1
|
Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT, Min M, Campagna DR, Tian G, Shi Y, Dederer V, Kawan M, Kuehnle N, Paulo JA, Yao Y, Weiss MJ, Justice MJ, Gygi SP, Fleming MD, Finley D. UBE2O remodels the proteome during terminal erythroid differentiation. Science 2017; 357:eaan0218. [PMID: 28774900 PMCID: PMC5812729 DOI: 10.1126/science.aan0218] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
During terminal differentiation, the global protein complement is remodeled, as epitomized by erythrocytes, whose cytosol is ~98% globin. The erythroid proteome undergoes a rapid transition at the reticulocyte stage; however, the mechanisms driving programmed elimination of preexisting cytosolic proteins are unclear. We found that a mutation in the murine Ube2o gene, which encodes a ubiquitin-conjugating enzyme induced during erythropoiesis, results in anemia. Proteomic analysis suggested that UBE2O is a broad-spectrum ubiquitinating enzyme that remodels the erythroid proteome. In particular, ribosome elimination, a hallmark of reticulocyte differentiation, was defective in Ube2o-/- mutants. UBE2O recognized ribosomal proteins and other substrates directly, targeting them to proteasomes for degradation. Thus, in reticulocytes, the induction of ubiquitinating factors may drive the transition from a complex to a simple proteome.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
127 |
2
|
Dorschner MO, Hawrylycz M, Humbert R, Wallace JC, Shafer A, Kawamoto J, Mack J, Hall R, Goldy J, Sabo PJ, Kohli A, Li Q, McArthur M, Stamatoyannopoulos JA. High-throughput localization of functional elements by quantitative chromatin profiling. Nat Methods 2004; 1:219-25. [PMID: 15782197 DOI: 10.1038/nmeth721] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/19/2004] [Indexed: 11/08/2022]
Abstract
Identification of functional, noncoding elements that regulate transcription in the context of complex genomes is a major goal of modern biology. Localization of functionality to specific sequences is a requirement for genetic and computational studies. Here, we describe a generic approach, quantitative chromatin profiling, that uses quantitative analysis of in vivo chromatin structure over entire gene loci to rapidly and precisely localize cis-regulatory sequences and other functional modalities encoded by DNase I hypersensitive sites. To demonstrate the accuracy of this approach, we analyzed approximately 300 kilobases of human genome sequence from diverse gene loci and cleanly delineated functional elements corresponding to a spectrum of classical cis-regulatory activities including enhancers, promoters, locus control regions and insulators as well as novel elements. Systematic, high-throughput identification of functional elements coinciding with DNase I hypersensitive sites will substantially expand our knowledge of transcriptional regulation and should simplify the search for noncoding genetic variation with phenotypic consequences.
Collapse
|
Validation Study |
21 |
99 |
3
|
Munugalavadla V, Dore LC, Tan BL, Hong L, Vishnu M, Weiss MJ, Kapur R. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005; 25:6747-59. [PMID: 16024808 PMCID: PMC1190349 DOI: 10.1128/mcb.25.15.6747-6759.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell factor (SCF), erythropoietin (Epo), and GATA-1 play an essential role(s) in erythroid development. We examined how these proteins interact functionally in G1E cells, a GATA-1(-) erythroblast line that proliferates in an SCF-dependent fashion and, upon restoration of GATA-1 function, undergoes GATA-1 proliferation arrest and Epo-dependent terminal maturation. We show that SCF-induced cell cycle progression is mediated via activation of the Src kinase/c-Myc pathway. Restoration of GATA-1 activity induced G1 cell cycle arrest coincident with repression of c-Kit and its downstream effectors Vav1, Rac1, and Akt. Sustained expression of each of these individual signaling components inhibited GATA-1-induced cell cycle arrest to various degrees but had no effects on the expression of GATA-1-regulated erythroid maturation markers. Chromatin immunoprecipitation analysis revealed that GATA-1 occupies a defined Kit gene regulatory element in vivo, suggesting a direct mechanism for gene repression. Hence, in addition to its well-established function as an activator of erythroid genes, GATA-1 also participates in a distinct genetic program that inhibits cell proliferation by repressing the expression of multiple components of the c-Kit signaling axis. Our findings reveal a novel aspect of molecular cross talk between essential transcriptional and cytokine signaling components of hematopoietic development.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
92 |
4
|
Schmidt U, Boucheron N, Unger B, Ellmeier W. The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 2004; 134:65-78. [PMID: 15133303 DOI: 10.1159/000078339] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Members of the Tec kinase family (Bmx, Btk, Itk, Rlk and Tec) are primarily expressed in the hematopoietic system and form, after the Src kinase family, the second largest class of non-receptor protein tyrosine kinases. During lymphocyte development and activation Tec kinases have important functions in signaling pathways downstream of the antigen receptors. Tec family kinases are also expressed in cells of the myeloid lineage. However, with the exception of mast cells and platelets, their biological role in the myeloid system is only poorly understood. This review summarizes the current knowledge about the function of Tec family kinases in hematopoietic cells of the myeloid lineage.
