followed by 15 min at approximately 86% VO2,max either without (-Adr and Con) or with (+Adr) adrenaline infusion that elevated plasma adrenaline levels (45 min, 4.49+/-0.69 nmol l(-1); 60 min, 12.41+/-1.80 nmol l(-1)). Muscle samples were obtained at 0, 45 and 60 min of exercise. In -Adr and Con, muscle glycogen was similar at rest (-Adr, 409+/-19 mmol (kg dry wt)(-1); Con, 453+/-24 mmol (kg dry wt)(-1)) and following exercise (-Adr, 237+/-52 mmol (kg dry wt)(-1); Con, 227+/-50 mmol (kg dry wt)(-1)). Muscle lactate, glucose-6-phosphate and glucose were similar in -Adr and Con, whereas glycogen phosphorylase (a/a + b x 100 %) and HSL (% phosphorylated) activities increased during exercise in Con only. Adrenaline infusion increased activities of phosphorylase and HSL as well as blood lactate concentrations compared with those in -Adr, but did not enhance glycogen breakdown (+Adr, glycogen following exercise: 274+/-55 mmol (kg dry wt)(-1)) in contracting muscle. The present findings demonstrate that during exercise muscle glycogenolysis can occur in the absence of adrenaline, and that adrenaline does not enhance muscle glycogenolysis in exercising adrenalectomised subjects. Although adrenaline increases the glycogen phosphorylase activity it is not essential for glycogen breakdown in contracting muscle. Finally, a novel finding is that the activity of HSL in human muscle is increased in exercising man and this is due, at least partly, to stimulation by adrenaline.
Collapse
|
research-article |
25 |
57 |
6
|
Honda M, Uchida K, Tanabe M, Ono H. Fluvoxamine, a selective serotonin reuptake inhibitor, exerts its antiallodynic effects on neuropathic pain in mice via 5-HT2A/2C receptors. Neuropharmacology 2006; 51:866-72. [PMID: 16846619 DOI: 10.1016/j.neuropharm.2006.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 05/25/2006] [Accepted: 05/28/2006] [Indexed: 11/18/2022]
Abstract
There is an association between depression and chronic pain, and some antidepressants exert antinociceptive effects in humans and laboratory animals. We examined the effects of fluvoxamine, a selective serotonin reuptake inhibitor, on mechanical allodynia and its mechanism of action in the mouse chronic pain model, which was prepared by partially ligating the sciatic nerve. The antiallodynic effect was measured using the von Frey test. Fluvoxamine produced antiallodynic effects following both systemic and intrathecal administration. In 5-hydroxytryptamine (5-HT)-depleted mice, prepared by intracerebroventricular injection of 5,7-dihyroxytryptamine, the fluvoxamine-induced antiallodynic effect was significantly attenuated. The antiallodynic effects of systemic fluvoxamine were also reduced by both systemic and intrathecal administration of ketanserin, a 5-HT2A/2C receptor antagonist. In addition, fluvoxamine also induced antinociceptive effect in the acute paw pressure test, and this effect was antagonized by the 5-HT3 receptor antagonist granisetron. These results indicate that fluvoxamine exerts its antiallodynic effects on neuropathic pain via descending 5-HT fibers and spinal 5-HT2A or 5-HT2C receptors, and the antinociception on acute mechanical pain via 5-HT3 receptors.
Collapse
|
Journal Article |
19 |
44 |
7
|
Ste Marie L, Palmiter RD. Norepinephrine and epinephrine-deficient mice are hyperinsulinemic and have lower blood glucose. Endocrinology 2003; 144:4427-32. [PMID: 12959968 DOI: 10.1210/en.2003-0561] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Norepinephrine (NE) and epinephrine (Epi) help maintain normal blood glucose levels by stimulating glucagon release, glycogenolysis, and food consumption, and by inhibiting insulin release. The absence of NE and Epi in dopamine beta-hydroxylase-null (Dbh-/-) mice results in chronically low blood glucose levels, an impaired glucagon response to hypoglycemia, and elevated insulin levels. Nevertheless, Dbh-/- mice have normal glycogen levels and degrade it normally during a fast. Dbh-/- mice defend blood glucose levels better than controls in an insulin tolerance test but have increased sensitivity to glucose-stimulated insulin secretion and respond normally in a glucose tolerance test. Pharmacological evidence indicates that the hyperinsulinemia results from lack of alpha2-adrenoreceptor stimulation and increased parasympathetic tone. Dbh-/- mice eat normally after challenges with modest levels of insulin or 2-deoxyglucose but fail to eat under more extreme conditions when control mice still do. We suggest that the primary difference in Dbh-/- mice is chronic hyperinsulinemia associated with an altered glucose set point. However, these animals compensate for NE/Epi-mediated glycogenolysis and feeding.
