1
|
Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 2000; 97:5802-6. [PMID: 10811876 PMCID: PMC18514 DOI: 10.1073/pnas.090099097] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used intramolecular cross-linking, MS, and sequence threading to rapidly identify the fold of a model protein, bovine basic fibroblast growth factor (FGF)-2. Its tertiary structure was probed with a lysine-specific cross-linking agent, bis(sulfosuccinimidyl) suberate (BS(3)). Sites of cross-linking were determined by tryptic peptide mapping by using time-of-flight MS. Eighteen unique intramolecular lysine (Lys-Lys) cross-links were identified. The assignments for eight cross-linked peptides were confirmed by using post source decay MS. The interatomic distance constraints were all consistent with the tertiary structure of FGF-2. These relatively few constraints, in conjunction with threading, correctly identified FGF-2 as a member of the beta-trefoil fold family. To further demonstrate utility, we used the top-scoring homolog, IL-1beta, to build an FGF-2 homology model with a backbone error of 4.8 A (rms deviation). This method is fast, is general, uses small amounts of material, and is amenable to automation.
Collapse
|
research-article |
25 |
344 |
2
|
Dempke W, Rie C, Grothey A, Schmoll HJ. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 2001; 127:411-7. [PMID: 11469677 DOI: 10.1007/s004320000225] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiologic studies have documented a 40-50% reduction in incidence of colorectal cancer in individuals taking nonsteroidal antiinflammatory drugs (NSAIDs). Since NSAIDs are known to inhibit cyclooxygenases (COX-1, COX-2), the basic mechanism of their antitumor effects is conceivably the altered metabolism of arachidonic acid and, subsequently, prostaglandins (PGs). Although COX-2, the inducible isoform, is regularly expressed at low levels in colonic mucosa, its activity increases dramatically following mutation of the APC (adenomatous polyposis coli) gene suggesting that beta-catenin/T-cell factor mediated Wnt-signaling activity may regulate COX-2 gene expression. In addition, hypoxic conditions and sodium butyrate exposure may also contribute to COX-2 gene transcription in human cancers. The development of selective COX-2 inhibitors has made it possible to further evaluate the role of COX-2 activity in colorectal carcinogenesis. To date, at least five mechanisms by which COX-2 contributes to tumorigenesis and the malignant phenotype of tumor cells have been identified, including: (1) inhibition of apoptosis; (2) increased angiogenesis; (3) increased invasiveness; (4) modulation of inflammation/immuno-suppression; and (5) conversion of procarcinogens to carcinogens. A clear positive correlation between COX-2 expression and inhibition of apoptosis has been established, associated with increased PGE2 levels resulting in modulation of pro- and anti-apoptotic factors (e.g., bcl-2, MAKs/ras, caspase-3, Par-4). In terms of angiogenesis and invasiveness, COX-2 activity was found to increase the expression of growth factors (e.g., VDEG, PDGF, bFGF) and matrix metalloproteinases (MMPs). Since COX-2 inhibitors have been demonstrated to interfere with tumorigenesis and apoptosis, COX-2 and its gene product may be attractive targets for therapeutic and chemoprotective strategies in colorectal cancer patients. This may lead to new perspectives that by controlling the cancer phenotype, rather than attempting to eradicate all affected cells, may provide significant benefits to the cancer patient.
Collapse
|
Review |
24 |
284 |
3
|
Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 1998; 4:691-7. [PMID: 9623978 DOI: 10.1038/nm0698-691] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activity of fibroblast growth factor 2 (FGF-2) is stringently controlled. Inactive in undisturbed tissues, it is activated during injury and is critical for tissue repair. We find that this control can be imposed by the soluble syndecan-1 ectodomain, a heparan sulfate proteoglycan shed from cell surfaces into wound fluids. The ectodomain potently inhibits heparin-mediated FGF-2 mitogenicity because of the poorly sulfated domains in its heparin sulfate chains. Degradation of these regions by platelet heparanase produces heparin-like heparin sulfate fragments that markedly activate FGF-2 mitogenicity and are found in wound fluids. These results establish a novel physiological control for FGF-2 and suggest new ways to modulate FGF activity.
