1
|
Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S, Yamada N. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 1999; 274:35832-9. [PMID: 10585467 DOI: 10.1074/jbc.274.50.35832] [Citation(s) in RCA: 547] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.
Collapse
|
|
26 |
547 |
2
|
Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF. "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 2005; 1:309-22. [PMID: 16054078 DOI: 10.1016/j.cmet.2005.04.002] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/04/2005] [Accepted: 04/07/2005] [Indexed: 02/07/2023]
Abstract
De novo lipogenesis is an energy-expensive process whose role in adult mammals is poorly understood. We generated mice with liver-specific inactivation of fatty-acid synthase (FAS), a key lipogenic enzyme. On a zero-fat diet, FASKOL (FAS knockout in liver) mice developed hypoglycemia and fatty liver, which were reversed with dietary fat. These phenotypes were also observed after prolonged fasting, similarly to fasted PPARalpha-deficiency mice. Hypoglycemia, fatty liver, and defects in expression of PPARalpha target genes in FASKOL mice were corrected with a PPARalpha agonist. On either zero-fat or chow diet, FASKOL mice had low serum and hepatic cholesterol levels with elevated SREBP-2, decreased HMG-CoA reductase expression, and decreased cholesterol biosynthesis; these were also corrected with a PPARalpha agonist. These results suggest that products of the FAS reaction regulate glucose, lipid, and cholesterol metabolism by serving as endogenous activators of distinct physiological pools of PPARalpha in adult liver.
Collapse
|
Comparative Study |
20 |
433 |
3
|
Smith S, Witkowski A, Joshi AK. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 2003; 42:289-317. [PMID: 12689621 DOI: 10.1016/s0163-7827(02)00067-x] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.
Collapse
|
Review |
22 |
427 |
4
|
Schadinger SE, Bucher NLR, Schreiber BM, Farmer SR. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005; 288:E1195-205. [PMID: 15644454 DOI: 10.1152/ajpendo.00513.2004] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is considered to be one of the master regulators of adipocyte differentiation. PPARgamma2 is abundantly expressed in mature adipocytes and is elevated in the livers of animals that develop fatty livers. The aim of this study was to determine the ability of PPARgamma2 to induce lipid accumulation in hepatocytes and to delineate molecular mechanisms driving this process. The hepatic cell line AML-12 was used to generate a cell line stably expressing PPARgamma2. Oil Red O staining revealed that PPARgamma2 induces lipid accumulation in hepatocytes. This phenotype is accompanied by a selective upregulation of several adipogenic and lipogenic genes including adipose differentiation-related protein (ADRP), adipocyte fatty acid-binding protein 4, sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase, genes whose expression levels are known to increase in steatotic livers of ob/ob mice. Furthermore, the PPARgamma2-regulated induction of both SREBP-1 and FAS parallels an increase in de novo triacylglycerol synthesis in hepatocytes. Triacylglycerol synthesis and lipid accumulation are further enhanced by culturing hepatocytes with troglitazone in the absence of exogenous lipids. These results correspond with an increase in the lipid droplet protein, ADRP, and the data demonstrate that ADRP functions to coat lipid droplets in hepatocytes as observed by confocal microscopy. Taken together, these observations propose a role for PPARgamma2 as an inducer of steatosis in hepatocytes and suggest that this phenomenon occurs through an induction of pathways regulating de novo lipid synthesis.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
308 |
5
|
