1
|
Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC, Sperling L, Virani SS, Yeboah J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; 73:e285-e350. [PMID: 30423393 DOI: 10.1016/j.jacc.2018.11.003] [Citation(s) in RCA: 1567] [Impact Index Per Article: 261.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
Practice Guideline |
6 |
1567 |
2
|
Nicolle R, Blum Y, Marisa L, Loncle C, Gayet O, Moutardier V, Turrini O, Giovannini M, Bian B, Bigonnet M, Rubis M, Elarouci N, Armenoult L, Ayadi M, Duconseil P, Gasmi M, Ouaissi M, Maignan A, Lomberk G, Boher JM, Ewald J, Bories E, Garnier J, Goncalves A, Poizat F, Raoul JL, Secq V, Garcia S, Grandval P, Barraud-Blanc M, Norguet E, Gilabert M, Delpero JR, Roques J, Calvo E, Guillaumond F, Vasseur S, Urrutia R, de Reyniès A, Dusetti N, Iovanna J. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Rep 2017; 21:2458-2470. [PMID: 29186684 PMCID: PMC6082139 DOI: 10.1016/j.celrep.2017.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
Preclinical models based on patient-derived xenografts have remarkable specificity in distinguishing transformed human tumor cells from non-transformed murine stromal cells computationally. We obtained 29 pancreatic ductal adenocarcinoma (PDAC) xenografts from either resectable or non-resectable patients (surgery and endoscopic ultrasound-guided fine-needle aspirate, respectively). Extensive multiomic profiling revealed two subtypes with distinct clinical outcomes. These subtypes uncovered specific alterations in DNA methylation and transcription as well as in signaling pathways involved in tumor-stromal cross-talk. The analysis of these pathways indicates therapeutic opportunities for targeting both compartments and their interactions. In particular, we show that inhibiting NPC1L1 with Ezetimibe, a clinically available drug, might be an efficient approach for treating pancreatic cancers. These findings uncover the complex and diverse interplay between PDAC tumors and the stroma and demonstrate the pivotal role of xenografts for drug discovery and relevance to PDAC.
Collapse
|
research-article |
8 |
137 |
3
|
Yeang C, Witztum JL, Tsimikas S. 'LDL-C' = LDL-C + Lp(a)-C: implications of achieved ultra-low LDL-C levels in the proprotein convertase subtilisin/kexin type 9 era of potent LDL-C lowering. Curr Opin Lipidol 2015; 26:169-78. [PMID: 25943842 DOI: 10.1097/mol.0000000000000171] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The measurement that is termed 'LDL-cholesterol' (LDL-C) includes the cholesterol content of lipoprotein(a) [Lp(a)-C], which can contribute approximately 30-45% to measured LDL-C levels as a percentage of its mass. We review the implications of achieved very low LDL-C levels in patients treated with potent LDL-C-lowering agents in the context of varying Lp(a) levels. RECENT FINDINGS Combination therapy with statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors can lower LDL-C to unprecedentedly low levels. Recent PCSK9 trials have shown that routine achievement of mean LDL-C less than 50 mg/dl is feasible, along with the modest reductions in Lp(a). Many patients will achieve LDL-C less than 25 mg/dl with concomitantly elevated Lp(a) levels that contribute substantially to the measured 'LDL-C'. Therefore, it is possible that some of these patients may have little to no circulating LDL-C. SUMMARY As the new era of ultralow LDL-C levels ensues, it is imperative to understand the contribution of Lp(a)-C to measured LDL-C and the consequences of achieving ultralow or potentially absent LDL-C in the setting of elevated Lp(a) levels and possibly free apo(a). We review this concept and suggest avenues of research, including analyses of existing datasets in current clinical trials and new research studies, to understand its pathophysiological and clinical significance.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
115 |
4
|
Sahebkar A, Simental-Mendía LE, Guerrero-Romero F, Golledge J, Watts GF. Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: a systematic review and meta-analysis of clinical trials. Diabetes Obes Metab 2015; 17:1042-55. [PMID: 26183252 DOI: 10.1111/dom.12536] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 02/03/2023]
Abstract
AIMS To evaluate the magnitude of the effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) levels through a systematic review and meta-analysis of clinical trials. METHODS A random-effects model (using DerSimonian-Laird method) and the generic inverse variance method were used for quantitative data synthesis. Heterogeneity was quantitatively assessed using the I(2) index. Sensitivity analyses were conducted using the one-study remove approach. Random-effects meta-regression was performed using an unrestricted maximum likelihood method to evaluate the association between statin-induced elevation of plasma PCSK9 concentrations with duration of treatment and magnitude of LDL cholesterol reduction. RESULTS A total of 15 clinical trials examining the effects of statin therapy on plasma PCSK9 levels were included. Meta-analysis of data from single-arm statin treatment arms [weighted mean difference (WMD) 40.72 ng/ml, 95% confidence interval (CI) 34.79, 46.65; p < 0.001] and randomized placebo-controlled trials (WMD 22.98 ng/ml, 95% CI 17.95, 28.01; p < 0.001) showed a significant increase in plasma PCSK9 concentrations after statin therapy, irrespective of the type of statin administered in either of the analyses (single-arm or randomized placebo-controlled trial). There was no significant elevation of plasma PCSK9 levels with statin/ezetimibe combination therapy compared with statin monotherapy (WMD 23.14 ng/ml, 95% CI -1.97, 48.25; p = 0.071); however, removal of one study in the meta-analysis yielded a significant result in the sensitivity analysis (WMD 31.41 ng/ml, 95% CI 7.86, 54.97; p = 0.009). CONCLUSIONS This meta-analysis suggests that statin therapy causes a significant increase in plasma PCSK9 concentrations.
