1
|
Patel VN, Likar KM, Zisman-Rozen S, Cowherd SN, Lassiter KS, Sher I, Yates EA, Turnbull JE, Ron D, Hoffman MP. Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. J Biol Chem 2008; 283:9308-17. [PMID: 18230614 PMCID: PMC2431040 DOI: 10.1074/jbc.m709995200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/14/2008] [Indexed: 12/13/2022] Open
Abstract
FGF10, a heparan sulfate (HS)-binding growth factor, is required for branching morphogenesis of mouse submandibular glands (SMGs). HS increases the affinity of FGF10 for FGFR2b, which forms an FGF10.FGFR2b.HS ternary signaling complex, and results in diverse biological outcomes, including proliferation and epithelial morphogenesis. Defining the HS structures involved in specific FGF10-mediated events is critical to understand how HS modulates growth factor signaling in specific developmental contexts. We used HS-deficient BaF3/FGFR2b cells, which require exogenous HS to proliferate, to investigate the HS requirements for FGF10-mediated proliferation and primary SMG epithelia to investigate the structural requirements of HS for FGF10-mediated epithelial morphogenesis. In BaF3/FGFR2b cells, heparin with at least 10 saccharides and 6-O-, 2-O-, and N-sulfates were required for maximal proliferation. During FGF10-mediated SMG epithelial morphogenesis, HS increased proliferation and end bud expansion. Defined heparin decasaccharide libraries showed that 2-O-sulfation with either an N-or 6-O-sulfate induced end bud expansion, whereas decasaccharides with 6-O-sulfation alone induced duct elongation. End bud expansion resulted from increased FGFR1b signaling, with increased FGFR1b, Fgf1, and Spry1 as well as increased Aqp5 expression, a marker of end bud differentiation. Duct elongation was associated with expression of Cp2L1, a marker of developing ducts. Collectively, these findings show that the size and sulfate patterns of HS modulate specific FGF10-mediated events, such as proliferation, duct elongation, end bud expansion, and differentiation, and provide mechanistic insight as to how the developmental localization of specific HS structures in tissues influences FGF10-mediated morphogenesis and differentiation.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
87 |
2
|
Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B, Scharfmann R. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 2007; 56:1248-58. [PMID: 17322477 DOI: 10.2337/db06-1307] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The importance of mesenchymal-epithelial interactions for normal development of the pancreas was recognized in the early 1960s, and mesenchymal signals have been shown to control the proliferation of early pancreatic progenitor cells. The mechanisms by which the mesenchyme coordinates cell proliferation and differentiation to produce the normal number of differentiated pancreatic cells are not fully understood. Here, we demonstrate that the mesenchyme positively controls the final number of beta-cells that develop from early pancreatic progenitor cells. In vitro, the number of beta-cells that developed from rat embryonic pancreatic epithelia was larger in cultures with mesenchyme than without mesenchyme. The effect of mesenchyme was not due to an increase in beta-cell proliferation but was due to increased proliferation of early pancreatic duodenal homeobox-1 (PDX1)-positive progenitor cells, as confirmed by bromodeoxyuridine incorporation. Consequently, the window during which early PDX1(+) pancreatic progenitor cells differentiated into endocrine progenitor cells expressing Ngn3 was extended. Fibroblast growth factor 10 mimicked mesenchyme effects on proliferation of early PDX1(+) progenitor cells and induction of Ngn3 expression. Taken together, our results indicate that expansion of early PDX1(+) pancreatic progenitor cells represents a way to increase the final number of beta-cells developing from early embryonic pancreas.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
83 |
3
|
Desai TJ, Chen F, Lü J, Qian J, Niederreither K, Dollé P, Chambon P, Cardoso WV. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol 2006; 291:12-24. [PMID: 16427040 DOI: 10.1016/j.ydbio.2005.10.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 09/05/2005] [Accepted: 10/03/2005] [Indexed: 12/01/2022]
Abstract