Collapse
|
Review |
21 |
73 |
5
|
Mijimolle N, Velasco J, Dubus P, Guerra C, Weinbaum CA, Casey PJ, Campuzano V, Barbacid M. Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell 2005; 7:313-24. [PMID: 15837621 DOI: 10.1016/j.ccr.2005.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/01/2004] [Accepted: 03/02/2005] [Indexed: 11/15/2022]
Abstract
Protein farnesyltransferase (FTase) is an enzyme responsible for posttranslational modification of proteins carrying a carboxy-terminal CaaX motif. Farnesylation allows substrates to interact with membranes and protein targets. Using gene-targeted mice, we report that FTase is essential for embryonic development, but dispensable for adult homeostasis. Six-month-old FTase-deficient mice display delayed wound healing and maturation defects in erythroid cells. Embryonic fibroblasts lacking FTase have a flat morphology and reduced motility and proliferation rates. Ablation of FTase in two ras oncogene-dependent tumor models has no significant consequences for tumor initiation. However, elimination of FTase during tumor progression had a limited but significant inhibitory effect. These results should help to better understand the role of protein farnesylation in normal tissues and in tumor development.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
72 |
6
|
Schaer DJ, Schaer CA, Schoedon G, Imhof A, Kurrer MO. Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis. Eur J Haematol 2006; 77:432-6. [PMID: 17044836 PMCID: PMC1618806 DOI: 10.1111/j.1600-0609.2006.00730.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schaer DJ, Schaer CA, Schoedon G, Imhof A, Kurrer MO. Hemophagocytic macrophages constitute a major compartment of heme oxygenase expression in sepsis. Objectives: Uncontrolled macrophage activation with hemophagocytosis is a distinctive feature of hemophagocytic syndromes (HPS). We examined whether lympho-histiocytic infiltration of the bone marrow and liver, as well as hemo-/erythrophagocytosis also occurs during sepsis and whether this process could account for the increased production of anti-inflammatory heme-oxygenase (HO-1) products observed during sepsis. Methods: Hemophagocytosis and expression of CD163, HO-1, ferritin as well as CD8 and granzyme-B were examined in post-mortem bone marrow samples from 28 patients with sepsis and from eight control patients. Results: Comparison of samples from non-septic patients with samples from patients with fatal sepsis revealed that the latter group displayed dense lympho-histiocytic bone marrow infiltration with CD163+/HO-1+/ferritin+ macrophages as well as with CD8+ and granzyme-B+ T-cells. Hemophagocytosis with prominent phagocytosis of erythroid cells was readily apparent in septic patients, implying that this process is a likely stimulus for the up-regulation of macrophage HO-1 expression. Conclusions: Lympho-histiocytic activation with hemophagocytosis is a shared pathophysiologic mechanism in HPS and sepsis. Furthermore, the association of hemophagocytosis with an increase in HO-1 expression may indicate a novel role for this apparently futile process as a negative regulator of inflammation.
Collapse
|
Journal Article |
19 |
66 |
7
|
Abstract
Erythroid cells of the bone marrow, the most avid consumers of iron in the body, acquire ferric (Fe3+) iron exclusively via the transferrin cycling pathway. A long-standing fundamental molecular question of how ferric iron is handled in this pathway has been recently resolved by the identification of Steap3 (sixtransmembrane epithelial antigen of the prostate 3) as an endosomal ferrireductase needed for efficient utilization of transferrin-delivered iron. Further characterization of Steap3 and other Steap proteins reveals a possible greater role of Steap proteins in iron and copper metabolism.