Collapse
|
|
22 |
42 |
8
|
Sowden GL, Drucker DJ, Weinshenker D, Swoap SJ. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor. Am J Physiol Regul Integr Comp Physiol 2007; 292:R962-70. [PMID: 17038440 DOI: 10.1152/ajpregu.00405.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxyntomodulin (OXM), a postprandially released intestinal hormone, inhibits food intake via the glucagon-like peptide-1 receptor (GLP-1R). Although OXM may have clinical value in treating obesity, the cardiovascular effects of OXM are not well understood. Using telemetry to measure heart rate (HR), body temperature (Tb), and activity in conscious and freely moving mice, we tested 1) whether OXM affects HR and 2) whether this effect is mediated by the GLP-1R. We found that peripherally administered OXM significantly increased HR in wild-type mice, raising HR by >200 beats/min to a maximum of 728 ± 11 beats/min. To determine the extent to which the sympathetic nervous system mediates the tachycardia of OXM, we delivered this hormone to mice deficient in dopamine-β-hydroxylase [ Dbh(−/−) mice], littermate controls [ Dbh(+/−) mice], and autonomically blocked C57Bl mice. OXM increased HR equally in all groups (192 ± 13, 197 ± 21, and 216 ± 11 beats/min, respectively), indicating that OXM elevated intrinsic HR. Intrinsic HR was also vigorously elevated by OXM in Glp-1R(−/−) mice (200 ± 28 beats/min). In addition, peripherally administered OXM inhibited food intake and activity levels in wild-type mice and lowered Tb in autonomically blocked mice. None of these effects were observed in Glp-1R(−/−) mice. These data suggest multiple modes of action of OXM: 1) it directly elevates murine intrinsic HR through a GLP-1R-independent mechanism, perhaps via the glucagon receptor or an unidentified OXM receptor, and 2) it lowers food intake, activity, and Tb in a GLP-1R-dependent fashion.
Collapse
|
|
18 |
41 |
9
|
Cho MC, Rao M, Koch WJ, Thomas SA, Palmiter RD, Rockman HA. Enhanced contractility and decreased beta-adrenergic receptor kinase-1 in mice lacking endogenous norepinephrine and epinephrine. Circulation 1999; 99:2702-7. [PMID: 10338466 DOI: 10.1161/01.cir.99.20.2702] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Elevated circulating norepinephrine (NE) has been implicated in causing the profound beta-adrenergic receptor (betaAR) downregulation and receptor uncoupling that are characteristic of end-stage human dilated cardiomyopathy, a process mediated in part by increased levels of beta-adrenergic receptor kinase (betaARK1). To explore whether chronic sustained NE stimulation is a primary stimulus that promotes deterioration in cardiac signaling, we characterized a gene-targeted mouse in which activation of the sympathetic nervous system cannot lead to an elevation in plasma NE and epinephrine. METHODS AND RESULTS Gene-targeted mice that lack dopamine beta-hydroxylase (dbh-/-), the enzyme needed to convert dopamine to NE, were created by homologous recombination. In vivo contractile response to the beta1AR agonist dobutamine, measured by a high-fidelity left ventricular micromanometer, was enhanced in mice lacking the dbh gene. In unloaded adult myocytes isolated from dbh-/- mice, basal contractility was significantly increased compared with control cells. Furthermore, the increase in betaAR responsiveness and enhanced cellular contractility were associated with a significant reduction in activity and protein level of betaARK1 and increased high-affinity agonist binding without changes in betaAR density or G-protein levels. CONCLUSIONS Mice that lack the ability to generate NE or epinephrine show increased contractility associated primarily with a decrease in the level of betaARK1 protein and kinase activity. This animal model will be valuable in testing whether NE is required for the pathogenesis of heart failure through mating strategies that cross the dbh-/- mouse into genetically engineered models of heart failure.