Retinoic acid (RA) signaling is required for normal development of multiple organs. However, little is known about how RA influences the initial stages of lung development. Here, we used a combination of genetic, pharmacological and explant culture approaches to address this issue, and to investigate how signaling by different RA receptors (RAR) mediates the RA effects. We analyzed initiation of lung development in retinaldehyde dehydrogenase-2 (Raldh2) null mice, a model in which RA signaling is absent from the foregut from its earliest developmental stages. We provide evidence that RA is dispensable for specification of lung cell fate in the endoderm. By using synthetic retinoids to selectively activate RAR alpha or beta signaling in this model, we demonstrate novel and unique functions of these receptors in the early lung. We show that activation of RAR beta, but not alpha, induces expression of the fibroblast growth factor Fgf10 and bud morphogenesis in the lung field. Similar analysis of wild type foregut shows that endogenous RAR alpha activity is required to maintain overall RA signaling, and to refine the RAR beta effects in the lung field. Our data support the idea that balanced activation of RAR alpha and beta is critical for proper lung bud initiation and endodermal differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
68 |
4
|
Lin CM, Jiang TX, Baker RE, Maini PK, Widelitz RB, Chuong CM. Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Dev Biol 2009; 334:369-82. [PMID: 19647731 PMCID: PMC2811698 DOI: 10.1016/j.ydbio.2009.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 02/01/2023]
Abstract
A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction-diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
51 |
5
|
Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 2007; 236:1175-92. [PMID: 17394208 DOI: 10.1002/dvdy.21133] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
43 |
6
|
Radek KA, Taylor KR, Gallo RL. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen 2009; 17:118-26. [PMID: 19152659 PMCID: PMC2721336 DOI: 10.1111/j.1524-475x.2008.00449.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor-10 (FGF-10) is essential for epithelial development, while other members of this family, such as FGF-7, are not. FGF-10 is abundantly released into wounds following injury, and likely an essential growth factor required for this process. To evaluate how activation of this growth factor is controlled, multiple glycosaminoglycans were combined with FGF-10 assayed by measurement of the proliferation of cell lines expressing FGF receptor-2-IIIb, or keratinocyte migration in an in vitro wound repair assay. Dermatan sulfate (DS) exhibited greater potency than heparan sulfate or other chondroitin sulfates found in wounds. Structural variants of DS between 10 and 20 disaccharides containing iduronic acid showed maximal capacity to enable FGF-10 receptor stimulation. Furthermore, FGF-10 and DS markedly enhanced migration of keratinocytes in an in vitro wound scratch assay, while FGF-7 or other glycosaminoglycans did not. These data strongly suggest that FGF-10 activity is uniquely important in wound repair and that specific DS structural properties are necessary to promote FGF-10 function. These observations identify a novel interplay between DS and FGF-10 in mediating wound repair.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
43 |
7
|
Jesudason EC, Smith NP, Connell MG, Spiller DG, White MRH, Fernig DG, Losty PD. Peristalsis of airway smooth muscle is developmentally regulated and uncoupled from hypoplastic lung growth. Am J Physiol Lung Cell Mol Physiol 2006; 291:L559-65. [PMID: 16603591 DOI: 10.1152/ajplung.00498.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prenatal airway smooth muscle (ASM) peristalsis appears coupled to lung growth. Moreover, ASM progenitors produce fibroblast growth factor-10 (FGF-10) for lung morphogenesis. Congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia, FGF-10 deficiency, and postnatal ASM dysfunction. We hypothesized ASM dysfunction emerges in tandem with, and may contribute toward, the primordial lung hypoplasia that precedes experimental CDH. Spatial origin and frequency of ASM peristaltic waves were measured in normal and hypoplastic rat lungs cultured from day 13.5 of gestation (lung hypoplasia was generated by nitrofen dosing of pregnant dams). Longitudinal lung growth was assayed by bud counts and tracing photomicrographs of cultures. Coupling of lung growth and peristalsis was tested by stimulation studies using serum, FGF-10, or nicotine and inhibition studies with nifedipine or U0126 (MEK1/2 inhibitor). In normal lung, ASM peristalsis is developmentally regulated: proximal ASM becomes quiescent (while retaining capacity for cholinergic-stimulated peristalsis). However, in hypoplastic lung, spontaneous proximal ASM activity persists. FGF-10 corrects this aberrant ASM activity in tandem with improved growth. Stimulation and inhibition studies showed that, unlike normal lung, changes in growth or peristalsis are not consistently accompanied by parallel modulation of the other. ASM peristalsis undergoes FGF-10-regulated spatiotemporal development coupled to lung growth: this process is disrupted early in lung hypoplasia. ASM dysfunction emerges in tandem with and may therefore contribute toward lung hypoplasia in CDH.