Collapse
|
Review |
18 |
58 |
8
|
Ren JG, Seth P, Everett P, Clish CB, Sukhatme VP. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2. PLoS One 2010; 5. [PMID: 20824065 PMCID: PMC2932743 DOI: 10.1371/journal.pone.0012520] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
46 |
9
|
Lou TF, Singh M, Mackie A, Li W, Pace BS. Hydroxyurea generates nitric oxide in human erythroid cells: mechanisms for gamma-globin gene activation. Exp Biol Med (Maywood) 2009; 234:1374-82. [PMID: 19657070 DOI: 10.3181/0811-rm-339] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hydroxyurea (HU) induces fetal hemoglobin synthesis through activation of cyclic guanine monophosphate (cGMP) signaling. Studies in sickle cell patients demonstrated increased circulating nitric oxide (NO) levels after oral HU treatment. However, the direct measurement of NO in erythroid cells and its role in fetal hemoglobin induction have not been defined. Therefore, we quantified the level of nitrate and nitrite (NOx) generated by HU in human erythroid progenitors in the presence of three nitric oxide synthase inhibitors (NOS), including N(G)-monomethyl-L-arginine (L-NMMA). In addition, cGMP levels were measured in the presence or absence of the pathway inhibitor 1H-(1,2,4)ox-adiazolo(4,3-a)quinoxalin-1-one, which blocks soluble guanylyl cyclase formation. HU treatment increased NOx levels and gamma-globin transcription in K562 and primary erythroid cells, which was augmented when HU was combined with L-NMMA. Pretreatment with the cGMP pathway inhibitor reversed gamma-gene activation by HU. These data demonstrate the direct stimulation of cellular NO and cGMP signaling in erythroid progenitors by HU as a possible mechanism for gamma-globin gene activation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
42 |
10
|
Jacquel A, Colosetti P, Grosso S, Belhacene N, Puissant A, Marchetti S, Breittmayer JP, Auberger P. Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene 2006; 26:2445-58. [PMID: 17043649 DOI: 10.1038/sj.onc.1210034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Imatinib targets the Bcr-Abl oncogene that causes chronic myelogenous leukemia (CML) in humans. Recently, we demonstrated that besides triggering apoptosis in K562 cells, imatinib also mediated their erythroid differentiation. Although both events appear to proceed concomitantly, it is not known at present whether or not imatinib-induced apoptosis and differentiation are interdependent processes. Hence, we investigated the requirements for Bcr-Abl inhibitor-mediated apoptosis and erythroid differentiation in several established and engineered CML cell lines. Imatinib triggered apoptosis and erythroid differentiation of different CML cell lines, but only apoptosis exhibited sensitivity to ZVAD-fmk inhibition. Conversely, the p38 mitogen-activated protein (MAP) kinase inhibitor, SB202190, significantly slowed down erythroid differentiation without affecting caspase activation. Furthermore, imatinib and PD166326, another Bcr-Abl inhibitory molecule, triggered erythroid differentiation of K562 cell clones, nevertheless resistant to Bcr-Abl inhibitor-induced apoptosis. Finally, short hairpin RNA inhibitor (shRNAi) silencing of caspase 3 efficiently inhibited caspase activity but had no effect on erythroid differentiation, whereas silencing of Bcr-Abl mimicked imatinib or PD166326 treatment, leading to increased apoptosis and erythroid differentiation of K562 cells. Taken together, our findings not only demonstrate that Bcr-Abl inhibitor-mediated apoptosis and differentiation are fully distinguishable events, but also that caspases are dispensable for erythroid differentiation of established CML cell lines.