Collapse
|
|
27 |
261 |
4
|
Sasaki K, Hattori T, Fujisawa T, Takahashi K, Inoue H, Takigawa M. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J Biochem 1998; 123:431-9. [PMID: 9538225 DOI: 10.1093/oxfordjournals.jbchem.a021955] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We recently reported that nitric oxide (NO), which is produced by chondrocytes treated with interleukin-1beta (IL-1), releases basic fibroblast growth factor (bFGF) stored in the matrix of articular chondrocytes. To clarify the mechanism of the IL-1-induced bFGF release, we investigated the production and gene expression of bFGF, matrix metalloproteinases (MMPs), syndecan 3, and inducible NO synthase (iNOS) by IL-1-treated rabbit articular chondrocytes. IL-1 stimulated not only the release of bFGF but also the production of it. Gelatin and casein zymography revealed that IL-1 stimulated the production of not only MMP-9 but also MMP-3. The increase in the production of these MMPs preceded the IL-1-stimulated bFGF release. An MMP inhibitor partially suppressed the release of bFGF, indicating that matrix degradation is at least partially involved in the IL-1-stimulated bFGF release even if increased production of bFGF is related to the release. IL-1 sequentially stimulated mRNA expression of iNOS, membrane type 1-MMP, MMP-9 and -3, and bFGF, in that order. NG-Monomethyl-L-arginine, an inhibitor of NO production, inhibited gene expression of MMP-9 and bFGF. These findings suggest that elevation of the NO level via iNOS mRNA expression stimulated by IL-1 mediates gene expression and production of MMPs and bFGF, resulting in the release of bFGF, and also reveal molecular mechanisms implicating the degradation of articular cartilage followed by angiogenesis in the synovium in arthritic joints.
Collapse
|
|
27 |
209 |
5
|
Folkman J, Szabo S, Stovroff M, McNeil P, Li W, Shing Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg 1991; 214:414-25; discussion 426-7. [PMID: 1719945 PMCID: PMC1358540 DOI: 10.1097/00000658-199110000-00006] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complete purification of the first angiogenic molecule, basic fibroblast growth factor (bFGF), was carried out in the authors' laboratory in 1983. Application of this peptide to chronic wounds enhances angiogenesis and accelerates wound healing. The authors showed that an acid-stable form of bFGF (i.e., bFGF-CS23) could be administered orally to rats with duodenal ulcers. The peptide promoted a ninefold increase of angiogenesis in the ulcer bed and accelerated ulcer healing more potently than cimetidine. Basic fibroblast growth factor did not reduce gastric acid. The authors now show that bFGF exists as a naturally occurring peptide in rat and human gastric and duodenal mucosa. This endogenous bFGF is present also in the bed of chronic ulcers in rats. Sucralfate binds bFGF and protects it from acid degradation. The sucralfate is angiogenic, based on its affinity for bFGF. When sucralfate is administered orally to rats, it significantly elevates the level of bFGF in the ulcer bed. Cimetidine, by its capacity to reduce gastric acid, also elevates bFGF in the ulcer bed. A hypothetical model is proposed in which prevention of ulcer formation or accelerated healing of ulcers by conventional therapies may be FGF dependent. Acid-stable bFGF-CS23 may be considered as a form of replacement therapy in the treatment of duodenal ulcers.
Collapse
|
research-article |
34 |
209 |
6
|
Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, Vannier J, Soria J, Vasse M, Soria C. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 2000; 99:587-94. [PMID: 10974345 DOI: 10.1016/s0049-3848(00)00292-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) has been shown to be involved in cell migration. As the receptor CXCR-4 is expressed on endothelial cells and upregulated by angiogenic factors, we were prompted to study the effect of SDF-1 on angiogenesis in endothelial cells from microvasculature. This study demonstrates that SDF-1 induces an angiogenic effect in vitro, primarily in a tridimensional fibrin gel. The increase in capillary tube formation was evident after a 10-day incubation with SDF-1. This was associated with a mild increase in VEGF production by microvascular endothelial cells (ELISA and rt-PCR) and a potent chemotactic effect. SDF-1 also induced an in vivo angiogenic activity as shown in the model of the rabbit corneal pocket. However, the angiogenesis was located in an area rich in inflammatory cells. The results of our study suggest that these data underline the potential role of SDF-1 in angiogenesis as the microvascular endothelial cells were greatly involved in this process.