Collapse
|
|
19 |
39 |
8
|
El-Hashash AHK, Alam DA, Turcatel G, Rogers O, Li S, Bellusci S, Warburton D. Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 353:242-58. [PMID: 21385574 PMCID: PMC3114882 DOI: 10.1016/j.ydbio.2011.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/12/2023]
Abstract
Six1 is a member of the six-homeodomain family of transcription factors. Six1 is expressed in multiple embryonic cell types and plays important roles in proliferation, differentiation and survival of precursor cells of different organs, yet its function during lung development was hitherto unknown. Herein we show that Six1(-/-) lungs are severely hypoplastic with greatly reduced epithelial branching and increased mesenchymal cellularity. Six1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Six1(-/-) lung epithelial cells show increased expression of differentiation markers, but loss of progenitor cell markers. Six1 overexpression in MLE15 lung epithelial cells in vitro inhibited cell differentiation, but increases the expression of progenitor cell markers. In addition, Six1(-/-) embryos and newborn mice exhibit mesenchymal overproliferation, decreased Fgf10 expression and severe defects in the smooth muscle component of the bronchi and major pulmonary vessels. These defects lead to rupture of major vessels in mutant lungs after birth. Treatment of Six1(-/-) epithelial explants in culture with recombinant Fgf10 protein restores epithelial branching. As Shh expression is abnormally increased in Six1(-/-) lungs, we also treated mutant mesenchymal explants with recombinant Shh protein and found that these explants were competent to respond to Shh and continued to grow in culture. Furthermore, inhibition of Shh signaling with cyclopamine stimulated Six1(-/-) lungs to grow and branch in culture. This study provides the first evidence for the requirement of Six1 in coordinating Shh-Fgf10 signaling in embryonic lung to ensure proper levels of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel and essential functions for Six1 as a critical coordinator of Shh-Fgf10 signaling during embryonic lung development. We propose that Six1 is hence critical for coordination of proper lung epithelial, mesenchymal and vascular development.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
36 |
9
|
Ceccarelli S, Cardinali G, Aspite N, Picardo M, Marchese C, Torrisi MR, Mancini P. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes. Exp Cell Res 2007; 313:1758-77. [PMID: 17449030 DOI: 10.1016/j.yexcr.2007.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.
Collapse
|
|
18 |
35 |
10
|
Jang JH. Stimulation of Human Hair Growth by the Recombinant Human Keratinocyte Growth Factor-2 (KGF-2). Biotechnol Lett 2005; 27:749-52. [PMID: 16086254 DOI: 10.1007/s10529-005-5624-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 04/06/2005] [Accepted: 04/08/2005] [Indexed: 11/29/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2) is found in dermal papilla fibroblasts and its receptor, fibroblast growth factor receptor 2 (FGFR2), in the neighboring outer root sheath of keratinocytes. Administration of recombinant human KGF-2 (rhKGF-2) at 10 ng ml(-1) significantly stimulated human hair-follicle cell proliferation in organ culture (26-35%). Thus, rhKGF-2 is a promising therapeutic agent to stimulate human hair growth.
Collapse
|
|
20 |
33 |
11
|
Yazlovitskaya EM, Viquez OM, Tu T, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Pozzi A, Zent R. The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol 2019; 77:101-116. [PMID: 30193894 PMCID: PMC6399080 DOI: 10.1016/j.matbio.2018.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
Integrins, the major receptors for cell-extracellular matrix (ECM) interactions, regulate multiple cell biological processes including adhesion, migration, proliferation and growth factor-dependent signaling. The principal laminin (LM) binding integrins α3β1, α6β1 and α6β4 are usually co-expressed in cells and bind to multiple laminins with different affinities making it difficult to define their specific function. In this study, we generated kidney epithelial collecting duct (CD) cells that lack both the α3 and α6 integrin subunits. This deletion impaired cell adhesion and migration to LM-332 and LM-511 more than deleting α3 or α6 alone. Cell adhesion mediated by both α3β1 and α6 integrins was PI3K independent, but required K63-linked polyubiquitination of Akt by the ubiquitin-modifying enzyme TRAF6. Moreover, we provide evidence that glial-derived neurotrophic factor (GDNF) and fibroblast growth factor 10 (FGF10)- mediated cell signaling, spreading and proliferation were severely compromised in double integrin α3/α6- but not single α3- or α6-null CD cells. Interestingly, these growth factor-dependent cell functions required both PI3K- and TRAF6-dependent Akt activation. These data suggest that expression of the integrin α3 or α6 subunit is sufficient to mediate GDNF- and FGF10-dependent spreading, proliferation and signaling on LM-511. Thus, our study shows that α3 and α6 containing integrins promote distinct functions and signaling by CD cells on laminin substrata.