Chajès V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 2006; 66:5287-94. [PMID: 16707454 DOI: 10.1158/0008-5472.can-05-1489] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of de novo fatty acid synthesis is a characteristic feature of cancer cells. We have recently described an interaction between acetyl-CoA carboxylase alpha (ACCalpha), a key enzyme in fatty acid synthesis, and BRCA1, which indicates a possible connection between lipid synthesis and genetic factors involved in susceptibility to breast and ovarian cancers. For this reason, we explored the role of ACCalpha in breast cancer cell survival using an RNA interference (RNAi) approach. We show that specific silencing of either the ACCalpha or the fatty acid synthase (FAS) genes in cancer cells results in a major decrease in palmitic acid synthesis. Depletion of the cellular pool of palmitic acid is associated with induction of apoptosis concomitant with the formation of reactive oxygen species (ROS) and mitochondrial impairment. Expression of a small interfering RNA (siRNA)-resistant form of ACCalpha mRNA prevented the effect of ACCalpha-RNAi but failed to prevent the effect of FAS gene silencing. Furthermore, supplementation of the culture medium with palmitate or with the antioxidant vitamin E resulted in the complete rescue of cells from both ACCalpha and FAS siRNA-induced apoptosis. Finally, human mammary epithelial cells are resistant to RNAi against either ACCalpha or FAS. These data confirm the importance of lipogenesis in cancer cell survival and indicate that this pathway represents a key target for antineoplastic therapy that, however, might require specific dietary recommendation for full efficacy.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
287 |
6
|
Heath RJ, Rock CO. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 1995; 270:26538-42. [PMID: 7592873 DOI: 10.1074/jbc.270.44.26538] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of enoyl-acyl carrier protein (ACP) reductase (E.C. 1.3.1.9), the product of the fabI gene, was investigated in the type II, dissociated, fatty acid synthase system of Escherichia coli. All of the proteins required to catalyze one cycle of fatty acid synthesis from acetyl-CoA plus malonyl-CoA to butyryl-ACP in vitro were purified. These proteins were malonyl-CoA:ACP transacylase (fabD), beta-ketoacyl-ACP synthase III (fabH), beta-ketoacyl-ACP reductase (fabG), beta-hydroxydecanoyl-ACP dehydrase (fabA), and enoyl-ACP reductase (fabI). Unlike the other enzymes in the cycle, FabA did not efficiently convert its substrate beta-hydroxybutyryl-ACP to crotonyl-ACP, but rather the equilibrium favored formation of beta-hydroxybutyryl-ACP over crotonyl-ACP by a ratio of 9:1. The amount of butyryl-ACP formed depended on the amount of FabI protein added to the assay. Extracts from fabI(Ts) mutants accumulated beta-hydroxybutyryl-ACP, and the addition of FabI protein to the fabI(Ts) extract restored both butyryl-ACP and long-chain acyl-ACP synthesis. FabI was verified to be the only enoyl-ACP reductase required for the synthesis of fatty acids by demonstrating that purified FabI was required for the elongation of both long-chain saturated and unsaturated fatty acids. These results were corroborated by analysis of the intracellular ACP pool composition in fabI(Ts) mutants that showed beta-hydroxybutyryl-ACP and crotonyl-ACP accumulated at the nonpermissive temperature in the same ratio found in the fabI(Ts) extracts and in the in vitro reconstruction experiments that lacked FabI. We conclude that FabI is the only enoyl-ACP reductase involved in fatty acid synthesis in E. coli and that the activity of this enzyme plays a determinant role in completing cycles of fatty acid biosynthesis.
Collapse
|
|
30 |
286 |
7
|
Bennett MK, Lopez JM, Sanchez HB, Osborne TF. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem 1995; 270:25578-83. [PMID: 7592729 DOI: 10.1074/jbc.270.43.25578] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene encoding fatty acid synthase, the essential multi-functional enzyme of fatty acid biosynthesis, is shown to be regulated by cellular sterol levels similar to genes that encode important proteins of cholesterol metabolism. We show that expression of the endogenous FAS gene is repressed when regulatory sterols are included in the culture medium of HepG2 cells and that the FAS promoter is subject to similar regulation when fused to the luciferase reporter gene. Mutational studies demonstrate that sterol regulation is mediated by binding sites for the sterol regulatory element-binding protein (SREBP) and transcription factor Sp1, making it mechanistically similar to sterol regulation of the low density lipoprotein receptor gene. It is also demonstrated that SREBP and Sp1 synergistically activate the FAS promoter in Drosophila tissue culture cells, which lack endogenous Sp1. These experiments provide key molecular evidence that directly links the metabolism of fatty acids and cholesterol together.
