1
|
|
Review |
29 |
644 |
2
|
James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260:1937-42. [PMID: 8316834 DOI: 10.1126/science.8316834] [Citation(s) in RCA: 530] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oncogenic Ras proteins transform animal cells to a malignant phenotype only when modified by farnesyl residues attached to cysteines near their carboxyl termini. The farnesyltransferase that catalyzes this reaction recognizes tetrapeptides of the sequence CAAX, where C is cysteine, A is an aliphatic amino acid, and X is a carboxyl-terminal methionine or serine. Replacement of the two aliphatic residues with a benzodiazepine-based mimic of a peptide turn generated potent inhibitors of farnesyltransferase [50 percent inhibitory concentration (IC50) < 1 nM]. Unlike tetrapeptides, the benzodiazepine peptidomimetics enter cells and block attachment of farnesyl to Ras, nuclear lamins, and several other proteins. At micromolar concentrations, these inhibitors restored a normal growth pattern to Ras-transformed cells. The benzodiazepine peptidomimetics may be useful in the design of treatments for tumors in which oncogenic Ras proteins contribute to abnormal growth, such as that of the colon, lung, and pancreas.
Collapse
|
|
32 |
530 |
3
|
Berger B, Wilson DB, Wolf E, Tonchev T, Milla M, Kim PS. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A 1995; 92:8259-63. [PMID: 7667278 PMCID: PMC41136 DOI: 10.1073/pnas.92.18.8259] [Citation(s) in RCA: 513] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A method is presented that predicts coiled-coil domains in protein sequences by using pairwise residue correlations obtained from a (two-stranded) coiled-coil database of 58,217 amino acid residues. A program called PAIRCOIL implements this method and is significantly better than existing methods at distinguishing coiled coils from alpha-helices that are not coiled coils. The database of pairwise residue correlations suggests structural features that stabilize or destabilize coiled coils.
Collapse
|
research-article |
30 |
513 |
4
|
Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 1992; 6:3343-53. [PMID: 1484489 DOI: 10.1111/j.1365-2958.1992.tb02202.x] [Citation(s) in RCA: 438] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Up to 36% of Neurospora crassa transformants showing an albino phenotype were recovered by transforming a wild-type strain with different portions of the carotenogenic albino-3 (al-3) and albino-1 (al-1) genes. The presence of the exogenous sequences (which were randomly integrated in ectopic locations) provoked a severe impairment in the expression of the endogenous al-1 or al-3 genes. This phenomenon, which we have termed 'quelling', was found to be spontaneously and progressively reversible, leading to wild-type or intermediate phenotypes. The phenotypic reversion is characterized by a progressive release of the transcriptional inhibition and seems to correlate with a reduction of the number of the ectopic integrated sequences. Moreover, quelling appears to be monodirectional, as, once relieved, it cannot take place again, despite the continuing presence of some of the ectopic sequences in the genome.
Collapse
|
|
33 |
438 |
5
|
Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260:1934-7. [PMID: 8316833 DOI: 10.1126/science.8316833] [Citation(s) in RCA: 425] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To acquire transforming potential, the precursor of the Ras oncoprotein must undergo farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase (FPTase), have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. The tetrapeptide analog L-731,735 is a potent and selective inhibitor of FPTase in vitro. A prodrug of this compound, L-731,734, inhibited Ras processing in cells transformed with v-ras. L-731,734 decreased the ability of v-ras-transformed cells to form colonies in soft agar but had no effect on the efficiency of colony formation of cells transformed by either the v-raf or v-mos oncogenes. The results demonstrate selective inhibition of ras-dependent cell transformation with a synthetic organic inhibitor of FPTase.