Collapse
|
|
26 |
31 |
10
|
Erami C, Zhang H, Tanoue A, Tsujimoto G, Thomas SA, Faber JE. Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 2005; 289:H744-53. [PMID: 15849236 DOI: 10.1152/ajpheart.00129.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stimulation of α1-adrenoceptors (ARs) induces proliferation, hypertrophy, and migration of vascular smooth muscle cells and adventitial fibroblasts in cell and organ culture. In vivo studies have confirmed this direct trophic action and found that endogenous catecholamines contribute to neointimal formation and wall hypertrophy induced by mechanical injury. In murine carotid artery, these effects are mediated by α1B-ARs, whereas α1D-ARs mediate contraction and α1A-ARs are not expressed. Herein, we examined whether catecholamines also contribute to arterial wall growth in a noninjury model, i.e., flow-mediated remodeling. In wild-type mice or mice deficient in norepinephrine and epinephrine synthesis [dopamine β-hydroxylase knockout (DBH-KO)], all distal branches of the left carotid artery (LC) except the thyroid artery were ligated to reduce flow in the LC and increase flow in the right carotid artery (RC). Twenty-one days later, negative hypertrophic remodeling of the LC [i.e., −20% (decrease) in lumen area, −2% in circumference of the external elastic lamina (CEEL), +98% (increase) in thickness of the intima media, and +71% in thickness for adventitia; P < 0.01 vs. sham ligation] and positive eutrophic remodeling of the RC [+23% in lumen area, +11% in CEEL; P < 0.01 vs. sham ligation] were inhibited in DBH-KO mice [LC: +10% intima media and +3% adventitia; RC: +9% lumen area and +3% CEEL]. This inhibition was associated with reduced proliferation in the RC and reduced apoptosis and leukocyte accumulation in the RC and LC when examined 5 days after ligation. Carotid remodeling in α1D-AR-knockout mice evidenced little or no inhibition, which suggests dependence on α1B-ARs. These findings suggest that catecholamine-induced trophic activity contributes to both flow-mediated negative remodeling and adaptive positive arterial remodeling.
Collapse
|
|
20 |
30 |
11
|
Sharara-Chami RI, Joachim M, Mulcahey M, Ebert S, Majzoub JA. Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue. Mol Cell Endocrinol 2010; 328:34-9. [PMID: 20619316 DOI: 10.1016/j.mce.2010.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Catecholamines are involved in thermogenesis. We investigated the specific role of epinephrine in regulation of temperature homeostasis in mice. We subjected adult wildtype (WT) and phenylethanolamine N-methyl transferase knock out mice (Pnmt(-/-)) lacking epinephrine to cold for 24h. Body temperature and thyroid hormone levels were not different between WT and Pnmt(-/-) mice. Although temperature was normal in Pnmt(-/-) mice, the brown fat response to cold was abnormal with no increase in Ucp-1 or Pgc-1alpha mRNA levels (but with an exaggerated cold-induced lipid loss from the tissue). Our results show that epinephrine may have a role in brown fat mitochondrial uncoupling through regulation of Ucp-1 and Pgc-1alpha, although this is not required to maintain a normal temperature during acute cold exposure. We conclude that epinephrine may have an important role in induction of Ucp-1 and Pgc-1alpha gene expression during cold stress.
Collapse
|
|
15 |
24 |
12
|
Rudman D, Moffitt SD, Fernhoff PM, Blackston RD, Faraj BA. Epinephrine deficiency in hypocorticotropic hypopituitary children. J Clin Endocrinol Metab 1981; 53:722-9. [PMID: 6270172 DOI: 10.1210/jcem-53-4-722] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In rats, adrenal medullary synthesis of epinephrine is impaired by ACTH deficiency and is not improved by replacement doses of glucocorticoid. We have evaluated plasma epinephrine and norepinephrine concentrations in 43 children, 8-15 yr old. These children were divided into 5 groups, with 6-10 per group: normals; children with isolated GH deficiency; hypopituitary children deficient in both GH and TSH; hypopituitary children deficient in GH, TSH, and ACTH; and short children without known organic disease. The deficiencies of ACTH and TSH were being treated with replacement doses of cortisol and T4. Plasma catecholamines were measured in the supine position at rest every other hour from 0800-1600 h, and after exercise in the standing position at 1000 h. Plasma norepinephrine levels, both at rest and after exercise, were normal in all four groups of short children. Resting and postexercise plasma epinephrine levels were reduced to 10-20% of normal in the hypocorticotropic hypopituitary patients, and were normal in the other three groups of short children.
Collapse
|
|
44 |
22 |
13
|
de Souza Cordeiro LM, Elsheikh A, Devisetty N, Morgan DA, Ebert SN, Rahmouni K, Chhabra KH. Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice. Diabetologia 2021; 64:181-194. [PMID: 33052459 PMCID: PMC7718429 DOI: 10.1007/s00125-020-05289-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
17 |
14
|
Graça FA, Gonçalves DAP, Silveira WA, Lira EC, Chaves VE, Zanon NM, Garófalo MAR, Kettelhut IC, Navegantes LCC. Epinephrine depletion exacerbates the fasting-induced protein breakdown in fast-twitch skeletal muscles. Am J Physiol Endocrinol Metab 2013; 305:E1483-94. [PMID: 24169047 DOI: 10.1152/ajpendo.00267.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.