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
27 |
12
|
Shen CN, Marguerie A, Chien CY, Dickson C, Slack JMW, Tosh D. All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas. Differentiation 2007; 75:62-74. [PMID: 17244022 PMCID: PMC1890579 DOI: 10.1111/j.1432-0436.2006.00116.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Indexed: 12/20/2022]
Abstract
Recent evidence has shown that retinoic acid (RA) signalling is required for early pancreatic development in zebrafish and frog but its role in later development in mammals is less clear cut. In the present study, we determined the effects of RA on the differentiation of the mouse embryonic pancreas. Addition of all-trans retinoic acid (atRA) to embryonic pancreatic cultures induced a number of changes. Branching morphogenesis and exocrine differentiation were suppressed and there was premature formation of endocrine cell clusters (although the total area of beta cells was not different in control and atRA-treated buds). We investigated the mechanism of these changes and found that the premature formation of beta cells was associated with the early expression of high-level Pdx1 in the endocrine cell clusters. In contrast, the suppressive effect of RA on exocrine differentiation may be due to a combination of two mechanisms (i) up-regulation of the extracellular matrix component laminin and (ii) enhancement of apoptosis. We also demonstrate that addition of fibroblast growth factor (FGF)-10 is able to partially prevent apoptosis and rescue exocrine differentiation and branching morphogenesis in atRA-treated cultures but not in mice lacking the FGF receptor 2-IIIb, suggesting the effects of FGF-10 are mediated through this receptor.
Collapse
|
research-article |
18 |
26 |
13
|
Upadhyay D, Chang W, Wei K, Gao M, Rosen GD. Fibroblast growth factor-10 prevents H2O2-induced cell cycle arrest by regulation of G1 cyclins and cyclin dependent kinases. FEBS Lett 2006; 581:248-52. [PMID: 17188682 PMCID: PMC1861821 DOI: 10.1016/j.febslet.2006.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 02/03/2023]
Abstract
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
19 |
14
|
Hannan NR, Sampaziotis F, Segeritz CP, Hanley NA, Vallier L. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells. Stem Cells Dev 2015; 24:1680-90. [PMID: 25758640 PMCID: PMC4499787 DOI: 10.1089/scd.2014.0512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/06/2015] [Indexed: 01/14/2023] Open
Abstract
Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.
Collapse
|
research-article |
10 |
19 |
15
|
Tao H, Ono K, Kurose H, Noji S, Ohuchi H. Exogenous FGF10 can rescue an eye-open at birth phenotype of Fgf10-null mice by activating activin and TGFalpha-EGFR signaling. Dev Growth Differ 2006; 48:339-46. [PMID: 16759284 DOI: 10.1111/j.1440-169x.2006.00869.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit an eye-open phenotype at birth. It has previously been shown that FGF10 has a dual role in proliferation and migration during the early and later stages of eyelid development, respectively. To verify the role of FGF10 during eyelid closure, explant culture of Fgf10-null eyelid anlagen was performed, by which it was examined whether or not exogenous FGF10 could rescue the expression of activin betaB and transforming growth factor alpha, known to be required for eyelid closure. We found that the expression of these genes was markedly induced while that of Shh or Ptch1, Ptch2 was not. We also observed the distribution of filamentous actin (F-actin) after FGF10 application in the mutant eyelid explant, finding that the FGF10 protein induced F-actin accumulation. We further examined filopodia of the eyelid leading edge cells, finding the length of the filopodia was significantly reduced in the mutant. These results verify that FGF10 promotes eyelid closure through activating activin and TGFalpha-EGFR signaling.