Collapse
|
|
32 |
425 |
6
|
Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 2001; 97:3361-9. [PMID: 11369625 DOI: 10.1182/blood.v97.11.3361] [Citation(s) in RCA: 322] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R115777 is a nonpeptidomimetic enzyme-specific inhibitor of farnesyl protein transferase (FT) that was developed as a potential inhibitor of Ras protein signaling, with antitumor activity in preclinical models. This study was a phase 1 trial of orally administered R115777 in 35 adults with poor-risk acute leukemias. Cohorts of patients received R115777 at doses ranging from 100 mg twice daily (bid) to 1200 mg bid for up to 21 days. Dose-limiting toxicity occurred at 1200 mg bid, with central neurotoxicity evidenced by ataxia, confusion, and dysarthria. Non–dose-limiting toxicities included reversible nausea, renal insufficiency, polydipsia, paresthesias, and myelosuppression. R115777 inhibited FT activity at 300 mg bid and farnesylation of FT substrates lamin A and HDJ-2 at 600 mg bid. Extracellular signal-regulated kinase (ERK), an effector enzyme of Ras-mediated signaling, was detected in its phosphorylated (activated) form in 8 (36.4%) of 22 pretreatment marrows and became undetectable in 4 of those 8 after one cycle of treatment. Pharmacokinetics revealed a linear relationship between dose and maximum plasma concentration or area under the curve over 12 hours at all dose levels. Weekly marrow samples demonstrated that R115777 accumulated in bone marrow in a dose-dependent fashion, with large increases in marrow drug levels beginning at 600 mg bid and with sustained levels throughout drug administration. Clinical responses occurred in 10 (29%) of the 34 evaluable patients, including 2 complete remissions. Genomic analyses failed to detect N-ras gene mutations in any of the 35 leukemias. The results of this first clinical trial of a signal transduction inhibitor in patients with acute leukemias suggest that inhibitors of FT may have important clinical antileukemic activity.
Collapse
MESH Headings
- Adult
- Aged
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Bone Marrow/metabolism
- Cohort Studies
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Inhibitors/adverse effects
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/therapeutic use
- Farnesyltranstransferase
- Female
- Genes, ras
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutation
- Phosphorylation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Prenylation
- Quinolones/adverse effects
- Quinolones/pharmacokinetics
- Quinolones/therapeutic use
- Recurrence
- Remission Induction
- Treatment Outcome
Collapse
|
|
24 |
322 |
7
|
Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000; 373:231-41. [PMID: 10620343 DOI: 10.1006/abbi.1999.1502] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.
Collapse
|
|
25 |
312 |
8
|
Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 2005; 102:12879-84. [PMID: 16129833 PMCID: PMC1200293 DOI: 10.1073/pnas.0506001102] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is characterized by dramatic premature aging and accelerated cardiovascular disease. HGPS is almost always caused by a de novo point mutation in the lamin A gene (LMNA) that activates a cryptic splice donor site, producing a truncated mutant protein termed "progerin." WT prelamin A is anchored to the nuclear envelope by a farnesyl isoprenoid lipid. Cleavage of the terminal 15 aa and the farnesyl group releases mature lamin A from this tether. In contrast, this cleavage site is deleted in progerin. We hypothesized that retention of the farnesyl group causes progerin to become permanently anchored in the nuclear membrane, disrupting proper nuclear scaffolding and causing the characteristic nuclear blebbing seen in HGPS cells. Also, we hypothesized that blocking farnesylation would decrease progerin toxicity. To test this hypothesis, the terminal CSIM sequence in progerin was mutated to SSIM, a sequence that cannot be farnesylated. SSIM progerin relocalized from the nuclear periphery into nucleoplasmic aggregates and produced no nuclear blebbing. Also, blocking farnesylation of authentic progerin in transiently transfected HeLa, HEK 293, and NIH 3T3 cells with farnesyltransferase inhibitors (FTIs) restored normal nuclear architecture. Last, treatment of both early- and late-passage human HGPS fibroblasts with FTIs resulted in significant reductions in nuclear blebbing. Our results suggest that treatment with FTIs represents a potential therapy for patients with HGPS.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
291 |
9
|
Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD, Sebti SM. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J Biol Chem 1995; 270:26802-6. [PMID: 7592920 DOI: 10.1074/jbc.270.45.26802] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.