Collapse
|
|
12 |
16 |
15
|
Ste Marie L, Luquet S, Curtis W, Palmiter RD. Norepinephrine- and epinephrine-deficient mice gain weight normally on a high-fat diet. ACTA ACUST UNITED AC 2005; 13:1518-22. [PMID: 16222052 DOI: 10.1038/oby.2005.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Signaling through adrenergic receptors (ARs) by norepinephrine (NE) and epinephrine (Epi) regulates weight gain when mice are fed a high-fat diet (HFD) by controlling diet-induced thermogenesis. Thus, one would predict that mice unable to make NE/Epi because of inactivation of the dopamine beta-hydroxylase gene (Dbh-null mice) would have a propensity to become obese. We characterized the response of Dbh-null and control mice to a HFD. RESEARCH METHODS AND PROCEDURES Dbh-null and control mice were fed an HFD or a regular diet (RD) for 2 months. Body weight, adiposity, muscle triglyceride levels, and adipocyte size were measured, as were circulating leptin, adiponectin, triglyceride, glucose, and insulin levels. A glucose tolerance test was also preformed. RESULTS Dbh-null mice gain weight normally on an HFD and have the same adiposity. Their serum triglyceride and leptin levels are normal, but adipocytes are approximately 30% smaller than controls. Dbh-null mice maintain low blood glucose levels and glucose tolerance when exposed to the HFD in contrast to controls. DISCUSSION Complete lack of NE/Epi does not predispose to obesity. Because mice lacking all three betaARs become obese on an HFD, an imbalance of signaling through alpha- and betaARs seems to be responsible for obesity. Surprisingly, Dbh-null mice maintain glucose tolerance.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
9 |
16
|
Kerr DS, Brooke OG, Robinson HM. Fasting energy utilization in the smaller of twins with epinephrine-deficient hypoglycemia. Metabolism 1981; 30:6-17. [PMID: 7193273 DOI: 10.1016/0026-0495(81)90212-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
|
44 |
7 |
17
|
Bernabe J, Proshlyakova E, Sapronova A, Trembleau A, Calas A, Ugrumov M. Pharmacological model of catecholamine depletion in the hypothalamus of fetal and neonatal rats and its application. Cell Mol Neurobiol 1996; 16:617-24. [PMID: 9013026 PMCID: PMC11563078 DOI: 10.1007/bf02151900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1995] [Accepted: 04/10/1995] [Indexed: 02/03/2023]
Abstract
1. The present study aimed to develop a pharmacological model of catecholamine (CA) depletion in the hypothalamus during the period of its morphofunctional development, i.e. in fetal and neonatal rats of both sexes. 2. In the first series of experiments, pregnant females and, hence, fetuses were systemically treated daily from the embryonic day (E) 13 to E20 with the inhibitor of the CA synthesis alpha-methyl-m-tyrosine. The CA concentrations were subsequently measured in the fetal hypothalamus at E21 by high performance liquid chromatography with electrochemical detection (HPLC-ED). In the second series of experiments, neonatal rats were injected with neurotoxin, 6-hydroxydopamine and/or alpha-methyl-m-tyrosine daily from the 2nd postnatal day (P2) to P10. 3. The HPLC-ED assay of hypothalamic catecholamines (CA's) at E21 and P11 showed that both in fetuses and neonates, alpha-methyl-m-tyrosine caused more than 50% depletion of hypothalamic noradrenaline and adrenaline, while the dopamine (DA) level remained unchanged. The combined treatment of neonatal rats with alpha-methyl-m-tyrosine and 6-hydroxydopamine resulted additionally in a 25% decreased level of DA. 4. The influence of CA deficiency on the developing hypothalamic CA system was further evaluated by measuring [3H]DA uptake by nervous tissue in vitro. 5. The CA deficiency caused a 50% drop of [3H]DA uptake by the hypothalamic tissue in treated fetuses suggesting a stimulating effect of CA's on the early development of the CA system. In pharmacologically treated neonatal rats [3H]DA uptake remained at the control level showing no influence of the CA deficiency on the developing CA system after birth. 6. The usefulness of the proposed pharmacological model for studying of CA influence on differentiating hypothalamic target neurons is discussed.