Collapse
|
|
30 |
284 |
8
|
Dentin R, Benhamed F, Pégorier JP, Foufelle F, Viollet B, Vaulont S, Girard J, Postic C. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 2005; 115:2843-54. [PMID: 16184193 PMCID: PMC1224299 DOI: 10.1172/jci25256] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/19/2005] [Indexed: 12/19/2022] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) are potent inhibitors of hepatic glycolysis and lipogenesis. Recently, carbohydrate-responsive element-binding protein (ChREBP) was implicated in the regulation by glucose of glycolytic and lipogenic genes, including those encoding L-pyruvate kinase (L-PK) and fatty acid synthase (FAS). The aim of our study was to assess the role of ChREBP in the control of L-PK and FAS gene expression by PUFAs. We demonstrated in mice, both in vivo and in vitro, that PUFAs [linoleate (C18:2), eicosapentanoic acid (C20:5), and docosahexaenoic acid (C22:6)] suppressed ChREBP activity by increasing ChREBP mRNA decay and by altering ChREBP translocation from the cytosol to the nucleus, independently of an activation of the AMP-activated protein kinase, previously shown to regulate ChREBP activity. In contrast, saturated [stearate (C18)] and monounsaturated fatty acids [oleate (C18:1)] had no effect. Since glucose metabolism via the pentose phosphate pathway is determinant for ChREBP nuclear translocation, the decrease in xylulose 5-phosphate concentrations caused by a PUFA diet favors a PUFA-mediated inhibition of ChREBP translocation. In addition, overexpression of a constitutive nuclear ChREBP isoform in cultured hepatocytes significantly reduced the PUFA inhibition of both L-PK and FAS gene expression. Our results demonstrate that the suppressive effect of PUFAs on these genes is primarily caused by an alteration of ChREBP nuclear translocation. In conclusion, we describe a novel mechanism to explain the inhibitory effect of PUFAs on the genes encoding L-PK and FAS and demonstrate that ChREBP is a pivotal transcription factor responsible for coordinating the PUFA suppression of glycolytic and lipogenic genes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
224 |
9
|
Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J Biol Chem 1997; 272:26827-32. [PMID: 9341113 DOI: 10.1074/jbc.272.43.26827] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dietary polyunsaturated fatty acids (PUFA) induce hepatic peroxisomal and microsomal fatty acid oxidation and suppress lipogenic gene expression. The peroxisome proliferator-activated receptor alpha (PPARalpha) has been implicated as a mediator of fatty acid effects on gene transcription. This report uses the PPARalpha-deficient mouse to examine the role of PPARalpha in the PUFA regulation of mRNAs encoding hepatic lipogenic (fatty acid synthase (FAS) and the S14 protein (S14)), microsomal (cytochrome P450 4A2 (CYP4A2)), and peroxisomal (acyl-CoA oxidase (AOX)) enzymes. PUFA ingestion induced mRNAAOX (2.3-fold) and mRNACYP4A2 (8-fold) and suppressed mRNAFAS and mRNAS14 by >/=80% in wild type mice. In PPARalpha-deficient mice, PUFA did not induce mRNAAOX or mRNACYP4A2, indicating a requirement for PPARalpha in the PUFA-mediated induction of these enzymes. However, PUFA still suppressed mRNAFAS and mRNAS14 in the PPARalpha-deficient mice. Studies in rats provided additional support for the differential regulation of lipogenic and peroxisomal enzymes by PUFA. These studies provide evidence for two distinct pathways for PUFA control of hepatic lipid metabolism. One requires PPARalpha and is involved in regulating peroxisomal and microsomal enzymes. The other pathway does not require PPARalpha and is involved in the PUFA-mediated suppression of lipogenic gene expression.
Collapse
MESH Headings
- Acyl-CoA Oxidase
- Animals
- Cells, Cultured
- Cytochrome P-450 CYP4A
- Cytochrome P-450 Enzyme System/biosynthesis
- Dietary Fats, Unsaturated/pharmacology
- Dietary Supplements
- Fatty Acid Synthases/biosynthesis
- Fish Oils/pharmacology
- Gene Expression Regulation/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Microbodies/enzymology
- Microsomes, Liver/enzymology
- Mixed Function Oxygenases/biosynthesis
- Nuclear Proteins/metabolism
- Olive Oil
- Oxidoreductases/biosynthesis
- Plant Oils/pharmacology
- Protein Biosynthesis
- Proteins
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
Collapse
|
|
28 |
196 |
10
|
Berndt J, Kovacs P, Ruschke K, Klöting N, Fasshauer M, Schön MR, Körner A, Stumvoll M, Blüher M. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 2007; 50:1472-80. [PMID: 17492427 DOI: 10.1007/s00125-007-0689-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/28/2007] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Increased expression and activity of the lipogenic pathways in adipose tissue may contribute to the development of obesity. As a central enzyme in lipogenesis, the gene encoding fatty acid synthase (FASN) was identified as a candidate gene for determining body fat. In the present study we tested the hypothesis that increased FASN expression links metabolic alterations of excess energy intake, including hyperinsulinaemia, dyslipidaemia and altered adipokine profile to increased body fat mass. SUBJECTS AND METHODS In paired samples of visceral and subcutaneous adipose tissue from 196 participants (lean or obese), we investigated whether FASN mRNA expression (assessed by PCR) in adipose tissue is increased in obesity and related to visceral fat accumulation, measures of insulin sensitivity (euglycaemic-hyperinsulinaemic clamp) and glucose metabolism. RESULTS FASN mRNA expression was increased by 1.7-fold in visceral vs subcutaneous fat. Visceral adipose tissue FASN expression was correlated with FASN protein levels, subcutaneous FASN expression, visceral fat area, fasting plasma insulin, serum concentrations of IL-6, leptin and retinol-binding protein 4 (RBP4), and inversely with measures of insulin sensitivity, independently of age, sex and BMI. Moreover, we found significant correlations between FASN expression and markers of renal function, including serum creatinine and urinary albumin excretion. CONCLUSIONS/INTERPRETATION Increased FASN gene expression in adipose tissue is linked to visceral fat accumulation, impaired insulin sensitivity, increased circulating fasting insulin, IL-6, leptin and RBP4, suggesting an important role of lipogenic pathways in the causal relationship between consequences of excess energy intake and the development of obesity and type 2 diabetes.