Collapse
|
|
30 |
287 |
10
|
Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 1996; 271:19705-9. [PMID: 8702674 DOI: 10.1074/jbc.271.33.19705] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many studies have identified nitric oxide (NO) and related chemical species (NOx) as having critical roles in neurotransmission, vasoregulation, and cellular signaling. Previous work in this laboratory has focused on elucidating the mechanism of NOx signaling in cells. We have demonstrated that NOx-induced activation of the guanine nucleotide-binding protein p21(ras) leads to nuclear translocation of the transcription factor NFkappaB. Here, we investigated whether intermediary signaling elements, namely the mitogen-activated protein (MAP) kinases, are involved in mediating NOx signaling. We found that NOx activates the extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) subgroups of MAP kinases in human Jurkat T cells. JNK was found to be 100-fold more sensitive to NOx stimulation than p38 and ERK. In addition, the activation of JNK and p38 by NOx was more rapid than ERK activation. Depletion of intracellular glutathione augmented the NOx-induced increase in kinase activity. Furthermore, endogenous NO, generated from NO synthase, activated ERK, and NOx-induced MAP kinase activation was effectively blocked by the farnesyl transferase inhibitor alpha-hydroxyfarnesylphosphonic acid. These data support the hypothesis that critical signaling kinases, such as ERK, p38, and JNK, are activated by NO-related species and thus participate in NO signal transduction. These findings establish a role for multiple MAP kinase signaling pathways in the cellular response to NOx.
Collapse
|
|
29 |
264 |
11
|
Gibbs JB, Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol 1997; 37:143-66. [PMID: 9131250 DOI: 10.1146/annurev.pharmtox.37.1.143] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutant ras oncogenes and alterations in the mitogenic signaling pathways that they regulate are associated with a wide variety of solid tumors and leukemias for which existing chemotherapeutics have limited utility. Of the possible approaches to inhibit Ras function, much attention has focused on a posttranslational modification, farnesylation, which is required for the subcellular localization of Ras to the plasma membrane and is critical to Ras cell-transforming activity. Inhibitors of the enzyme that catalyzes Ras farnesylation, farnesyl-protein transferase (FPTase), have been developed. These compounds inhibit the tumorigenic phenotypes of ras-transformed cells and human tumor cells in cell culture and in animal models. Moreover, FPTase inhibitors have not demonstrated toxicity to normal cells in culture or to normal tissues in mice. FPTase inhibitors are among the first small molecule compounds designed from studies of oncogenes that might serve as novel cancer chemotherapeutics.
Collapse
|
Review |
28 |
249 |
12
|
|
|
32 |
246 |
13
|
Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 2005; 102:10291-6. [PMID: 16014412 PMCID: PMC1174929 DOI: 10.1073/pnas.0504641102] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), a progeroid syndrome in children, is caused by mutations in LMNA (the gene for prelamin A and lamin C) that result in the deletion of 50 aa within prelamin A. In normal cells, prelamin A is a "CAAX protein" that is farnesylated and then processed further to generate mature lamin A, which is a structural protein of the nuclear lamina. The mutant prelamin A in HGPS, which is commonly called progerin, retains the CAAX motif that triggers farnesylation, but the 50-aa deletion prevents the subsequent processing to mature lamin A. The presence of progerin adversely affects the integrity of the nuclear lamina, resulting in misshapen nuclei and nuclear blebs. We hypothesized that interfering with protein farnesylation would block the targeting of progerin to the nuclear envelope, and we further hypothesized that the mislocalization of progerin away from the nuclear envelope would improve the nuclear blebbing phenotype. To approach this hypothesis, we created a gene-targeted mouse model of HGPS, generated genetically identical primary mouse embryonic fibroblasts, and we then examined the effect of a farnesyltransferase inhibitor on nuclear blebbing. The farnesyltransferase inhibitor mislocalized progerin away from the nuclear envelope to the nucleoplasm, as determined by immunofluoresence microscopy, and resulted in a striking improvement in nuclear blebbing (P < 0.0001 by chi2 statistic). These studies suggest a possible treatment strategy for HGPS.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
230 |
14
|
Sebti SM, Hamilton AD. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene 2000; 19:6584-93. [PMID: 11426643 DOI: 10.1038/sj.onc.1204146] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1990, more than 10 years after the discovery that the low molecular weight GTPase Ras is a major contributor to human cancer, farnesylation, a lipid posttranslational modification required for the cancer-causing activity of Ras, emerged as a major target for the development of novel anticancer agents. However, it took only 5 years from 1993, when the first farnesyltransferase inhibitors (FTIs) were reported, to 1998 when results from the first phase I clinical trials were described. This rapid progress was due to the demonstration of outstanding antitumor activity and lack of toxicity of FTIs in preclinical models. Although, many FTIs are currently in phase H and at least one is in phase III clinical trial, the mechanism of FTI antitumor activity is not known. In this review a brief summary of the development of FTIs as antitumor agents will be given. The focus of the review will be on important mechanistic and bench-to-bedside translational issues. Among the issues that will be addressed are: evidence for and against inhibition of the prenylation of Ras and RhoB proteins in the mechanism of action of FTIs; implications of the alternative prenylation of K-Ras by geranylgeranyl-transferase I (when FTase is inhibited) in cancer therapy; GGTase I inhibitors (GGTIs) as antitumor agents; effects of FTIs and GGTIs on cell cycle machinery and progression and potential mechanisms by which FTIs and GGTIs induce apoptosis in human cancer cells. A thorough discussion about bench-to-bedside issues relating to hypothesis-driven clinical trials with proof-of-principle in man will also be included. This section will cover issues relating to whether the biochemical target (FTase) is inhibited and the level of inhibition of FTase required for clinical response; are signaling pathways such as H-Ras/PI3K/Akt and/or K-Ras/Raf/MEK/Erk relevant biological readouts?; is Ras (particularly N-Ras and H-Ras) mutation status a good predictor of clinical response?; in phase I trials should effective biological dose, not maximally tolerated dose, be used to determine phase II dose?; and finally, in phase II/III trials what are the most appropriate clinical end points for anti-signaling molecules such as FTIs? Parts of this topic have been recently reviewed (Sebti and Hamilton, 2000c).