Collapse
|
Meta-Analysis |
10 |
64 |
5
|
Lee DH, Han DH, Nam KT, Park JS, Kim SH, Lee M, Kim G, Min BS, Cha BS, Lee YS, Sung SH, Jeong H, Ji HW, Lee MJ, Lee JS, Lee HY, Chun Y, Kim J, Komatsu M, Lee YH, Bae SH. Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis. Free Radic Biol Med 2016; 99:520-532. [PMID: 27634173 DOI: 10.1016/j.freeradbiomed.2016.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Oxidative stress is important for the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a chronic disease that ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The nuclear factor erythroid 2-related factor 2-Kelch-like ECH associated protein 1 (Nrf2-Keap1) pathway is essential for cytoprotection against oxidative stress. In this study, we found that oxidative stress or inflammatory biomarkers and TUNEL positive cells were markedly increased in NASH patients compared to normal or simple steatosis. In addition, we identified that the hepatic mRNA levels of Nrf2 target genes such as Nqo-1 and GSTA-1 were significantly increased in NASH patients. Ezetimibe, a drug approved by the Food and Drug Administration for the treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress. However, the precise mechanism of its antioxidant function remains largely unknown. We now demonstrate that ezetimibe activates Nrf2-Keap1 pathway which was dependent of autophagy adaptor protein p62, without causing cytotoxicity. Ezetimibe activates AMP-activated protein kinase (AMPK), which in turn phosphorylates p62 (p-S351) via their direct interaction. Correspondingly, Ezetimibe protected liver cells from saturated fatty acid-induced apoptotic cell death through p62-dependent Nrf2 activation. Furthermore, its role as an Nrf2 activator was supported by methione- and choline- deficient (MCD) diet-induced NASH mouse model, showing that ezetimibe decreased the susceptibility of the liver to oxidative injury. These data demonstrate that the molecular mechanisms underlying ezetimibe's antioxidant role in the pathogenesis of NASH.
Collapse
|
|
9 |
54 |
6
|
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui SF. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. SCIENCE ADVANCES 2021; 7:7/29/eabg3188. [PMID: 34272236 PMCID: PMC8284890 DOI: 10.1126/sciadv.abg3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo-electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.
Collapse
|
research-article |
4 |
30 |
7
|
Ueda Y, Hiro T, Hirayama A, Komatsu S, Matsuoka H, Takayama T, Ishihara M, Hayashi T, Saito S, Kodama K. Effect of Ezetimibe on Stabilization and Regression of Intracoronary Plaque - The ZIPANGU Study. Circ J 2017; 81:1611-1619. [PMID: 28592751 DOI: 10.1253/circj.cj-17-0193] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND Diminishing yellow color is associated with plaque stabilization. We assessed the hypothesis that a combination of ezetimibe and statin provides more effective plaque stabilization and regression than statin alone as assessed by plaque color. METHODS AND RESULTS Stable coronary artery disease patients (n=131) who underwent elective percutaneous coronary intervention and had yellow plaques were randomized to combination therapy (atorvastatin 10-20 mg and ezetimibe 10 mg/day; Group C) or statin monotherapy (atorvastatin 10-20 mg; Group M). Changes in plaque color and plaque volume during 9 months were assessed by angioscopy and intravascular ultrasound. Low-density lipoprotein cholesterol (LDL-C) decreased from 103±28 to 63±18 mg/dL in Group C (P<0.001) and from 100±28 to 75±17 mg/dL in Group M (P<0.001). Yellow color grade decreased significantly in both Group M (2.1±1.1 vs. 1.7±1.0, P=0.005) and Group C (2.2±1.2 vs. 1.8±1.2, P=0.002), but did not differ between the groups. %plaque volume did not change in Group M (48.5±10.2% vs. 48.2±10.4%, P=0.4), but decreased significantly in Group C (50.0±9.8% vs. 49.3±9.8%, P=0.03). CONCLUSIONS Compared with statin monotherapy, combination therapy with ezetimibe further reduced LDL-C levels. Significant plaque volume reduction was achieved by the combination therapy, but not statin monotherapy; however, plaque stabilization was similarly achieved by both therapies. Furthermore, reduction in plaque volume was dependent on reduction in LDL-C, regardless of whether it was achieved by statin alone or statin plus ezetimibe.
Collapse
|
Multicenter Study |
8 |
29 |
8
|
Nakano T, Inoue I, Takenaka Y, Ono H, Katayama S, Awata T, Murakoshi T. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine. PLoS One 2016; 11:e0152207. [PMID: 27023132 PMCID: PMC4811413 DOI: 10.1371/journal.pone.0152207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
29 |
9
|
Chang E, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats. World J Gastroenterol 2015; 21:7754-7763. [PMID: 26167075 PMCID: PMC4491962 DOI: 10.3748/wjg.v21.i25.7754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes.