Collapse
|
|
18 |
192 |
11
|
Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 2010; 17:351-60. [PMID: 20228137 DOI: 10.1677/erc-09-0252] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecular mechanisms responsible for the association of obesity with adverse colon cancer outcomes are poorly understood. We investigated the effects of a high-energy diet on growth of an in vivo colon cancer model. Seventeen days following the injection of 5x10(5) MC38 colon carcinoma cells, tumors from mice on the high-energy diet were approximately twice the volume of those of mice on the control diet. These findings were correlated with the observation that the high-energy diet led to elevated insulin levels, phosphorylated AKT, and increased expression of fatty acid synthase (FASN) by the tumor cells. Metformin, an antidiabetic drug, leads to the activation of AMPK and is currently under investigation for its antineoplastic activity. We observed that metformin blocked the effect of the high-energy diet on tumor growth, reduced insulin levels, and attenuated the effect of diet on phosphorylation of AKT and expression of FASN. Furthermore, the administration of metformin led to the activation of AMPK, the inhibitory phosphorylation of acetyl-CoA carboxylase, the upregulation of BNIP3 and increased apoptosis as estimated by poly (ADP-ribose) polymerase (PARP) cleavage. Prior work showed that activating mutations of PI3K are associated with increased AKT activation and adverse outcome in colon cancer; our results demonstrate that the aggressive tumor behavior associated with a high-energy diet has similar effects on this signaling pathway. Furthermore, metformin is demonstrated to reverse the effects of the high-energy diet, thus suggesting a potential role for this agent in the management of a metabolically defined subset of colon cancers.
Collapse
|
|
15 |
181 |
12
|
Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW, Kim KS. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 2007; 282:26122-31. [PMID: 17631500 DOI: 10.1074/jbc.m702854200] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of the HER2 oncogene is increased in approximately 30% of human breast carcinomas and is closely correlated with the expression of fatty acid synthase (FASN). In the present study, we determined the mechanism by which FASN and acetyl-CoA carboxylase alpha (ACCalpha) could be induced by HER2 overexpression. SK-BR-3 and BT-474 cells, breast cancer cells that overexpress HER2, expressed higher levels of FASN and ACCalpha compared with MCF-7 and MDA-MB-231 breast cancer cells in which HER2 expression is low. The induction of FASN and ACCalpha in BT474 cells were not mediated by the activation of SREBP-1. Exogenous HER2 expression in MDA-MB-231 cells induced the expression of FASN and ACCalpha, and the HER2-mediated increase in ACCalpha and FASN was inhibited by both LY294002, a phosphatidylinositol 3-kinase inhibitor, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor. In addition, the activation of mTOR by the overexpression of RHEB in MDA-MB-231 cells increased the synthetic rates of both FASN and ACCalpha. On the other hand, FASN and ACCalpha were reduced in BT-474 cells by a blockade of the mTOR signaling pathway. These changes observed in their protein levels were not accompanied by changes in their mRNA levels. The 5'- and 3'-untranslated regions of both FASN and ACCalpha mRNAs were involved in selective translational induction that was mediated by mTOR signal transduction. These results strongly suggest that the major mechanism of HER2-mediated induction of FASN and ACCalpha in the breast cancer cells used in this study is translational regulation primarily through the mTOR signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
179 |
13
|
Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 1994; 176:7320-7. [PMID: 7961504 PMCID: PMC197121 DOI: 10.1128/jb.176.23.7320-7327.1994] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of a plant (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (BTE) cDNA in Escherichia coli results in a very high level of extractable medium-chain-specific hydrolytic activity but causes only a minor accumulation of medium-chain fatty acids. BTE's full impact on the bacterial fatty acid synthase is apparent only after expression in a strain deficient in fatty acid degradation, in which BTE increases the total fatty acid output of the bacterial cultures fourfold. Laurate (12:0), normally a minor fatty acid component of E. coli, becomes predominant, is secreted into the medium, and can accumulate to a level comparable to the total dry weight of the bacteria. Also, large quantities of 12:1, 14:0, and 14:1 are made. At the end of exponential growth, the pathway of saturated fatty acids is almost 100% diverted by BTE to the production of free medium-chain fatty acids, starving the cells for saturated acyl-ACP substrates for lipid biosynthesis. This results in drastic changes in membrane lipid composition from predominantly 16:0 to 18:1. The continued hydrolysis of medium-chain ACPs by the BTE causes the bacterial fatty acid synthase to produce fatty acids even when membrane production has ceased in stationary phase, which shows that the fatty acid synthesis rate can be uncoupled from phospholipid biosynthesis and suggests that acyl-ACP intermediates might normally act as feedback inhibitors for fatty acid synthase. As the fatty acid synthesis is increasingly diverted to medium chains with the onset of stationary phase, the rate of C12 production increases relative to C14 production. This observation is consistent with activity of the BTE on free acyl-ACP pools, as opposed to its interaction with fatty acid synthase-bound substrates.