Collapse
|
Review |
25 |
226 |
15
|
Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 2005; 127:3165-71. [PMID: 15740156 DOI: 10.1021/ja042394q] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamers are DNA (or RNA) ligands selected from large libraries of random DNA sequences and capable of binding different classes of targets with high affinity and selectivity. Both the chances for the aptamer to be selected and the quality of the selected aptamer are largely dependent on the method of selection. Here we introduce selection of aptamers by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). The new method has a number of advantages over conventional approaches. First, NECEEM-based selection has exceptionally high efficiency, which allows aptamer development with fewer rounds of selection. Second, NECEEM can be equally used for selecting aptamers and finding their binding parameters. Finally, due to its comprehensive kinetic capabilities, the new method can potentially facilitate selection of aptamers with predefined K(d), k(off), and k(on) of the aptamer-target interaction. In this proof-of-principle work, we describe the theoretical bases of the method and demonstrate its application to a one-step selection of DNA aptamers with nanomolar affinity for protein farnesyltransferase.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
223 |
16
|
Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997; 15:2755-65. [PMID: 9419966 DOI: 10.1038/sj.onc.1201455] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overexpression and activation of receptor tyrosine kinases, such as platelet derived growth factor receptors (PDGFRs) and epidermal growth factor receptor (EGFR), leads to proliferation of human malignant astrocytoma cells. Although oncogenic mutations affecting Ras are not prevalent in human malignant astrocytomas, we have investigated whether levels of activated Ras.GTP might be elevated in these tumors secondary to the mitogenic signals originating from activated receptor tyrosine kinases. In support of this hypothesis high levels of Ras.GTP, similar to those found in oncogenic Ras transformed fibroblasts, were present in four established human malignant astrocytoma cell lines which express PDGFRs and EGFR, and 20 operative malignant astrocytoma specimens. Stimulation of PDGFR's and EGFR's induced tyrosine phosphorylation of the Shc adaptor protein and its association with Grb2, suggesting a mechanism by which Ras may be activated in human malignant astrocytoma cells. Furthermore, blocking Ras activation by expression of the Ha-Ras-Asn17 dominant-negative mutant, or by farnesyl transferase inhibitors, decreased in vitro proliferation of the human astrocytoma cell lines. These results support the hypothesis that proliferative signals from receptor tyrosine kinases expressed by human malignant astrocytoma cells utilize the Ras mitogenic pathway. Pharmacological inhibitors of the Ras pathway may therefore be of therapeutic value in these presently terminal tumors.