METHODS: Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression.
RESULTS: In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux.
CONCLUSION: The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy.
Collapse
|
Basic Study |
10 |
27 |
10
|
Saha P, Shumate JL, Caldwell JG, Elghobashi-Meinhardt N, Lu A, Zhang L, Olsson NE, Elias JE, Pfeffer SR. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. eLife 2020; 9:e57089. [PMID: 32410728 PMCID: PMC7228765 DOI: 10.7554/elife.57089] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023] Open
Abstract
Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
26 |
11
|
Alméciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodríguez-López A, Guzman E, Garzón R, Pimentel-Vera LN, Puentes-Tellez MA, Rojas-Rodriguez AF, Gorshkov K, Li R, Zheng W. Identification of Ezetimibe and Pranlukast as Pharmacological Chaperones for the Treatment of the Rare Disease Mucopolysaccharidosis Type IVA. J Med Chem 2019; 62:6175-6189. [PMID: 31188588 PMCID: PMC11292729 DOI: 10.1021/acs.jmedchem.9b00428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a rare disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). We report here two GALNS pharmacological chaperones, ezetimibe and pranlukast, identified by molecular docking-based virtual screening. These compounds bound to the active cavity of GALNS and increased its thermal stability as well as the production of recombinant GALNS in bacteria, yeast, and HEK293 cells. MPS IVA fibroblasts treated with these chaperones exhibited increases in GALNS protein and enzyme activity and reduced the size of enlarged lysosomes. Abnormalities in autophagy markers p62 and LC3B-II were alleviated by ezetimibe and pranlukast. Combined treatment of recombinant GALNS with ezetimibe or pranlukast produced an additive effect. Altogether, the results demonstrate that ezetimibe and pranlukast can increase the yield of recombinant GALNS and be used as a monotherapy or combination therapy to improve the therapeutic efficacy of MPS IVA enzyme replacement therapy.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
26 |
12
|
Zinellu A, Sotgia S, Mangoni AA, Sanna M, Satta AE, Carru C. Impact of cholesterol lowering treatment on plasma kynurenine and tryptophan concentrations in chronic kidney disease: relationship with oxidative stress improvement. Nutr Metab Cardiovasc Dis 2015; 25:153-159. [PMID: 25534866 DOI: 10.1016/j.numecd.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/02/2014] [Accepted: 11/16/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIM Tryptophan (Trp) degradation via indoleamine (2,3)-dioxygenase (IDO), with consequent increased in kynurenine (Kyn) concentrations, has been proposed as marker of immune system activation. Oxidative stress (OS) might contribute to the pro-inflammatory state in chronic kidney disease (CKD) through the activation of NF-kB, with consequent activation and recruitment of immune cells. METHODS AND RESULTS Serum concentrations of Trp and Kyn, oxidative stress indices malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio and anti-oxidant amino acid taurine were measured in 30 CKD patients randomized to 40 mg/day simvastatin (group 1), ezetimibe/simvastatin 10/20 mg/day (group 2) or ezetimibe/simvastatin 10/40 mg/day (group 3) and treated for 12 months. Baseline Kyn and Kyn/Trp ratio were higher in CKD patients vs. healthy controls (1.67 ± 0.62 μmol/L vs 1.25 ± 0.40 μmol/L, p < 0.01 and 0.036 ± 0.016 vs 0.023 ± 0.010, p < 0.001 respectively). Both Kyn and Kyn/Trp ratio significantly decreased after cholesterol lowering treatment, to values comparable with healthy controls after one year treatment (1.67 ± 0.62 μmol/L vs 1.31 ± 0.51 μmol/L, p < 0.0001 and 0.036 ± 0.016 vs 0.028 ± 0.012 p < 0.0001, respectively). This was paralleled by a significant decrease in MDA (218 ± 143 nmol/L vs 176 ± 123 nmol/L, p < 0.01) and All/UA ratio (1.47 ± 0.72 vs 1.19 ± 0.51, p < 0.01) in CKD patients. CONCLUSIONS Amelioration of both oxidative and inflammation status after cholesterol lowering treatment in CKD might be mediated by restoration of antioxidant taurine concentrations during therapy (from 51.1 ± 13.3 μmol/L at baseline to 63.1 ± 16.4 μmol/L, p < 0.001 by ANOVA), suggesting that improvement of both oxidative and inflammation status in CKD patients could be explained, at least partly, by the cholesterol lowering effects.