Collapse
MESH Headings
- Apoptosis/drug effects
- Benzamides
- Caspase Inhibitors
- Caspases/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Erythroid Cells/cytology
- Erythroid Cells/enzymology
- Erythroid Cells/pathology
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Piperazines/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/blood
- Pyridines/pharmacology
- Pyrimidines/pharmacology
Collapse
|
|
19 |
41 |
11
|
Moosavi MA, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5'-triphosphate-mediated terminal erythroid differentiation of K562 cells. Int J Biochem Cell Biol 2007; 39:1685-97. [PMID: 17543571 DOI: 10.1016/j.biocel.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
28 |
12
|
Alves LR, Costa ES, Sorgine MHF, Nascimento-Silva MCL, Teodosio C, Bárcena P, Castro-Faria-Neto HC, Bozza PT, Orfao A, Oliveira PL, Maya-Monteiro CM. Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells. PLoS One 2011; 6:e21358. [PMID: 21765894 PMCID: PMC3135583 DOI: 10.1371/journal.pone.0021358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/30/2011] [Indexed: 01/20/2023] Open
Abstract
In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
20 |
13
|
Khokhar ES, Borikar S, Eudy E, Stearns T, Young K, Trowbridge JJ. Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. Exp Hematol 2020; 82:43-52.e4. [PMID: 32014431 PMCID: PMC7179256 DOI: 10.1016/j.exphem.2020.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
Aged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused short hairpin RNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells at the expense of erythroid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as a novel epigenetic regulator of hematopoietic differentiation and a target to improve aged immune function.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
18 |
14
|
Maragno AL, Pironin M, Alcalde H, Cong X, Knobeloch KP, Tangy F, Zhang DE, Ghysdael J, Quang CT. ISG15 modulates development of the erythroid lineage. PLoS One 2011; 6:e26068. [PMID: 22022510 PMCID: PMC3192153 DOI: 10.1371/journal.pone.0026068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022] Open
Abstract
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
14 |
15
|
Lui JCK, Kong SK. Erythropoietin activates caspase-3 and downregulates CAD during erythroid differentiation in TF-1 cells - A protection mechanism against DNA fragmentation. FEBS Lett 2006; 580:1965-70. [PMID: 16529748 DOI: 10.1016/j.febslet.2006.02.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/03/2006] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
The involvement of caspase-3 and its failure in the induction of DNA fragmentation during erythropoiesis were investigated with TF-1 cells. During erythroid differentiation, caspase-3 activation and cleavage of caspase-3 substrates such as ICAD (inhibitor of caspase-activated DNase) were detected without concomitant phosphatidyl-serine (PS) externalization and DNA fragmentation. These observations are in contrast to our understanding that DNA is degraded by CAD (caspase-activated DNase) when ICAD is cleaved by caspase-3. Our study demonstrates that CAD is downregulated at the mRNA and protein level during the erythroid differentiation in TF-1 cells. This provides a mechanism for the first time how cells avoid DNA fragmentation with activated caspase-3.
Collapse
|
|
19 |
13 |
16
|
Kucukkaya B, Arslan DO, Kan B. Role of G proteins and ERK activation in hemin-induced erythroid differentiation of K562 cells. Life Sci 2006; 78:1217-24. [PMID: 16216279 DOI: 10.1016/j.lfs.2005.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Heterotrimeric G proteins which couple extracellular signals to intracellular effectors play a central role in cell growth and differentiation. The pluripotent erythroleukemic cell line K562 that acquires the capability to synthesize hemoglobin in response to a variety of agents can be used as a model system for erythroid differentiation. Using Western blot analysis and RT-PCR, we studied alterations in G protein expression accompanying hemin-induced differentiation of K562 cells. We demonstrated the presence of G(alpha s), G(alpha i2) and G(alpha q) and the absence of G(alpha i1), G(alpha o) and G(alpha 16) in K562 cells. We observed the short form of G(alpha s) to be expressed predominantly in these cells. Treatment of K562 cells with hemin resulted in an increase in the levels of G(alpha s) and G(alpha q). On the other hand, the level of G(alpha i2) was found to increase on the third day after induction with hemin, followed by a decrease to levels lower of those of uninduced cells. The mitogen-activated protein kinase ERK1/2 pathway is crucial in the control of cell proliferation and differentiation. Both Gi- and Gq-coupled receptors stimulate MAPK activation. We therefore examined the phosphorylation of ERK1/2 during hemin-induced differentiation of K562 cells. Using anti-ERK1/2 antibodies, we observed that ERK2 was primarily phosphorylated in K562 cells. ERK2 phosphorylation increased gradually until 48 h and returned to basal values by 96 h following hemin treatment. Our results suggest that changes in G protein expression and ERK2 activity are involved in hemin-induced differentiation of K562 cells.