Collapse
|
|
19 |
16 |
16
|
Yang TL, Young TH. Chitosan cooperates with mesenchyme-derived factors in regulating salivary gland epithelial morphogenesis. J Cell Mol Med 2009; 13:2853-63. [PMID: 18627424 PMCID: PMC4498941 DOI: 10.1111/j.1582-4934.2008.00425.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/24/2008] [Indexed: 12/15/2022] Open
Abstract
Chitosan is a widely used biocompatible biomaterial in the tissue regeneration, but its utility and application in the tissue morphogenesis of salivary gland remains unclear. The study aimed to explore the effects of chitosan on the epithelial morphogenesis of submandibular gland (SMG). With chitosan, the branching morphogenesis of the whole SMG explant was facilitated, and the morphogenetic-promoting effects of mesenchymal tissue on SMG were further enhanced. Furthermore, chitosan was competent to induce recombined SMG epithelium to form branches in the serum-free condition independently. In the presence of chitosan, the morphogenetic efficacy of mesenchyme-derived growth factors responsible for epithelial morphogenesis including fibroblast growth factors 7, fibroblast growth factor 10 and hepatocyte growth factor increased. The specific epithelial phenotype induced by individual growth factor, which was required for the accomplishment of salivary epithelial morphogenesis, was promoted by chitosan. Moreover, the proliferative and the chemotactic properties of these growth factors towards the SMG epithelia were also reinforced by chitosan. Therefore, in orchestrating and intensifying the essential mesenchyme-derived growth factors, chitosan is versatile in mediating SMG epithelium to form a predetermined phenotype more efficiently and comprehensively. This study suggested that chitosan is a morphogenetic-regulating biomaterial for salivary tissue, which might be useful for the future salivary gland investigation and regeneration.
Collapse
|
research-article |
16 |
16 |
17
|
Natanson-Yaron S, Anteby EY, Greenfield C, Goldman-Wohl D, Hamani Y, Hochner-Celnikier D, Yagel S. FGF 10 and Sprouty 2 modulate trophoblast invasion and branching morphogenesis. Mol Hum Reprod 2007; 13:511-9. [PMID: 17496316 DOI: 10.1093/molehr/gam034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branching morphogenesis (BM) of the chorionic villous tree is a crucial component of early placental formation. Fibroblast growth factors (FGFs), their receptor tyrosine kinase (RTK) and negative regulators like Sprouty (Spry) proteins are pivotal factors in the development of diverse branching organ systems. The aim of this study was to examine the effect of FGF10 and Sprouty 2 on BM of the chorionic villi in vitro. Villous explants of first trimester placentas were cultured and their outgrowths were monitored. The effect of FGF10 was tested on matrigel migration/invasion assay, collagenolytic activity of single cell trophoblasts and on villous explants outgrowths. siRNA of Spry2 was used to reduce its expression and to investigate the role of Sprouty 2 in villous explants outgrowths. Quantitative RT-PCR and immunohistochemistry were performed to determine Sprouty 2 and HLA-G (a marker of invasion) expression. FGF 10 stimulated by 8-fold the migration/invasion of single cell trophoblast enhanced their collagenolytic activity. Reduction of Spry2 expression in villous explants showed a marked increase in villous outgrowths. This was accompanied by enhanced staining for HLA-G and by the reduction of Spry2 expression that was confirmed by immunohistochemistry and by quantitative RT-PCR. We conclude that trophoblast outgrowth and invasion (part of placental villi sprouting) at the fetal maternal interface is in part under delicate control of FGF 10 and Sprouty 2. FGF 10 promotes invasion and outgrowth of trophoblasts. In addition, it increases Spry2 expression, which attenuates trophoblast sprouting.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
16 |
18
|
Meng X, Chen Z, Li T, Nie Z, Han H, Zhong S, Yin Z, Sun S, Xie J, Shen J, Xu X, Gao C, Ran L, Xu B, Xiang Z, Wang J, Sun P, Xin P, A X, Zhang C, Qiu G, Gao H, Bian Y, Xu M, Cao B, Li F, Zheng L, Zhang X, Xiao L. Role and Therapeutic Potential for Targeting Fibroblast Growth Factor 10/FGFR1 in Relapsed Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:32-47. [PMID: 37584284 DOI: 10.1002/art.42674] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLSs) contribute to inflammation and joint damage in rheumatoid arthritis (RA). However, the regulatory mechanisms of FLSs in relapse and remission of RA remain unknown. Identifying FLS heterogeneity and their underlying pathogenic roles may lead to discovering novel disease-modifying antirheumatic drugs. METHODS Combining single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we sequenced six matched synovial tissue samples from three patients with relapse RA and three patients in remission. We analyzed the differences in the transcriptomes of the FLS subsets between the relapse and remitted phases. We validated several key signaling pathways using quantitative real-time PCR (qPCR) and multiplex immunohistochemistry (mIHC). We further targeted the critical signals in vitro and in vivo using the collagen-induced arthritis (CIA) model in rats. RESULTS Lining and sublining FLS subsets were identified using scRNA-seq. Differential analyses indicated that the fibroblast growth factor (FGF) pathway was highly activated in the lining FLSs from patients with relapse RA for which mIHC confirmed the increased expression of FGF10. Although the type I interferon pathway was also activated in the lining FLSs, in vitro stimulation experiment suggested that it was independent of the FGF10 pathway. FGF10 knockdown by small interfering RNA in FLSs significantly reduced the expression of receptor activator of NF-κB ligand. Moreover, recombinant FGF10 protein enhanced bone erosion in the primary human-derived pannus cell culture, whereas the FGF receptor (FGFR) 1 inhibitor attenuated this process. Finally, administering an FGFR1 inhibitor displayed a therapeutic effect in a CIA rat model. CONCLUSION The FGF pathway is a critical signaling pathway in relapse RA. Targeted tissue-specific inhibition of FGF10/FGFR1 may provide new opportunities to treat patients with relapse RA.