Collapse
|
Randomized Controlled Trial |
10 |
25 |
13
|
Ontawong A, Duangjai A, Muanprasat C, Pasachan T, Pongchaidecha A, Amornlerdpison D, Srimaroeng C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:187-197. [PMID: 30599898 DOI: 10.1016/j.phymed.2018.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Coffea arabica pulp (CP) is the first by-product obtained from coffee berries during coffee processing. The major constituents of CP, including chlorogenic acid, caffeine, and epicatechin exhibit anti-hyperlipidemic effects in in vitro and in vivo models. Whether Coffea arabica pulp aqueous extract (CPE) has a lipid-lowering effect remains unknown. PURPOSE This study examined the effect of CPE on cholesterol absorption, and identified the mechanisms involved in lowered cholesterol in in vitro and in vivo models. METHODS Uptake of [3H]-cholesterol micelles and the mode of CPE inhibition were determined using human intestinal Caco-2 cells, and subsequently, confirmed using isolated rat jejunal loops. In addition, the 12-week high-fat diet-induced hypercholesterolemic rats (HF) received either CPE (1000 mg/kg BW), a sole and high dose which was selected because it contained approximately 12 mg of CGA that was previously shown to have lipid-lowering effects, or ezetimibe (10 mg/kg BW), a cholesterol inhibitor. The rats were divided into HF, HF ++ CPE, and HF ++ ezetimibe groups for the next 12 weeks. Normal rats received a normal diet (ND) and CPE (ND + CPE). Body weights and lipid profiles were evaluated. Cholesterol transporter, Niemann-Pick C1-Like 1 (NPC1L1), protein expression and liver X receptor alpha (LXRα) mRNA expression were determined. In vitro micellar complex properties were also investigated. RESULTS CPE inhibited [3H]-cholesterol micelle transport in Caco-2 cells and rat jejunal loops in a dose-dependent, non-competitive manner partly by decreasing membrane NPC1L1 expression. Congruently, CPE and its major constituents activated LXRα which, in turn, down-regulated NPC1L1. Furthermore, CPE interfered with physicochemical characteristics of cholesterol mixed micelles. These data were consistent with decreased body weight and slowed body weight gain and improved lipid profiles by CPE in hypercholesterolemic rats while no change occurred in these parameters in normal rats. Down-regulated intestinal NPC1L1 expression mediated by increased LXRα mRNA were also observed in HF ++ CPE and ND + CPE rats. CONCLUSION CPE has a cholesterol-lowering effect in in vitro and in vivo via inhibition of intestinal cholesterol absorption by down-regulating NPC1L1 mediated LXRα activation and interfering with micellar complex formation. Accordingly, CPE could be developed as nutraceutical product to prevent dyslipidemia-induced obesity and insulin resistance.
Collapse
|
|
6 |
24 |
14
|
Wu H, Shang H, Wu J. Effect of ezetimibe on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Endocrine 2018; 60:229-239. [PMID: 29397561 DOI: 10.1007/s12020-018-1541-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Given the increased risk of incident diabetes and the side effects on glycemic control with statin treatment, statin and ezetimibe combination therapy has been widely used. However, whether the same concern exists in ezetimibe remains uncertain. This meta-analysis aimed to investigate the influence of ezetimibe treatment on glycemic control. METHODS Articles were searched from PubMed, EMBASE, and Cochrane Library. Randomized controlled trials (RCTs) were included if they compared the effects of ezetimibe with placebo, ezetimibe plus statin with the same statin, or low-dose stain plus ezetimibe with high-dose statin on FBG and glycosylated hemoglobin A1c (HbA1c). RESULTS Of the 2440 articles retrieved, 16 RCTs were included. Ezetimibe did not cause side effects on FBG (WMD -0.62, 95% CI: -3.13 to 1.90) and HbA1c (WMD 0.07, 95% CI: -0.07 to 0.20%). No significant changes in FBG (WMD -1.78, 95% CI: -6.33 to 2.77%) and HbA1c (WMD -0.05, 95% CI: -0.14 to 0.05%) were observed in ezetimibe plus low-dose statin treatment compared with high-dose statin. According to subgroup analysis, in comparison with high-dose statin, ezetimibe plus low-dose statin taken for more than 3 months showed a significant decrease in FBG (WMD -7.12, 95% CI: -13.86 to -0.38%) compared with that taken for less than 3 months (WMD 0.90, 95% CI: -2.91 to 4.71%). Nevertheless, this difference was invalid when the study conducted by Dagli et al. was removed. CONCLUSIONS Compared with high-dose statin therapy, ezetimibe with low-dose statin for more than 3 months may have a beneficial tendency of effects on glycemic control.
Collapse
|
Meta-Analysis |
7 |
22 |
15
|
Ajufo E, Rader DJ. Recent advances in the pharmacological management of hypercholesterolaemia. Lancet Diabetes Endocrinol 2016; 4:436-46. [PMID: 27012540 DOI: 10.1016/s2213-8587(16)00074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
Abstract
The recent developments in pharmacological interventions that reduce LDL cholesterol have been remarkable, coming more than a decade after the approval of the last LDL-cholesterol-lowering drug, the cholesterol absorption inhibitor ezetimibe. Within just a few years, four new LDL-cholesterol-lowering agents have received regulatory approval. Lomitapide and mipomersen inhibit the production of LDL, but also increase hepatic fat and are licensed specifically for homozygous familial hypercholesterolaemia. Alirocumab and evolocumab are monoclonal antibodies that bind to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowering LDL by about 50-60%. These drugs are approved for use in patients with cardiovascular disease or familial hypercholesterolaemia whose LDL cholesterol levels are insufficiently controlled on standard agents. Although definitive clinical efficacy and long-term safety data are still needed, antibody-based PCSK9 inhibitors promise to meet much of the unmet medical need in the treatment of raised LDL cholesterol. However, several additional approaches to inhibiting PCSK9, as well as other classes of LDL-lowering therapies, are in clinical development. Here we summarise the science behind the development of the newly approved LDL-cholesterol-lowering drugs and critically review their efficacy and safety data, highlighting unanswered research questions. Finally, we discuss emerging LDL-lowering therapies in clinical development.