Collapse
|
|
25 |
169 |
7
|
Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007; 49:2292-300. [PMID: 17560295 PMCID: PMC2857596 DOI: 10.1016/j.jacc.2007.02.050] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/31/2007] [Accepted: 02/18/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Our objective in this study was to apply an elastic, biodegradable polyester urethane urea (PEUU) cardiac patch onto subacute infarcts and to examine the resulting cardiac ventricular remodeling and performance. BACKGROUND Myocardial infarction induces loss of contractile mass and scar formation resulting in adverse left ventricular (LV) remodeling and subsequent severe dysfunction. METHODS Lewis rats underwent proximal left coronary ligation. Two weeks after coronary ligation, a 6-mm diameter microporous PEUU patch was implanted directly on the infarcted LV wall surface (PEUU patch group, n = 14). Sham surgery was performed as an infarction control (n = 12). The LV contractile function, regional myocardial wall compliance, and tissue histology were assessed 8 weeks after patch implantation. RESULTS The end-diastolic LV cavity area (EDA) did not change, and the fractional area change (FAC) increased in the PEUU patch group (p < 0.05 vs. week 0), while EDA increased and FAC decreased in the infarction control group (p < 0.05). The PEUU patch was largely resorbed 8 weeks after implantation and the LV wall was thicker than infarction control (p < 0.05 vs. control group). Abundant smooth muscle bundles with mature contractile phenotype were found in the infarcted myocardium of the PEUU group. The myocardial compliance of the PEUU group was distributed between normal myocardium and infarction control (p < 0.001). CONCLUSIONS Implantation of a novel biodegradable PEUU patch onto a subacute myocardial infarction promoted contractile phenotype smooth muscle tissue formation and improved cardiac remodeling and contractile function at the chronic stage. Our findings suggest a new therapeutic option against post-infarct cardiac failure.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
162 |
8
|
Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Park HJ, Shim BS, Choi SH, Kwon HJ. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. CHEMISTRY & BIOLOGY 2003; 10:695-704. [PMID: 12954328 DOI: 10.1016/s1074-5521(03)00169-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD13/aminopeptidase N (APN) is a membrane-bound, zinc-dependent metalloproteinase that plays a key role in tumor invasion and angiogenesis. Here, we show that curcumin, a phenolic natural product, binds to APN and irreversibly inhibits its activity. The direct interaction between curcumin with APN was confirmed both in vitro and in vivo by surface plasmon resonance analysis and an APN-specific antibody competition assay, respectively. Moreover, curcumin and other known APN inhibitors strongly inhibited APN-positive tumor cell invasion and basic fibroblast growth factor-induced angiogenesis. However, curcumin did not inhibit the invasion of APN-negative tumor cells, suggesting that the antiinvasive activity of curcumin against tumor cells is attributable to the inhibition of APN. Taken together, our study revealed that curcumin is a novel irreversible inhibitor of APN that binds to curcumin resulting in inhibition of angiogenesis.