Collapse
MESH Headings
- Humans
- Rats
- Animals
- Fibroblast Growth Factor 10/metabolism
- Fibroblast Growth Factor 10/pharmacology
- Fibroblast Growth Factor 10/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Synoviocytes/metabolism
- Inflammation/metabolism
- Fibroblasts/metabolism
- Recurrence
- Cells, Cultured
- Cell Proliferation
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/therapeutic use
Collapse
|
|
1 |
15 |
19
|
Onda M, Naito Z, Wang R, Fujii T, Kawahara K, Ishiwata T, Sugisaki Y. Expression of keratinocyte growth factor receptor (KGFR/FGFR2 IIIb) in vascular smooth muscle cells. Pathol Int 2003; 53:127-32. [PMID: 12608893 DOI: 10.1046/j.1440-1827.2003.01445.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Keratinocyte growth factor receptor (KGFR), also known as fibroblast growth factor receptor (FGFR)2 IIIb, is located in many types of epithelial cells and is activated by four known ligands (FGF-1, FGF-3, FGF-7 (also known as KGF) and FGF-10) that are predominantly synthesized by mesenchymal cells. In the early stage of atherosclerosis, vascular smooth muscle cells (VSMC) transform from a contractile to a synthetic phenotype, proliferate and migrate into the intima. Previously, FGF-7 mRNA expression was reported in VSMC, but KGFR mRNA was not detected. In the present study, we attempted to determine whether KGFR is localized in VSMC cultured from rat aorta and VSMC in human normal and atherosclerotic coronary arteries. Expression of KGFR mRNA and its protein was detected in cultured rat VSMC by reverse transcription-polymerase chain reaction and western blot analysis, respectively. Immunohistochemically, KGFR was localized in the VSMC of the outer layer of the media in normal human coronary arteries. Furthermore, it was localized in the VSMC of the media and thickened intima of atherosclerotic arteries. Recombinant FGF-7 and/or FGF-10 proteins stimulated the growth of cultured rat VSMC. These findings indicate that KGFR localized in VSMC may contribute to the proliferation of VSMC in normal and atherosclerotic arteries.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Survival
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Drug Combinations
- Female
- Fibroblast Growth Factor 10/pharmacology
- Fibroblast Growth Factor 7/pharmacology
- Gene Expression
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Recombinant Proteins/pharmacology
Collapse
|
|
22 |
10 |
20
|
Chaves RN, Lima-Verde IB, Celestino JJH, Duarte ABG, Alves AMCV, Matos MHT, Campello CC, Name KPO, Báo SN, Buratini J, Figueiredo JR. Fibroblast growth factor-10 maintains the survival and promotes the growth of cultured goat preantral follicles. Domest Anim Endocrinol 2010; 39:249-58. [PMID: 20920782 DOI: 10.1016/j.domaniend.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the effects of fibroblast growth factor-10 (FGF-10) on the survival, activation (transition from primordial to primary follicles), and growth of goat preantral follicles cultured in vitro. Pieces of ovarian cortex were cultured for 1 and 7 d in the absence or presence of FGF-10 (0, 1, 10, 50, 100, and 200 ng/mL). Noncultured and cultured tissues were processed and analyzed by histology, transmission electron microscopy, and viability testing. Results showed that after 7 d, a greater percentage (79.9%) of morphologically normal follicles (containing an oocyte with regular shape and uniform cytoplasm, and organized layers of granulosa cells without a pyknotic nucleus) was observed when cultured with 50 ng/mL of FGF-10 when compared with other concentrations of FGF-10 (0 ng/mL, 67.3%; 1 ng/mL, 68.2%; 10 ng/mL, 63.3%; 100 ng/mL, 64.4%; 200 ng/mL, 52.7%). Ultrastructural analyses and viability testing using fluorescent markers confirmed the follicular integrity of FGF-10 (50 ng/mL)-treated fragments after 7 d of culture. After 7 d, all FGF-10 concentrations reduced the percentage of primordial follicles and increased the percentage of developing follicles. In the presence of 50 ng/mL of FGF-10, follicles increased in diameter after 7 d of culture when compared with other concentrations tested. In conclusion, this study demonstrates that FGF-10 maintains the morphological integrity of goat preantral follicles and stimulates the growth of activated follicles in culture. The culture conditions identified here contribute to the understanding of the factors involved in goat early follicular development.