Collapse
|
|
28 |
220 |
17
|
Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A 2005; 102:12873-8. [PMID: 16129834 PMCID: PMC1193538 DOI: 10.1073/pnas.0505767102] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in the biogenesis of lamin A from its farnesylated precursor, prelamin A, lead to the accumulation of prelamin A at the nuclear envelope, cause misshapen nuclei, and result in progeroid syndromes. A deficiency in ZMPSTE24, a protease involved in prelamin A processing, leads to prelamin A accumulation, an absence of mature lamin A, misshapen nuclei, and a lethal perinatal progeroid syndrome: restrictive dermopathy (RD). Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutant prelamin A that cannot be processed to lamin A. The hallmark cellular abnormality in RD and HGPS is misshapen nuclei. We hypothesized that the farnesylation of prelamin A is important for its targeting to the nuclear envelope in RD and HGPS and that blocking farnesylation would ameliorate the nuclear shape abnormalities. Indeed, when RD fibroblasts were treated with a farnesyltransferase inhibitor (FTI), prelamin A was partially mislocalized away from the nuclear envelope, and the frequency of nuclear shape abnormalities was reduced (P < 0.0001). A FTI also mislocalized prelamin A and improved nuclear shape in Zmpste24-deficient mouse embryonic fibroblasts (P < 0.0001) and improved nuclear shape in human HGPS fibroblasts (P < 0.0001). Most remarkably, a FTI significantly improved nuclear shape in two fibroblast cell lines from atypical progeria patients with lamin A missense mutations in the absence of prelamin A accumulation (P = 0.0003 and P < 0.0001). These findings establish a paradigm for ameliorating the most obvious cellular pathology in lamin-related progeroid syndromes and suggest a potential strategy for treating these diseases.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
216 |
18
|
Graaf MR, Richel DJ, van Noorden CJF, Guchelaar HJ. Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev 2004; 30:609-41. [PMID: 15531395 DOI: 10.1016/j.ctrv.2004.06.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors - HMG-CoA reductase inhibitors) have been approved for the treatment of lipid disorders. Recently, in vivo studies with experimental animals and in vitro studies indicated a possible role for statins in the treatment of malignancies. Inhibition of the enzyme HMG-CoA reductase results in decreased farnesylation and geranylgeranylation of several proteins essential for cellular proliferation and survival. Inhibition of Ras farnesylation was originally thought to be the mechanism that mediates statin-induced effects in cancer. Consequently, specific inhibitors of the enzyme farnesyltransferase (FTIs) were developed. Currently, the mechanisms that mediate statin- and FTI-induced antitumour effects are questioned. It remains unclear which proteins and signal transduction cascades are involved. This review focuses on the effects and possible therapeutic application of statins and FTIs. Antitumour properties such as induction of growth arrest and apoptosis, inhibition of metastasis and inhibition of angiogenesis are discussed. Furthermore, the mechanisms of statin- and farnesyltransferase inhibitor-induced effects and the involvement of a number of cellular components (such as farnesylated and geranylgeranylated proteins, the mitogen-activated protein kinase signalling pathway, the phosphoinositide 3'-kinase signalling pathway, and cell cycle regulatory proteins) are reviewed. In addition, clinical and epidemiological data with respect to statins and farnesyltransferase inhibitors are summarised. We propose that inhibitors of the mevalonate pathway are particularly effective when administered in combination with other drugs. Therefore, the mechanisms and effects of combined therapy of statins or farnesyltransferase inhibitors with chemotherapeutics, biphosphonates, non-steroidal anti-inflammatory drugs, specific inhibitors of geranylgeranyltransferase and inhibitors of tyrosine kinase activity are discussed.
Collapse
|
Review |
21 |
215 |
19
|
James GL, Goldstein JL, Brown MS. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270:6221-6. [PMID: 7890759 DOI: 10.1074/jbc.270.11.6221] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BZA-5B, a benzodiazepine peptidomimetic, inhibits CAAX farnesyltransferase (FTase) and blocks attachment of farnesyl groups to oncogenic and wild-type H-Ras in animal cells. This compound slows the growth of cells transformed with oncogenic H-Ras at concentrations that do not affect the growth of nontransformed cells. This finding suggested that nontransformed cells may produce a form of Ras whose prenylation is resistant to BZA-5B. In the current studies, we found that FTase had a 50-fold higher affinity for K-RasB than for H-Ras in vitro. Farnesylation of K-RasB was inhibited by BZA-2B, the active form of BZA-5B, but only at concentrations that were 8-fold higher than those that inhibited farnesylation of H-Ras. K-RasB, but not H-Ras, was also a substrate for CAAX geranylgeranyltransferase-1 (GGTase-1), and its affinity for the enzyme was equal to that of Rap1B, an authentic leucine-terminated substrate for GGTase-1. Inhibition of the geranylgeranylation of K-RasB occurred only at high concentrations of BZA-2B. All of these properties of K-RasB were traced to the combined effects of its COOH-terminal CVIM sequence and the adjacent polylysine sequence, neither of which is present in H-Ras. These studies provide a potential explanation for the resistance of nontransformed cells to growth inhibition by BZA-5B. Inasmuch as the majority of Ras-related human cancers contain oncogenic versions of K-RasB rather than H-Ras, the current data suggest that in vitro studies of FTase inhibitors with potential anti-cancer activity should use authentic K-RasB as a substrate.