Collapse
|
Review |
9 |
22 |
16
|
Yeo KP, Lim HY, Thiam CH, Azhar SH, Tan C, Tang Y, See WQ, Koh XH, Zhao MH, Phua ML, Balachander A, Tan Y, Lim SY, Chew HS, Ng LG, Angeli V. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. SCIENCE ADVANCES 2020; 6:6/50/eabc2697. [PMID: 33310846 PMCID: PMC7732200 DOI: 10.1126/sciadv.abc2697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/22/2020] [Indexed: 05/24/2023]
Abstract
A functional lymphatic vasculature is essential for tissue fluid homeostasis, immunity, and lipid clearance. Although atherosclerosis has been linked to adventitial lymphangiogenesis, the functionality of aortic lymphatic vessels draining the diseased aorta has never been assessed and the role of lymphatic drainage in atherogenesis is not well understood. We develop a method to measure aortic lymphatic transport of macromolecules and show that it is impaired during atherosclerosis progression, whereas it is ameliorated during lesion regression induced by ezetimibe. Disruption of aortic lymph flow by lymphatic ligation promotes adventitial inflammation and development of atherosclerotic plaque in hypercholesterolemic mice and inhibits ezetimibe-induced atherosclerosis regression. Thus, progression of atherosclerotic plaques may result not only from increased entry of atherogenic factors into the arterial wall but also from reduced lymphatic clearance of these factors as a result of aortic lymph stasis. Our findings suggest that promoting lymphatic drainage might be effective for treating atherosclerosis.
Collapse
|
research-article |
5 |
21 |
17
|
Singh RS, Chaudhary DK, Mohan A, Kumar P, Chaturvedi CP, Ecelbarger CM, Godbole MM, Tiwari S. Greater efficacy of atorvastatin versus a non-statin lipid-lowering agent against renal injury: potential role as a histone deacetylase inhibitor. Sci Rep 2016; 6:38034. [PMID: 27901066 PMCID: PMC5128790 DOI: 10.1038/srep38034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors have been shown to improve diabetic nephropathy. However, whether they provide protection via Histone deacetylases (HDAC) inhibition is not clear. We conducted a comparative evaluation of Atorvastatin (AT) versus the non-statin cholesterol-lowering drug, Ezetimibe (EZT) on severity of diabetic nephropathy. Streptozotocin-treated male Wistar rats were fed a cholesterol-supplemented diet and gavaged daily with vehicle, AT or EZT. Control rats received normal diet and gavaged vehicle (n = 8-9/group). Diabetes increased blood glucose, urine albumin-to-creatinine ratio (ACR), kidney pathology and HDAC activity, and reduced renal E-cadherin levels. Both AT and EZT reduced circulating cholesterol, attenuated renal pathology, and did not lower blood glucose. However, AT was significantly more effective than EZT at reducing kidney pathology and HDAC activity. Chromatin immunoprecipitation revealed a significantly higher association of acetylated H3 and H4 with the E-cadherin promoter in kidneys from AT-, relative to EZT- or vehicle-treated rats. Moreover, we demonstrated a direct effect of AT, but not EZT, on HDAC-inhibition and, H3 and H4- acetylation in primary glomerular mesangial cells. Overall, both AT and EZT attenuated diabetic nephropathy; however, AT exhibited greater efficacy despite a similar reduction in circulating cholesterol. HDAC-inhibition may underlie greater efficacy of statins in attenuating kidney injury.