Collapse
|
|
15 |
10 |
21
|
Lv YQ, Cai GF, Zeng PP, Dhlamini Q, Chen LF, Chen JJ, Lyu HD, Mossahebi-Mohammadi M, Ahmadvand N, Bellusci S, Li X, Chen C, Zhang JS. FGF10 Therapeutic Administration Promotes Mobilization of Injury-Activated Alveolar Progenitors in a Mouse Fibrosis Model. Cells 2022; 11:cells11152396. [PMID: 35954241 PMCID: PMC9368687 DOI: 10.3390/cells11152396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with dire consequences and in urgent need of improved therapies. Compelling evidence indicates that damage or dysfunction of AT2s is of central importance in the development of IPF. We recently identified a novel AT2 subpopulation characterized by low SFTPC expression but that is enriched for PD-L1 in mice. These cells represent quiescent, immature AT2 cells during normal homeostasis and expand upon pneumonectomy (PNX) and were consequently named injury-activated alveolar progenitors (IAAPs). FGF10 is shown to play critical roles in lung development, homeostasis, and injury repair demonstrated in genetically engineered mice. In an effort to bridge the gap between the promising properties of endogenous Fgf10 manipulation and therapeutic reality, we here investigated whether the administration of exogenous recombinant FGF10 protein (rFGF10) can provide preventive and/or therapeutic benefit in a mouse model of bleomycin-induced pulmonary fibrosis with a focus on its impact on IAAP dynamics. C57BL/6 mice and SftpcCreERT2/+; tdTomatoflox/+ mice aged 8–10 weeks old were used in this study. To induce the bleomycin (BLM) model, mice were intratracheally (i.t.) instilled with BLM (2 μg/g body weight). BLM injury was induced after a 7-day washout period following tamoxifen induction. A single i.t. injection of rFGF10 (0.05 μg/g body weight) was given on days 0, 7, 14, and 21 after BLM injury. Then, the effects of rFGF10 on BLM-induced fibrosis in lung tissues were assessed by H&E, IHC, Masson’s trichrome staining, hydroxyproline and Western blot assays. Immunofluorescence staining and flow cytometry was used to assess the dynamic behavior of AT2 lineage-labeled SftpcPos (IAAPs and mature AT2) during the course of pulmonary fibrosis. We observed that, depending on the timing of administration, rFGF10 exhibited robust preventive or therapeutic efficacy toward BLM-induced fibrosis based on the evaluation of various pathological parameters. Flow cytometric analysis revealed a dynamic expansion of IAAPs for up to 4 weeks following BLM injury while the number of mature AT2s was drastically reduced. Significantly, rFGF10 administration increased both the peak ratio and the duration of IAAPs expansion relative to EpCAMPos cells. Altogether, our results suggest that the administration of rFGF10 exhibits therapeutic potential for IPF most likely by promoting IAAP proliferation and alveolar repair.
Collapse
|
|
3 |
9 |
22
|
Eastman R, Leaf EM, Zhang D, True LD, Sweet RM, Seidel K, Siebert JR, Grady R, Mitchell ME, Bassuk JA. Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder. Am J Physiol Renal Physiol 2010; 299:F1094-110. [PMID: 20719973 PMCID: PMC2980411 DOI: 10.1152/ajprenal.00056.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/16/2010] [Indexed: 12/29/2022] Open
Abstract
von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen. Histocytochemical analysis and keratin profiling demonstrated that nested cells exhibited a phenotype similar, but not identical, to that of urothelial cells of transitional epithelium. Immunostaining and in situ hybridization analysis of exstrophic tissue demonstrated that the FGF-10 receptor is synthesized and retained by cells of von Brunn's nest. In contrast, FGF-10 is synthesized and secreted by mesenchymal fibroblasts via a paracrine pathway that targets basal epithelial cells of von Brunn's nests. Small clusters of 10pRp cells, positive for both FGF-10 and its receptor, were observed both proximal to and inside blood vessels in the lamina propria. The collective evidence points to a mechanism where von Brunn's nests develop under the control of the FGF-10 signal transduction system and suggests that 10pRp cells may be the original source of nested cells.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
9 |
23
|
Peng W, Song Y, Zhu G, Zeng Y, Cai H, Lu C, Abuduxukuer Z, Song X, Gao X, Ye L, Wang J, Jin M. FGF10 attenuates allergic airway inflammation in asthma by inhibiting PI3K/AKT/NF-κB pathway. Cell Signal 2024; 113:110964. [PMID: 37956773 DOI: 10.1016/j.cellsig.2023.110964] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.