Collapse
|
Comparative Study |
30 |
201 |
20
|
Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19:1831-40. [PMID: 10022870 PMCID: PMC83976 DOI: 10.1128/mcb.19.3.1831] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.
Collapse
|
research-article |
26 |
195 |
21
|
Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM, Cheng JQ. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20:139-48. [PMID: 10594016 PMCID: PMC85069 DOI: 10.1128/mcb.20.1.139-148.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) represent a novel class of anticancer drugs that exhibit a remarkable ability to inhibit malignant transformation without toxicity to normal cells. However, the mechanism by which FTIs inhibit tumor growth is not well understood. Here, we demonstrate that FTI-277 inhibits phosphatidylinositol 3-OH kinase (PI 3-kinase)/AKT2-mediated growth factor- and adhesion-dependent survival pathways and induces apoptosis in human cancer cells that overexpress AKT2. Furthermore, overexpression of AKT2, but not oncogenic H-Ras, sensitizes NIH 3T3 cells to FTI-277, and a high serum level prevents FTI-277-induced apoptosis in H-Ras- but not AKT2-transformed NIH 3T3 cells. A constitutively active form of AKT2 rescues human cancer cells from FTI-277-induced apoptosis. FTI-277 inhibits insulin-like growth factor 1-induced PI 3-kinase and AKT2 activation and subsequent phosphorylation of the proapoptotic protein BAD. Integrin-dependent activation of AKT2 is also blocked by FTI-277. Thus, a mechanism for FTI inhibition of human tumor growth is by inducing apoptosis through inhibition of PI 3-kinase/AKT2-mediated cell survival and adhesion pathway.
Collapse
|
research-article |
25 |
191 |
22
|
Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW, Piotrovsky VK, Chiao J, Belly RT, Todd A, Kopp WC, Kohler DR, Chow C, Noone M, Hakim FT, Larkin G, Gress RE, Nussenblatt RB, Kremer AB, Cowan KH. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18:927-41. [PMID: 10673536 DOI: 10.1200/jco.2000.18.4.927] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine the maximum-tolerated dose, toxicities, and pharmacokinetic profile of the farnesyl protein transferase inhibitor R115777 when administered orally bid for 5 days every 2 weeks. PATIENTS AND METHODS Twenty-seven patients with a median age of 58 years received 85 cycles of R115777 using an intrapatient and interpatient dose escalation schema. Drug was administered orally at escalating doses as a solution (25 to 850 mg bid) or as pellet capsules (500 to 1300 mg bid). Pharmacokinetics were assessed after the first dose and the last dose administered during cycle 1. RESULTS Dose-limiting toxicity of grade 3 neuropathy was observed in one patient and grade 2 fatigue (decrease in two performance status levels) was seen in four of six patients treated with 1,300 mg bid. The most frequent clinical grade 2 or 3 adverse events in any cycle included nausea, vomiting, headache, fatigue, anemia, and hypotension. Myelosuppression was mild and infrequent. Peak plasma concentrations of R115777 were achieved within 0.5 to 4 hours after oral drug administration. The elimination of R115777 from plasma was biphasic, with sequential half-lives of about 5 hours and 16 hours. There was little drug accumulation after bid dosing, and steady-state concentrations were achieved within 2 to 3 days. The pharmacokinetics were dose proportional in the 25 to 325 mg/dose range for the oral solution. Urinary excretion of unchanged R115777 was less than 0.1% of the oral dose. One patient with metastatic colon cancer treated at the 500-mg bid dose had a 46% decrease in carcinoembryonic antigen levels, improvement in cough, and radiographically stable disease for 5 months. CONCLUSION R115777 is bioavailable after oral administration and has an acceptable toxicity profile. Based upon pharmacokinetic data, the recommended dose for phase II trials is 500 mg orally bid (total daily dose, 1, 000 mg) for 5 consecutive days followed by 9 days of rest. Studies of continuous dosing and studies of R115777 in combination with chemotherapy are ongoing.