Collapse
|
research-article |
29 |
6 |
18
|
Cryer PE. Coordinated responses of glucogenic hormones to central glucopenia: the role of the sympathoadrenal system. ADVANCES IN METABOLIC DISORDERS 1983; 10:469-83. [PMID: 6364722 DOI: 10.1016/b978-0-12-027310-2.50025-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In normal humans glucagon plays a primary role in promoting glucose recovery from hypoglycemia, glucagon deficiency is largely compensated for by enhanced epinephrine secretion, and recovery from hypoglycemia fails to occur only in the absence of both glucagon and epinephrine. Defective glucose counterregulation is exemplified by patients with insulin-dependent diabetes. Although most such patients have deficient glucagon secretory responses to hypoglycemia, they counterregulate adequately because of intact epinephrine secretion. Some patients, however, become defenseless against hypoglycemia because of combined deficiencies of glucagon and epinephrine.
Collapse
|
Review |
42 |
5 |
19
|
|
|
44 |
2 |
20
|
Laron Z. Hypoglycemia due to hormone deficiencies. J Pediatr Endocrinol Metab 1998; 11 Suppl 1:117-20. [PMID: 9642649 DOI: 10.1515/jpem.1998.11.s1.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
Review |
27 |
|
21
|
Tkachuk VA. [Development of desensitization and hypersensitivity of the adenyl cyclase system of the heart to the action of hormones]. KARDIOLOGIIA 1989; 29:122-5. [PMID: 2543863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
Comparative Study |
36 |
|
22
|
Shetty DN, Pathak SS. Correlation between plasma neurotransmitters and memory loss in pregnancy. THE JOURNAL OF REPRODUCTIVE MEDICINE 2002; 47:494-6. [PMID: 12092020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVE To correlate the levels of plasma neurotransmitters epinephrine, norepinephrine, serotonin and dopamine with memory in healthy, pregnant women. STUDY DESIGN Fifty healthy, pregnant women were selected in the first trimester and followed in the second and third trimesters of pregnancy. Nonpregnant women served as controls. Epinephrine, norepinephrine, serotonin and dopamine levels were analyzed with high-performance liquid chromatography. The plasma neurotransmitter levels were correlated with memory in each trimester of pregnancy. RESULTS Significant decreases (P < .001) in plasma epinephrine, serotonin and dopamine were observed in healthy, pregnant women in each trimester of pregnancy when compared to nonpregnant women. A significant increase in plasma norepinephrine was observed in healthy, pregnant women in each trimester of pregnancy. A significant decrease (P < .001) in functional memory was observed in healthy, pregnant women when compared to nonpregnant women. CONCLUSION Decreases in functional memory and of plasma epinephrine, norepinephrine and serotonin levels in the second trimester of healthy pregnancy suggests that decreased plasma neurotransmitter levels are responsible for loss of functional memory in healthy, pregnant women.
Collapse
|
|
23 |
|
23
|
Stoica E, Enulescu O. Pharmacodynamic correction of epinephrine deficiency in patient with cerebral infarction. NEUROLOGIE ET PSYCHIATRIE 1978; 16:307-14. [PMID: 741200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
47 |
|
24
|
Chaussain JL. [Functional hypoglycemia with ketosis]. ANNALES DE PEDIATRIE 1978; 25:177-9. [PMID: 16114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
Review |
47 |
|
25
|
Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 1997; 387:94-7. [PMID: 9139828 DOI: 10.1038/387094a0] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adrenaline and noradrenaline, the main effectors of the sympathetic nervous system and adrenal medulla, respectively, are thought to control adiposity and energy balance through several mechanisms. They promote catabolism of triglycerides and glycogen, stimulate food intake when injected into the central nervous system, activate thermogenesis in brown adipose tissue, and regulate heat loss through modulation of peripheral vasoconstriction and piloerection. Thermogenesis in brown adipose tissue occurs in response to cold and overeating (diet induced), and there is an inverse relationship between diet-induced thermogenesis and obesity both in humans and in animal models. As a potential model for obesity, we generated mice that cannot synthesize noradrenaline or adrenaline by inactivating the gene that encodes dopamine beta-hydroxylase. These mice are cold intolerant because they have impaired peripheral vasoconstriction and are unable to induce thermogenesis in brown adipose tissue through uncoupling protein (UCP1). The mutants have increased food intake but do not become obese because their basal metabolic rate is also elevated. The unexpected increase in basal metabolic rate is not due to hyperthyroidism, compensation by the widely expressed uncoupling protein UCP2, or shivering.
Collapse
|
|
28 |
202 |