Collapse
|
|
22 |
134 |
9
|
Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70:221-7. [PMID: 16861106 DOI: 10.1016/j.brainresbull.2006.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/07/2006] [Accepted: 04/13/2006] [Indexed: 11/17/2022]
Abstract
INTRODUCTION FGF-2 is important for stem cell proliferation, neocortical development and adult neuronal survival and growth. Reduced frontal cortical FGF-2 expression is described in major depression and is attenuated by antidepressants. We determined the distribution of hippocampal FGF-2 and its receptor (FGFR1) mRNA in post-mortem brains of people who suffered from major depression, bipolar disorder and schizophrenia and those of controls. METHODS FGF-2 and FGFR1 mRNA were measured within hippocampal CA1, CA4 regions and the dentate gyrus (DG), using in situ hybridization. Within hippocampal regions, cellular staining was compared between diagnostic groups, using repeated measures analysis of variance. RESULTS The density of FGF-2 mRNA+ cells in CA4 was reduced in depression compared to controls. The percentage of FGFR1 mRNA+ cells was higher in depression (CA1 and CA4) and schizophrenia (CA4) than in controls. FGFR1 mRNA expression was higher in depression than in the other groups in CA1, CA4 and DG. Overall FGF-2 mRNA expression was higher in DG than in CA1 and CA4. CONCLUSIONS We found raised measures of FGFR1 mRNA+ in major depression and, less so, in schizophrenia, along with reduced FGF-2 mRNA density in depression. Perturbations of FGF regulation could be relevant to the pathogenesis of both disorders as FGF-2 and FGFR1 are implicated in normal hippocampal synaptology, stem cell recruitment, and connectivity, and are modulated by corticosteroids.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
133 |
10
|
Singh RP, Deep G, Chittezhath M, Kaur M, Dwyer-Nield LD, Malkinson AM, Agarwal R. Effect of silibinin on the growth and progression of primary lung tumors in mice. J Natl Cancer Inst 2006; 98:846-55. [PMID: 16788158 DOI: 10.1093/jnci/djj231] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Silibinin, a flavanone from milk thistle, inhibits the growth of tumors in several rodent models. We examined the effects of dietary silibinin on the growth, progression, and angiogenesis of urethane-induced lung tumors in mice. METHODS A/J mice (15 per group) were injected with urethane (1 mg/g body weight) or saline alone and fed normal diets for 2 weeks, after which they were fed diets containing different doses of silibinin (0%-1% [wt/wt] silibinin) for 18 or 27 weeks. Immunohistochemistry and Western blot analysis were used to examine angiogenesis and enzymatic markers of inflammation, proliferation, and apoptosis. All statistical tests were two-sided. RESULTS Urethane-injected mice exposed to silibinin had statistically significantly lower lung tumor multiplicities than urethane-injected mice fed the control diet lacking silibinin (i.e., control mice). Mice that received urethane and 1% (wt/wt) dietary silibinin for 18 weeks had 93% fewer large (i.e., 1.5-2.5-mm-diameter) lung tumors than control mice (mean number of tumors/mouse: 27 in the urethane group versus 2 in the urethane + 1% silibinin group, difference = 25 tumors/mouse, 95% confidence interval [CI] = 13 to 37 tumors/mouse, P = .005). Lung tumors of silibinin-fed mice had 41%-74% fewer cells positive for the cell proliferation markers proliferating cell nuclear antigen and cyclin D1 than lung tumors of control mice. Tumor microvessel density was reduced by up to 89% with silibinin treatment (e.g., 56 microvessels/400x field in tumors from control mice versus 6 microvessels/400x field in tumors from urethane + 1% silibinin-treated mice [difference = 50 microvessels/400x field, 95% CI = 46 to 54 microvessels/400x field; P<.001]). Silibinin decreased lung tumor expression of vascular endothelial growth factor (VEGF) and of inducible nitric oxide synthase and cyclooxygenase-2, two enzymes that promote lung tumor growth and progression by inducing VEGF expression. CONCLUSIONS Silibinin inhibits lung tumor angiogenesis in an animal model and merits investigation as a chemopreventive agent for suppressing lung cancer progression.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
125 |
11
|
Unemori EN, Lewis M, Constant J, Arnold G, Grove BH, Normand J, Deshpande U, Salles A, Pickford LB, Erikson ME, Hunt TK, Huang X. Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen 2000; 8:361-70. [PMID: 11186125 DOI: 10.1111/j.1524-475x.2000.00361.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Relaxin is a reproductive hormone that has historically been characterized as being responsible for pubic ligament loosening and cervical ripening. Recently, relaxin has been associated with neovascularization of the endometrial lining of the uterus, potentially via specific induction of vascular endothelial growth factor. Previously conducted clinical studies using partially purified porcine relaxin have described relaxin's ability to stimulate the healing of ischemic wounds, suggesting that relaxin may also have angiogenic effects at sites of ischemic wound healing. In the present study, relaxin's angiogenic effects in the context of wound repair were tested in rodent models of angiogenesis and wound healing. Relaxin showed an ability to stimulate new blood vessel formation, particularly at ischemic wound sites, and to induce both vascular endothelial growth factor and basic fibroblast growth factor specifically in cells, presumably including macrophages, collected from wound sites. Resident macrophages collected from nonwound sites, such as the lung, did not show altered expression of these cytokines following relaxin administration. Because angiogenic wound cells are frequently macrophages, THP-1 cells, a cell line of monocyte lineage that binds relaxin specifically, were tested for and shown to induce vascular endothelial growth factor and basic fibroblast growth factor in response to relaxin. In conclusion, relaxin may be useful in the treatment of ischemic wounds by stimulating angiogenesis via the induction of vascular endothelial growth factor and basic fibroblast growth factor in wound macrophages.