Collapse
|
|
19 |
13 |
17
|
Liu H, Kiledjian M. An erythroid-enriched endoribonuclease (ErEN) involved in alpha-globin mRNA turnover. Protein Pept Lett 2007; 14:131-6. [PMID: 17305599 DOI: 10.2174/092986607779816168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Messenger RNA (mRNA) decay utilizes both exoribonucleolytic and endoribonucleolytic enzymes where the latter are generally more prone to be transcript-specific. An erythroid-enriched endoribonuclease, ErEN, can destabilize the alpha-globin mRNA through directing a site-specific cleavage within the 3' untranslated region (3' UTR) both in vitro and in vivo. ErEN activity is sequence- and/or local structure-specific as the minimal recognition/cleavage sequence can be conferred onto a heterologous RNA and mutations at the cleavage site immunize the mRNA from ErEN hydrolysis. Interestingly, the ErEN cleavage activity is regulated by an mRNA stability complex (alpha-complex). An interaction between the alpha-complex and the poly(A)-binding protein (PABP) accentuates alpha-complex binding to a region overlapping the ErEN cleavage site and further prevents premature ErEN-mediated decay. At present the identity of ErEN remains elusive, yet its identification will provide mechanistic and functional insights into the general processes of endoribonuclease-mediated mRNA turnover and erythropoiesis.
Collapse
|
Review |
18 |
5 |
18
|
Dzikaite V, Hultcrantz R, Melefors O. The regulatory effect of heme on erythroid aminolevulinate synthase in natural erythroid cells. ACTA ACUST UNITED AC 2003; 1630:19-24. [PMID: 14580675 DOI: 10.1016/j.bbaexp.2003.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major enzymatic pathway in erythroid cells is the eight-step formation of heme, starting with the erythroid isoform of aminolevulinate synthase (eALAS). We studied the regulation of eALAS synthesis by heme in natural erythroid cells. Erythroid cells from mouse blood or bone marrow were incubated with different concentrations of heme and labelled with [35S]methionine. This was followed by immunoprecipitation of eALAS proteins. Northern blot analysis was done on mRNA isolated from bone marrow. Incubation with heme (5-100 muM) was shown to clearly inhibit eALAS synthesis in erythroid cells of bone marrow. This inhibitory effect of heme could also be observed in peripheral blood cells at higher concentrations while the preform of eALAS was rather increased. However, at lower concentrations of heme (1-10 microM), eALAS synthesis increased. Northern blot studies argued the inhibitory effect was at the posttranscriptional level. Our results suggest that the net effect of murine eALAS regulation by heme varies with the degree of erythroid differentiation. Heme formation seems to be more tightly controlled in the bone marrow (nucleated) cells in order to prevent oxidative cell damage, compared to more differentiated erythroid cells.
Collapse
|
|
22 |
2 |
19
|
Okuhashi Y, Itoh M, Arai A, Nara N, Tohda S. Gamma-secretase inhibitors induce erythroid differentiation in erythroid leukemia cell lines. Anticancer Res 2010; 30:4071-4074. [PMID: 21036721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Notch signaling regulates the fate of hematopoietic stem cells and leukemia cells. However, the role of Notch in erythroid differentiation remains unclear. MATERIALS AND METHODS We examined the effects of three γ-secretase inhibitors (GSI-IX, GSI-XII and GSI-XXI) that inhibit Notch signaling on the in vitro growth and differentiation of HEL and AA erythroid leukemia cell lines. RESULTS GSI treatment induced morphologic erythroid differentiation and promoted hemoglobin production. GSI treatment suppressed short-term growth and colony formation, while treatment with GSI-XXI promoted the growth of AA cells. The degree of differentiation induced by each GSI roughly correlated with the reduction in HES1 mRNA expression. CONCLUSION GSIs have potential uses in differentiation induction therapy for erythroid leukemia in the future. Before clinical use, in vitro sensitivity tests should be performed because the effects of GSIs are diverse depending upon the combination of leukemia cells and GSIs.
Collapse
|
|
15 |
|