Collapse
|
Comparative Study |
9 |
20 |
18
|
Sakamoto K, Kawamura M, Kohro T, Omura M, Watanabe T, Ashidate K, Horiuchi T, Hara H, Sekine N, Chin R, Tsujino M, Hiyoshi T, Tagami M, Tanaka A, Mori Y, Inazawa T, Hirano T, Yamazaki T, Shiba T. Effect of Ezetimibe on LDL-C Lowering and Atherogenic Lipoprotein Profiles in Type 2 Diabetic Patients Poorly Controlled by Statins. PLoS One 2015; 10:e0138332. [PMID: 26398887 PMCID: PMC4580589 DOI: 10.1371/journal.pone.0138332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 08/28/2015] [Indexed: 12/30/2022] Open
Abstract
Background There exists a subpopulation of T2DM in whom first-line doses of statin are insufficient for optimally reducing LDL-C, representing a major risk of CVD. The RESEARCH study focuses on LDL-C reduction in this population along with modifications of the lipid profiles leading to residual risks. Methods Lipid changes were assessed in a randomized, multicenter, 12-week, open-label study comparing a high-potency statin (10mg of atorvastatin or 1mg of pitavastatin) plus ezetimibe (EAT: n = 53) with a double dose of statin (20mg of atorvastatin or 2mg of pitavastatin) (DST: n = 56) in DM subjects who had failed to achieve the optimal LDL-C targets. Lipid variables were compared with a primary focus on LDL-C and with secondary focuses on the percentage of patients who reached the LDL-C targets and changes in the levels of RLP-C (remnant like particle cholesterol) and sd-LDL-C, two characteristic atherogenic risks of DM. Results The reduction of LDL-C (%), the primary endpoint, differed significantly between the two groups (-24.6 in EAT vs. -10.9 in DST). In the analyses of the secondary endpoints, EAT treatment brought about significantly larger reductions in sd-LDL-C (-20.5 vs. -3.7) and RLP-C (-19.7 vs. +5.5). In total, 89.4% of the patients receiving EAT reached the optimized treatment goal compared to 51.0% of the patients receiving DST. The changes in TC (-16.3 vs. -6.3) and non-HDL-C (-20.7 vs. -8.3) differed significantly between the two groups. Conclusion Ezetimibe added to high-potency statin (10 mg of atorvastatin or 1 mg of pitavastatin) was more effective than the intensified-dose statin (20 mg of atorvastatin or 2 mg of pitavastatin) treatment not only in helping T2DM patients attain more LDL-C reduction, but also in improving their atherogenic lipid profiles, including their levels of sd-LDL-C and RLP-C. We thus recommend the addition of ezetimibe to high-potency statin as a first line strategy for T2DM patients with insufficient statin response. Trial Registration The UMIN Clinical Trials Registry UMIN000002593
Collapse
|
Multicenter Study |
10 |
17 |
19
|
van de Peppel IP, Bertolini A, van Dijk TH, Groen AK, Jonker JW, Verkade HJ. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. J Lipid Res 2019; 60:1562-1572. [PMID: 31324653 PMCID: PMC6718438 DOI: 10.1194/jlr.m094607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Indexed: 11/20/2022] Open
Abstract
Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia. The underlying mechanism, however, is largely unclear, and its contribution to cholesterol disposal from the body is obscured by the counteracting process of intestinal cholesterol reabsorption. To determine the quantity of TICE independent from its reabsorption, we studied two models of decreased intestinal cholesterol absorption. Cholesterol absorption was inhibited either by ezetimibe or, indirectly, by the genetic inactivation of the intestinal apical sodium-dependent bile acid transporter (ASBT; SLC10A2). Both ezetimibe treatment and Asbt inactivation virtually abrogated fractional cholesterol absorption (from 46% to 4% and 6%, respectively). In both models, fecal neutral sterol excretion and net intestinal cholesterol balance were considerably higher than in control mice (5- and 7-fold, respectively), suggesting that, under physiological conditions, TICE is largely reabsorbed. In addition, the net intestinal cholesterol balance was increased to a similar extent but was not further increased when the models were combined, suggesting that the effect on cholesterol reabsorption was already maximal under either condition alone. On the basis of these findings, we hypothesize that the inhibition of cholesterol (re)absorption combined with stimulating TICE will be most effective in increasing cholesterol disposal.
Collapse
|
research-article |
6 |
16 |
20
|
Miyoshi T, Nakamura K, Doi M, Ito H. Impact of Ezetimibe Alone or in Addition to a Statin on Plasma PCSK9 Concentrations in Patients with Type 2 Diabetes and Hypercholesterolemia: A Pilot Study. Am J Cardiovasc Drugs 2015; 15:213-9. [PMID: 25896669 DOI: 10.1007/s40256-015-0119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM The increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) leads to low-density lipoprotein (LDL) receptor degradation. Statins significantly reduce LDL-cholesterol levels, but upregulate PCSK9. This study evaluated the effect of ezetimibe monotherapy or ezetimibe in combination with a statin on serum levels of PCSK9 in patients with type 2 diabetes and hypercholesterolemia. METHODS Ezetimibe treatment was given to ten patients with diabetes without statin therapy and ten patients with statin therapy. Plasma levels of PCSK9 were examined at baseline and 24 weeks after treatment. RESULTS At baseline, PCSK9 concentrations in patients with statin therapy were significantly higher than those in patients without statin use and in control subjects [median (25th-75th percentile) 411 (272-467) and 382 (356-453) ng/mL, respectively, p < 0.01]. After ezetimibe treatment for 24 weeks, LDL-cholesterol, triglyceride and remnant-like lipoprotein cholesterol were significantly decreased in both groups. However, PCSK9 concentration did not change compared with baseline measurements in both groups. The percentage change in LDL-cholesterol after ezetimibe therapy for 24 weeks was not correlated with the percentage change in PCSK9 concentration. CONCLUSION Ezetimibe may reduce LDL-cholesterol levels without affecting PCSK9 in patients with type 2 diabetes and hypercholesterolemia.