Collapse
|
research-article |
31 |
173 |
14
|
Klemm DJ, Leitner JW, Watson P, Nesterova A, Reusch JE, Goalstone ML, Draznin B. Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 2001; 276:28430-5. [PMID: 11375992 DOI: 10.1074/jbc.m103382200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin is a potent adipogenic hormone that triggers an induction of a series of transcription factors governing differentiation of pre-adipocytes into mature adipocytes. However, the exact link between the insulin signaling cascade and the intrinsic cascade of adipogenesis remains incompletely understood. Herein we demonstrate that inhibition of prenylation of p21ras and Rho-A arrests insulin-stimulated adipogenesis. Inhibition of farnesylation of p21ras also blocked the ability of insulin to activate mitogen-activated protein (MAP) kinase and cyclic AMP response element-binding (CREB) protein. Expression of two structurally different inducible constitutively active CREB constructs rescued insulin-stimulated adipocyte differentiation from the inhibitory influence of prenylation inhibitors. Constitutively active CREB constructs induced expression of PPARgamma2, fatty acid synthase, GLUT-4, and leptin both in control and prenylation inhibitors-treated cells. It appears that insulin-stimulated prenylation of the Ras family GTPases assures normal phosphorylation and activation of CREB that, in turn, triggers the intrinsic cascade of adipogenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
151 |
15
|
Gibson DM, Lyons RT, Scott DF, Muto Y. Synthesis and degradation of the lipogenic enzymes of rat liver. ADVANCES IN ENZYME REGULATION 1972; 10:187-204. [PMID: 4653823 DOI: 10.1016/0065-2571(72)90014-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
150 |
16
|
Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR. Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 2005; 24:3574-82. [PMID: 15806173 DOI: 10.1038/sj.onc.1208463] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of AKT and overexpression of fatty acid synthase (FAS) are frequently observed in human ovarian cancer. To explore a possible connection between AKT and FAS, immunohistochemical analyses were conducted on an ovarian cancer tissue microarray, which revealed a significant correlation between phosphorylated AKT (phospho-AKT) and expression of FAS. To investigate the relationship between phospho-AKT and FAS in vitro, a variety of experiments employing a specific phosphatidylinositol 3-OH kinase (PI3K) inhibitor (LY294002), inducible PTEN expression in PTEN-null cells, or AKT1 siRNA demonstrated that phosphatidylinositol-3 kinase (PI3K)/AKT signaling modulates FAS expression. In contrast, inhibition of FAS activity by the drug C75 resulted in downregulation of phospho-AKT and increased cell death. To explore the functional relationship between phospho-AKT and FAS, we used SKOV3, C200, and OVCAR10 ovarian carcinoma cells, which have constitutively active AKT, and OVCAR5 cells, which have very low basal phospho-AKT levels. Treatment with LY294002 abolished AKT activity and potentiated apoptosis induced by FAS inhibitors cerulenin or C75 only in cells with constitutively active AKT, suggesting that constitutive activation of AKT protects against FAS inhibitor-induced cell death. Furthermore, inhibition of FAS activity by cerulenin or C75 resulted in downregulation of phospho-AKT, which preceded the induction of apoptosis. To investigate the relationship between phospho-AKT and FAS in vivo, severe combined immunodeficient mice injected intraperitoneally with SKOV3 cells were treated with C75. Growth of SKOV3 xenografts was markedly inhibited by C75. Analysis of the levels of phospho-AKT and FAS in C75-treated tumors revealed concordant downregulation of phospho-AKT and FAS. Collectively, our findings are consistent with a working model in which AKT activation regulates FAS expression, at least in part, whereas FAS activity modulates AKT activation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
148 |
17
|
Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ. Inhibition of Fatty Acid Synthase Induces Endoplasmic Reticulum Stress in Tumor Cells. Cancer Res 2007; 67:1262-9. [PMID: 17283163 DOI: 10.1158/0008-5472.can-06-1794] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fatty acid synthase (FAS), the cellular enzyme that synthesizes palmitate, is expressed at high levels in tumor cells and is vital for their survival. Through the synthesis of palmitate, FAS primarily drives the synthesis of phospholipids in tumor cells. In this study, we tested the hypothesis that the FAS inhibitors induce endoplasmic reticulum (ER) stress in tumor cells. Treatment of tumor cells with FAS inhibitors induces robust PERK-dependent phosphorylation of the translation initiation factor eIF2alpha and concomitant inhibition of protein synthesis. PERK-deficient transformed mouse embryonic fibroblasts and HT-29 colon carcinoma cells that express a dominant negative PERK (DeltaC-PERK) are hypersensitive to FAS inhibitor-induced cell death. Pharmacologic inhibition of FAS also induces the processing of X-box binding protein-1, indicating that the IRE1 arm of the ER stress response is activated when FAS is inhibited. Induction of ER stress is further confirmed by the increased expression of the ER stress-regulated genes CHOP, ATF4, and GRP78. FAS inhibitor-induced ER stress is activated prior to the detection of caspase 3 and PARP cleavage, primary indicators of cell death, whereas orlistat-induced cell death is rescued by coincubation with the global translation inhibitor cycloheximide. Lastly, FAS inhibitors cooperate with the ER stress inducer thapsigargin to enhance tumor cell killing. These results provide the first evidence that FAS inhibitors induce ER stress and establish an important mechanistic link between FAS activity and ER function.
Collapse
|
|
18 |
138 |
18
|
Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 2000; 19:5173-81. [PMID: 11064454 DOI: 10.1038/sj.onc.1203889] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased expression of fatty acid synthase (FAS) is observed in a clinically aggressive subset of various common cancers and interference with FAS offers promising opportunities for selective chemotherapeutic intervention. The mechanisms by which FAS expression is (up)-regulated in these tumors remain, however, largely unknown. Recently we demonstrated that in LNCaP prostate cancer cells FAS expression is markedly elevated by androgens via an indirect pathway involving sterol regulatory element-binding proteins (SREBPs). Here, we also show that growth factors such as EGF are able to stimulate FAS mRNA, protein and activity. Several observations also indicate that the effects of EGF on FAS expression are ultimately mediated by SREBPs. EGF stimulates SREBP-1c mRNA expression and induces an increase in mature nuclear SREBP-1. Moreover, in transient transfection studies EGF stimulates the transcriptional activity of a 178 bp FAS promoter fragment harboring a complex SREBP-binding site. Deletion or mutation of this binding site abolishes these effects and ectopic expression of dominant negative SREBP-1 inhibits FAS expression and induction in intact LNCaP cells. Given the frequent dysregulation of growth factor signaling in cancer and the key role of SREBP-1 in lipid homeostasis, growth factor-induced activation of the SREBP pathway is proposed as one of the mechanisms responsible for up-regulation of lipogenic gene expression in a subset of cancer cells.
Collapse
|
|
25 |
131 |
19
|
Yang YUA, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW, Pizer ES. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 2003; 282:132-7. [PMID: 12531699 DOI: 10.1016/s0014-4827(02)00023-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of fatty acid synthase (FAS) expression and fatty acid synthesis is a common event in human breast cancer. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate genes involved in lipid metabolism, including FAS. SREBP-1c expression is induced in liver and adipose tissue by insulin and by fasting/refeeding and is critical for nutritional regulation of lipogenic gene expression. In contrast, upregulation of fatty acid metabolism during in vitro transformation of human mammary epithelial cells and in breast cancer cells was driven by increased MAP kinase and PI 3-kinase signaling, which increased SREBP-1 levels. SREBP-1a was more abundant than SREBP-1c in many proliferative tissues and cultured cells and was thus a candidate to regulate lipogenesis for support of membrane synthesis during cell growth. We now show that SREBP-1c and FAS mRNA were both increased by H-ras transformation of MCF-10a breast epithelial cells and were both reduced by exposure of MCF-7 breast cancer cells to the MAP kinase inhibitor, PD98059, or the PI 3-kinase inhibitor, wortmannin, while SREBP-1a and SREBP-2 showed less variation. Similarly, the mRNA levels for FAS and SREBP-1c in a panel of primary human breast cancer samples showed much greater increases than did those for SREBP-1a and SREBP-2 and were significantly correlated with each other, suggesting coordinate regulation of SREBP-1c and FAS in clinical breast cancer. We conclude that regulation of FAS expression in breast cancer is achieved through modulation of SREBP-1c, similar to the regulation in liver and adipose tissue, although the upstream regulation of liopgenesis differs in these tissues.