Collapse
|
Clinical Trial |
25 |
189 |
23
|
Rao S, Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kourteva G, Iveson T, Andre T, Dostalova J, Illes A, Belly R, Perez-Ruixo JJ, Park YC, Palmer PA. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 2004; 22:3950-7. [PMID: 15459217 DOI: 10.1200/jco.2004.10.037] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine whether R115777 improves survival in patients with refractory advanced colorectal cancer (CRC) in a multicenter, double-blind, prospective randomized study. PATIENTS AND METHODS Three hundred sixty-eight patients were randomly assigned to R115777 (300 mg twice daily) orally for 21 days every 28 days or placebo in a 2:1 ratio. All patients received best supportive care. The primary end point was overall survival; secondary end points were progression free survival, tumor response, toxicity, and quality of life. RESULTS The two treatment groups were well balanced for baseline demographics, including previous chemotherapy for advanced CRC. The median overall survival for R115777 was 174 days (95% CI, 157 to 198 days), and 185 days (95% CI, 158 to 238 days) for those patients receiving placebo (P =.376). One patient achieved a partial response in the R115777 arm. Stable disease (> 3 months) was observed in 24.3% patients in the R115777 group compared to 12.8% in the placebo arm. This did not translate into a statistically significant increase in progression-free survival. Overall, treatment was well tolerated. There was an increased incidence of reversible myelosuppression (neutropenia, thrombocytopenia), rash, and grade 1 to 2 diarrhea in the R115777 arm. There was no statistically significant difference in quality of life between arms. CONCLUSION Single agent R115777, given at this dose and schedule, has an acceptable toxicity profile, but does not improve overall survival compared to best supportive care alone in refractory advanced CRC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
186 |
24
|
Chen A, Kroon PA, Poulter CD. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci 1994; 3:600-7. [PMID: 8003978 PMCID: PMC2142870 DOI: 10.1002/pro.5560030408] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Isoprenyl diphosphate synthases are ubiquitous enzymes that catalyze the basic chain-elongation reaction in the isoprene biosynthetic pathway. Pairwise sequence comparisons were made for 6 farnesyl diphosphate synthases, 6 geranylgeranyl diphosphate synthases, and a hexaprenyl diphosphate synthase. Five regions with highly conserved residues, two of which contain aspartate-rich DDXX(XX)D motifs found in many prenyltransferases, were identified. A consensus secondary structure for the group, consisting mostly of alpha-helices, was predicted for the multiply aligned sequences from amino acid compositions, computer assignments of local structure, and hydropathy indices. Progressive sequence alignments suggest that the 13 isoprenyl diphosphate synthases evolved from a common ancestor into 3 distinct clusters. The most distant separation is between yeast hexaprenyl diphosphate synthetase and the other enzymes. Except for the chromoplastic geranylgeranyl diphosphate synthase from Capsicum annuum, the remaining farnesyl and geranylgeranyl diphosphate synthases segregate into prokaryotic/archaebacterial and eukaryotic families.
Collapse
|
research-article |
31 |
181 |
25
|
Hoover RR, Mahon FX, Melo JV, Daley GQ. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100:1068-71. [PMID: 12130526 DOI: 10.1182/blood.v100.3.1068] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of chronic myeloid leukemia (CML) is dependent on the deregulated tyrosine kinase of the oncoprotein BCR-ABL. STI571 (imatinib mesylate), an abl tyrosine kinase inhibitor, has proven remarkably effective for the treatment of CML. However, resistance to STI571 because of enhanced expression or mutation of the BCR-ABL gene has been detected in patients. In the current study we show that the farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits the proliferation of STI571-resistant BCR-ABL-positive cell lines and hematopoietic colony formation from peripheral blood samples of STI571-resistant patients with CML. Moreover, SCH66336 enhances STI571-induced apoptosis in STI571-sensitive cells and, in patients with STI571 resistance from gene amplification, cooperates with STI571 to induce apoptosis. Our data provide a rationale for combination clinical trials of STI571 and SCH66336 in CML patients and suggest that combination therapy may be effective in patients with STI571 resistance.
Collapse
|
|
23 |
179 |