Collapse
|
Comparative Study |
10 |
15 |
21
|
Kiourtzidis M, Kühn J, Schutkowski A, Baur AC, Hirche F, Stangl GI. Inhibition of Niemann-Pick C1-like protein 1 by ezetimibe reduces uptake of deuterium-labeled vitamin D in mice. J Steroid Biochem Mol Biol 2020; 197:105504. [PMID: 31682937 DOI: 10.1016/j.jsbmb.2019.105504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
For a long time, orally ingested vitamin D was assumed to enter the body exclusively via simple passive diffusion. Recent data from in vitro experiments have described Niemann-Pick C1-like protein 1 (Npc1l1) as an important sterol transporter for vitamin D absorption. However, short-term applications of ezetimibe, which inhibits Npc1l1, were not associated with reduced vitamin D uptake in animals and humans. The current study aimed to elucidate the effect of long-term inhibition of Npc1l1 by ezetimibe on the uptake and storage of orally administered triple deuterated vitamin D3 (vitamin D3-d3). Therefore, 30 male wild-type mice were randomly assigned into three groups and received diets with 25 μg/kg of vitamin D3-d3 that contained 0 (control group), 50 or 100 mg/kg ezetimibe for six weeks. Mice fed diets with 50 or 100 mg/kg ezetimibe had lower circulating levels of cholesterol than control mice (-12 %, -15 %, P < 0.01). In contrast, the concentrations of 7-dehydrocholesterol in serum (P < 0.001) and liver (P < 0.05) were higher in mice treated with ezetimibe than in control mice, indicating an increased sterol synthesis to compensate for cholesterol reduction. Long-term application of ezetimibe significantly reduced the concentrations of vitamin D3-d3 in the serum and tissues of mice. The magnitude of vitamin D3 reduction was comparable between the two ezetimibe groups. In comparison to the control group, mice treated with ezetimibe had lower concentrations of deuterated vitamin D3 compared with the control group in serum (62 %, P < 0.001), liver (79 %, P < 0.001), kidney (54 %, P < 0.001), adipose tissues (55 %, P < 0.001) and muscle (41 %, P < 0.001). Surprisingly, the serum concentration of deuterated 25-hydroxyvitamin D3 was higher in the group fed 100 mg/kg ezetimibe than in the control group (P < 0.05). The protein expression of the vitamin D hydroxylases Cyp2r1, Cyp27a1, Cyp3a11, Cyp24a1 and Cyp2j3 in liver and Cyp27b1 and Cyp24a1 in kidney remained largely unaffected by ezetimibe. To conclude, Npc1l1 appears to be crucial for the uptake of orally ingested vitamin D because long-term inhibition of Npc1l1 by ezetimibe strongly reduced the levels of deuterium-labeled vitamin D in the body; the observed rise in deuterated 25-hydroxyvitamin D3 in serum of these mice can not be explained by the expression levels of the key enzymes involved in vitamin D hydroxylation.
Collapse
|
|
5 |
13 |
22
|
Tanaka Y, Ikeda T, Ogawa H, Kamisako T. Ezetimibe Markedly Reduces Hepatic Triglycerides and Cholesterol in Rats Fed on Fish Oil by Increasing the Expression of Cholesterol Efflux Transporters. J Pharmacol Exp Ther 2020; 374:175-183. [PMID: 32366600 DOI: 10.1124/jpet.120.265660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/30/2020] [Indexed: 03/08/2025] Open
Abstract
Besides diet therapy, hypolipidemic pharmacological therapy may be a crucial component of nonalcoholic fatty liver disease (NAFLD) treatment. Ezetimibe may be a promising drug for treatment of NAFLD. n-3 polyunsaturated fatty acids, which are abundant in fish oil, reduce serum and hepatic cholesterol and triglycerides in rodents. The aim of this study was to examine the combined effects of dietary fish oil and ezetimibe on lipid metabolism in rats. Seven-week-old male Sprague-Dawley rats were allocated to four different diets containing 1) 10% soybean oil (C), 2) 10% fish oil (F), 3) 10% soybean oil + 0.005% ezetimibe, and 4) 10% fish oil + 0.005% ezetimibe (F+E) for 4 weeks, when the liver, jejunum, blood, and fecal samples were collected. Compared with the C group, the F+E diet decreased hepatic triglycerides and cholesterol 84% and 86%, but it did not increase fecal cholesterol. In liver, the expression of lipogenic enzymes was decreased in the F+E diet, whereas β-oxidation-related genes were not increased. Abcg5/g8 mRNA expression was increased 1380%/442% when ezetimibe was added to the F diet. These gene expression changes are related to the decrease in hepatic lipids. In jejunum, Abcg5/g8 mRNA was increased 244%/841% when ezetimibe was added to the F diet. Hepatic induction of Abcg5/8 rather than intestinal induction correlates with the marked decrease in liver cholesterol when ezetimibe was added to the F diet. These data suggest that fish oil diet and ezetimibe in combination may be a beneficial therapy for NAFLD by increasing hepatic Abcg5/g8 and decreasing lipogenic genes. SIGNIFICANCE STATEMENT: There is currently no single treatment for NAFLD. Thus, lifestyle modifications including dietary regulation and physical activity are also important options. In this study, ezetimibe, a cholesterol absorption inhibitor, was evaluated for the treatment of liver steatosis in rats fed on the different diets. We found that ezetimibe and fish oil in combination markedly improved fatty liver by increasing cholesterol efflux transporters. The combination therapy of fish oil agents and ezetimibe may be effective for NAFLD.