Collapse
|
|
22 |
120 |
20
|
Kusakabe T, Maeda M, Hoshi N, Sugino T, Watanabe K, Fukuda T, Suzuki T. Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J Histochem Cytochem 2000; 48:613-22. [PMID: 10769045 DOI: 10.1177/002215540004800505] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal fatty acid synthase (FAS) is a homodimer protein which synthesizes long-chain fatty acids and is rich in liver, brain, breast, and lung. However, the precise cellular localization of FAS in human tissues has not been elucidated. Immunohistochemistry with a new antibody to human FAS revealed that in adult human tissues FAS is distributed mainly in cells with high lipid metabolism (adipocytes, corpus luteum, hepatocytes, sebaceous glands, and Type II alveolar cells), in hormone-sensitive cells (anterior pituitary, apocrine gland, breast, endometrium, prostate, seminal vesicle, and adrenal cortex), and in a subset of epithelial cells of duodenum and stomach, colon absorptive cells, cerebral neurons, basket cells of cerebellum, decidua, uroepithelium, and epidymis. In fetal cells at 20 weeks of gestation, FAS was mainly present in proliferative epithelial cells of the digestive and respiratory systems, proximal renal tubules, adrenocortical cells, and mesenchymal and hematolymphoid cells. Staining was significant in nonproliferating cells, as observed in adult, and in sympathetic ganglion cells, Leidig cells of testis, and Langhans cells of chorionic villi. FAS is maintained in hormone-sensitive cells and/or cells active in lipid metabolism in the adult and is expressed in proliferating cells in the fetus, suggesting active fatty acid synthesis for energy utilization or membrane lipids.
Collapse
|
|
25 |
117 |
21
|
Pizer ES, Pflug BR, Bova GS, Han WF, Udan MS, Nelson JB. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 2001; 47:102-10. [PMID: 11340632 DOI: 10.1002/pros.1052] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fatty acid synthase (FAS) performs the anabolic conversion of dietary carbohydrate or protein to fat. FAS expression is low in most normal tissues, but is elevated in many human cancers, including androgen-sensitive and androgen-independent prostate cancer. METHODS Immunohistochemical evaluation of FAS expression was performed in human prostate cancer specimens under various states of androgen ablation. In vitro and in vivo prostate cancer models were evaluated for FAS expression and activity under androgenic and androgen-depleted conditions, and were tested for sensitivity to antimetabolite drugs that target fatty acid synthesis. RESULTS While FAS expression in the prostate was androgen responsive, it persisted or was reactivated in human prostate carcinoma after androgen ablation, and was high in 82% of lethal tumors examined at autopsy. Similar patterns of FAS expression and fatty acid synthesis were seen in cell culture and xenograft models of human prostate cancer. Pharmacologic inhibition of FAS resulted in a dose-dependent reduction of tumor growth in these models, including fourfold inhibition of an androgen-independent human prostate cancer xenograft with little associated toxicity. CONCLUSIONS The data suggest that FAS expression/FA synthesis provides an important functional aspect of the malignant phenotype in prostate cancer, perhaps supporting cell growth or survival. FAS expression may be upregulated by alternate signaling pathways important for prostate cancer growth under androgen withdrawal. The re-emergence of FAS expression and activity during the development of androgen independence demonstrate that FAS may serve as a novel target for antimetabolite therapy in prostate cancer.
Collapse
|
|
24 |
114 |
22
|
Tobe K, Suzuki R, Aoyama M, Yamauchi T, Kamon J, Kubota N, Terauchi Y, Matsui J, Akanuma Y, Kimura S, Tanaka J, Abe M, Ohsumi J, Nagai R, Kadowaki T. Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2(-/-) mouse liver. J Biol Chem 2001; 276:38337-40. [PMID: 11546755 DOI: 10.1074/jbc.c100160200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor substrate (IRS)-2(-/-) mice develop diabetes because of insulin resistance in the liver and failure to undergo beta-cell hyperplasia. Here we show by DNA chip microarray analysis that expression of the sterol regulatory element-binding protein (SREBP)-1 gene, a downstream target of insulin, was paradoxically increased in 16-week-old IRS-2(-/-) mouse liver, where insulin-mediated intracellular signaling events were substantially attenuated. The expression of SREBP-1 downstream genes, such as the spot 14, ATP citrate-lyase, and fatty acid synthase genes, was also increased. Increased liver triglyceride content in IRS-2(-/-) mice assures the physiological importance of SREBP-1 gene induction. IRS-2(-/-) mice showed leptin resistance; low dose leptin administration, enough to reduce food intake and body weight in wild-type mice, failed to do so in IRS-2(-/-) mice. Interestingly, high dose leptin administration reduced SREBP-1 expression in IRS-2(-/-) mouse liver. Thus, IRS-2 gene disruption results in leptin resistance, causing an SREBP-1 gene induction, obesity, fatty liver, and diabetes.