Collapse
|
|
1 |
8 |
24
|
Liu S, Jin Z, Xia R, Zheng Z, Zha Y, Wang Q, Wan X, Yang H, Cai J. Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6933812. [PMID: 35222803 PMCID: PMC8872674 DOI: 10.1155/2022/6933812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress exerts a significant influence on the pathogenesis of various cataracts by inducing degradation and aggregation of lens proteins and apoptosis of lens epithelial cells. Keratinocyte growth factor-2 (KGF-2) exerts a favorable cytoprotective effect against oxidative stress in vivo and in vitro. In this work, we investigated the molecular mechanisms of KGF-2 against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human lens epithelial cells (HLECs) and rat lenses. KGF-2 pretreatment could reduce H2O2-induced cytotoxicity as well as reactive oxygen species (ROS) accumulation. KGF-2 also increases B-cell lymphoma-2 (Bcl-2), quinine oxidoreductase-1 (NQO-1), superoxide dismutase (SOD2), and catalase (CAT) levels while decreasing the expression level of Bcl2-associated X (Bax) and cleaved caspase-3 in H2O2-stimulated HLECs. LY294002, the phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor, abolished KGF-2's effect to some extent, demonstrating that KGF-2 protected HLECs via the PI3K/Akt pathway. On the other hand, KGF-2 activated the Nrf2/HO-1 pathway by regulating the PI3K/Akt pathway. Silencing nuclear factor erythroid 2-related factor 2 (Nrf2) by targeted-siRNA and inhibiting heme oxygenase-1 (HO-1) through zinc protoporphyrin IX (ZnPP) significantly decreased cytoprotection of KGF-2. Furthermore, as revealed by lens organ culture assays, KGF-2 treatment decreased H2O2-induced lens opacity in a concentration-dependent manner. As demonstrated by these data, KGF-2 resisted H2O2-mediated apoptosis and oxidative stress in HLECs through Nrf2/HO-1 and PI3K/Akt pathways, suggesting a potential protective effect against the formation of cataracts.
Collapse
|
research-article |
3 |
4 |
25
|
Du S, Wang Y, Yang X, Liu X, Deng K, Chen M, Yan X, Lu F, Shi D. Beneficial effects of fibroblast growth factor 10 supplementation during in vitro maturation of buffalo cumulus-oocyte complexes. Theriogenology 2023; 201:126-137. [PMID: 36893617 DOI: 10.1016/j.theriogenology.2023.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is an important regulator of the mammalian cumulus-oocyte complex that plays a crucial role in oocyte maturation. In this study, we investigated the effects of FGF10 supplementation on the in vitro maturation (IVM) of buffalo oocytes and its related mechanisms. During IVM, the maturation medium was supplemented with a range of concentrations of FGF10 (0, 0.5, 5, and 50 ng/mL) and the resulting effects were corroborated using aceto-orcein staining, TUNEL apoptosis assay, detection of Cdc2/Cdk1 kinase in oocytes, and real-time quantitative PCR. In matured oocytes, the 5 ng/mL-FGF10 treatment resulted in a significantly increased nuclear maturation rate, which increased the activity of maturation-promoting factor (MPF) and enhanced buffalo oocyte maturation. Furthermore, it treatment significantly inhibited the apoptosis of cumulus cells, while simultaneously promoting its proliferation and expansion. This treatment also increased the absorption of glucose in cumulus cells. Thus, our results indicate that adding an appropriate concentration of FGF10 to a maturation medium during IVM can be beneficial to the maturation of buffalo oocytes and improve the potential of embryo development.
Collapse
|
|
2 |
3 |