Collapse
|
|
5 |
12 |
23
|
Scicali R, Di Pino A, Ferrara V, Rabuazzo AM, Purrello F, Piro S. Effect of PCSK9 inhibitors on pulse wave velocity and monocyte-to-HDL-cholesterol ratio in familial hypercholesterolemia subjects: results from a single-lipid-unit real-life setting. Acta Diabetol 2021; 58:949-957. [PMID: 33745063 PMCID: PMC8187232 DOI: 10.1007/s00592-021-01703-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Subjects with familial hypercholesterolemia (FH) are characterized by an increased amount of low-density lipoprotein cholesterol (LDL-C) that promotes a continuous inflammatory stimulus. Our aim was to evaluate the effect of PCSK9-i on inflammatory biomarkers, neutrophil-to-lymphocyte ratio, monocyte-to-high-density lipoprotein ratio (MHR), and on early atherosclerosis damage analyzed by pulse wave velocity (PWV) in a cohort of FH subjects. METHODS In this prospective observational study, we evaluated 56 FH subjects on high-intensity statins plus ezetimibe and with an off-target LDL-C. All subjects were placed on PCSK9-i therapy and obtained biochemical analysis as well as PWV evaluation at baseline and after six months of PCSK9-i therapy. RESULTS After six months of add-on PCSK9-i therapy, only 42.9% of FH subjects attained LDL-C targets. As expected, a significant reduction of LDL-C (- 49.61%, p < 0.001) was observed after PCSK9-i therapy. Neutrophil count (NC) and MHR were reduced by PCSK9-i (-13.82% and -10.47%, respectively, p value for both < 0.05) and PWV significantly decreased after PCSK9-i therapy (- 20.4%, p < 0.05). Finally, simple regression analyses showed that ∆ PWV was significantly associated with ∆ LDL-C (p < 0.01), ∆ NC and ∆ MHR (p value for both < 0.05). CONCLUSIONS In conclusion, PCSK9-i therapy significantly improved lipid and inflammatory profiles and PWV values in FH subjects; our results support the positive effect of PCSK9-i in clinical practice.
Collapse
|
Observational Study |
4 |
12 |
24
|
Yamamoto H, Yamanashi Y, Takada T, Mu S, Tanaka Y, Komine T, Suzuki H. Hepatic Expression of Niemann-Pick C1-Like 1, a Cholesterol Reabsorber from Bile, Exacerbates Western Diet-Induced Atherosclerosis in LDL Receptor Mutant Mice. Mol Pharmacol 2019; 96:47-55. [PMID: 31064810 DOI: 10.1124/mol.119.115840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022] Open
Abstract
Westernization of dietary habits increases lipid intake and is responsible for increased numbers of patients with atherosclerotic diseases. Niemann-Pick C1-Like 1 (NPC1L1)-a cholesterol importer-plays a crucial role in dietary cholesterol absorption in the intestine and is closely associated with several lipid-related diseases, including atherosclerosis. NPC1L1 is highly expressed in the liver and intestine in humans, whereas NPC1L1 expression is low in the rodent liver. Due to species differences in the tissue distribution of NPC1L1, there are limited studies on the pathophysiological role of hepatic NPC1L1, a cholesterol reabsorber from bile. In the present study, to explore whether hepatic NPC1L1 is involved in the development/progression of atherosclerosis, we compared four kinds of atherosclerosis mouse models with different expression levels of NPC1L1 in the intestinal and liver tissues in a genetic background of dysfunctional low-density lipoprotein receptor mutation. Western diet (WD)-induced hyperlipidemia and atherosclerotic plaque formation were more severe in mice expressing NPC1L1 in both the liver and intestine (plasma cholesterol, 839.5 mg/dl; plaque area, 29.5% of total aorta), compared with mice expressing NPC1L1 only in the intestine (plasma cholesterol, 573.1 mg/dl; plaque area, 13.3% of total aorta). Such hepatic NPC1L1-mediated promotion of hyperlipidemia and atherosclerosis was not observed in mice not expressing intestinal NPC1L1 and mice treated with ezetimibe, an NPC1L1 inhibitor used clinically for dyslipidemia. These results suggested that hepatic NPC1L1 promotes WD-induced dyslipidemia and atherosclerosis in concert with intestinal NPC1L1. Our findings provide novel insights into the pathophysiological importance of hepatic NPC1L1 in development/progression of atherosclerosis. SIGNIFICANCE STATEMENT: Niemann-Pick C1-Like 1 (NPC1L1) protein, a cholesterol importer and a molecular target of ezetimibe clinically used for dyslipidemia, is highly expressed not only in the intestine, but also in the liver in humans, although the pathophysiological importance of hepatic NPC1L1 in atherosclerotic diseases remained unclear. By using novel mouse models to separately analyze the effects of hepatic and intestinal NPC1L1 on the development/progression of atherosclerosis, we first demonstrated that hepatic NPC1L1 accelerates Western diet-induced atherosclerotic plaque formation in an intestinal NPC1L1-dependent and an ezetimibe-sensitive manner.
Collapse
|
Comparative Study |
6 |
11 |
25
|
Chuang JC, Lopez AM, Turley SD. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe. Biochem Pharmacol 2017; 135:116-125. [PMID: 28322747 PMCID: PMC5489310 DOI: 10.1016/j.bcp.2017.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 01/28/2023]
Abstract
Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal-/- mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency.
Collapse
|
Comparative Study |
8 |
10 |