Collapse
|
|
24 |
104 |
23
|
Innocenzi D, Alò PL, Balzani A, Sebastiani V, Silipo V, La Torre G, Ricciardi G, Bosman C, Calvieri S. Fatty acid synthase expression in melanoma. J Cutan Pathol 2003; 30:23-8. [PMID: 12534800 DOI: 10.1034/j.1600-0560.2003.300104.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fatty acid synthase (FAS), the key enzyme responsible for the synthesis of fatty acids, is weakly expressed in some normal human tissues. Recently, FAS has been demonstrated to be overexpressed in many non-neoplastic highly proliferative lesions and in aggressive carcinomas with poor outcome, including colon, breast and ovary carcinomas. METHODS In order to evaluate the prognostic significance of FAS in human melanoma, we analysed by means of immunohistochemistry, using a monoclonal anti-FAS antibody, 77 primary melanomas and 30 nodal and cutaneous metastasis. Thirty nevi (15 dermal and 15 junctional nevi) were used as controls. All patients were followed-up for 5 years. RESULTS Thirty-four melanomas expressed strong FAS immunostaining; the remaining 43 cases showed weak expression or were negative. All cutaneous and nodal metastasis were strongly positive. All patients with metastases deceased during the follow up period. Control specimens expressed weak staining. None of these patients developed recurrence. Statistical analysis revealed significant association of FAS expression with Breslow thickness (p = 0.012). The intensity of FAS immunostaining was also predictive of prognosis (p = 0.049). CONCLUSIONS FAS is a reliable prognostic marker in human melanomas. FAS predictive strength is increased when associated with Breslow thickness. The observation of FAS in human melanomas may stratify patients for stricter follow-ups and suggest different therapeutic approaches.
Collapse
|
|
22 |
103 |
24
|
Lakshmanan MR, Nepokroeff CM, Porter JW. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3':5' cyclic monophosphate. Proc Natl Acad Sci U S A 1972; 69:3516-9. [PMID: 4345502 PMCID: PMC389810 DOI: 10.1073/pnas.69.12.3516] [Citation(s) in RCA: 102] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The usual increase in the activity of liver fatty-acid synthetase that occurs on refeeding of a fat-free diet to previously fasted rats is abolished in diabetic animals. Insulin specifically restores this increase by enhancement of the rate of synthesis of fatty-acid synthetase. However, glucagon and cyclic AMP inhibit the increase in the activity of fatty-acid synthetase. Therefore, the concentration of fatty-acid synthetase in rat liver is under the control of the relative concentrations of insulin and glucagon.
Collapse
|
research-article |
53 |
102 |
25
|
Pekala PH, Kawakami M, Angus CW, Lane MD, Cerami A. Selective inhibition of synthesis of enzymes for de novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci U S A 1983; 80:2743-7. [PMID: 6133282 PMCID: PMC393904 DOI: 10.1073/pnas.80.9.2743] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An endotoxin-induced mediator from exudate cells markedly suppresses the activities of the key enzymes for de novo fatty acid biosynthesis--acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming), EC 6.4.1.2] and fatty acid synthetase--in differentiating 3T3-L1 murine preadipocytes. The loss in activity, at least in part, appears to be due to a specific effect on the synthesis of the enzymes, as determined by a decreased incorporation of [35S]methionine into immunoadsorbable acetyl-CoA carboxylase and fatty acid synthetase when the cells were exposed to the mediator. During this exposure, the radiolabeling of proteins with [35S]methionine in a particulate fraction was decreased by nearly 50% with little change in the soluble protein fraction. Sodium dodecyl sulfate/polyacrylamide gel analysis of the labeled protein indicated no major disturbances of protein synthesis in general; however, the syntheses of specific proteins in both the soluble and particulate fractions were enhanced or depressed. The present study demonstrates that endotoxin promotes the release of a mediator from exudate cells that regulates key anabolic activities in adipose cells.
Collapse
|
research-article |
42 |
98 |