Collapse
|
|
25 |
110 |
12
|
Abstract
Binding of fibroblast growth factors (FGFs) to receptor tyrosine kinases (FGFRs) and signaling is facilitated by binding of FGF to heparan sulfate proteoglycans (HSPGs). There are multiple families of HSPGs, including extracellular and cell surface forms. An important and potentially controversial question is whether cell surface forms of HSPGs act as positive or negative regulators of FGF signaling. This study examines the ability of the cell surface HSPG syndecan-1 to regulate FGF binding and signaling. HSPG-deficient Raji lymphoma cells, expressing a transfected syndecan-1 cDNA (Raji S1 cells), were used as HSPG "donor" cells. BaF3 cells, expressing an FGFR1 cDNA (FR1C-11 cells), were used as FGFR "reporter" cells. Using Raji S1 cells preincubated with FGF, it was found that they formed heterotypic aggregates with FR1C-11 cells in the presence of FGF-2, but not FGF-1. In addition, the FR1C-11 cells demonstrated FGF-2, but not FGF-1, dependent survival when cultured on fixed Raji S1 cells. Thus, Raji syndecan-1 1) differentially regulates the binding and signaling of FGFs 1 and 2 and 2) acts as a positive regulator of FGF-2 signaling.
Collapse
|
|
27 |
105 |
13
|
Keating SM, Golub ET, Nowicki M, Young M, Anastos K, Crystal H, Cohen MH, Zhang J, Greenblatt RM, Desai S, Wu S, Landay AL, Gange SJ, Norris PJ, Women's Interagency HIV Study. The effect of HIV infection and HAART on inflammatory biomarkers in a population-based cohort of women. AIDS 2011; 25:1823-32. [PMID: 21572306 PMCID: PMC3314300 DOI: 10.1097/qad.0b013e3283489d1f] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HIV causes inflammation that can be at least partially corrected by HAART. To determine the qualitative and quantitative nature of cytokine perturbation, we compared cytokine patterns in three HIV clinical groups, including HAART responders (HAART), untreated HIV noncontrollers, and HIV-uninfected (NEG). METHODS Multiplex assays were used to measure 32 cytokines in a cross-sectional study of participants in the Women's Interagency HIV Study. Participants from three groups were included: HAART (n = 17), noncontrollers (n = 14), and HIV NEG (n = 17). RESULTS Several cytokines and chemokines showed significant differences between noncontrollers and NEG participants, including elevated interferon gamma-induced 10 (IP-10) and tumor necrosis factor-α (TNF-α) and decreased interleukin-12(p40) [IL-12(p40)], IL-15, and fibroblast growth factor-2 (FGF-2) in noncontroller participants. Biomarker levels among HAART women more closely resembled the NEG, with the exception of TNF-α and FGF-2. Secondary analyses of the combined HAART and noncontroller groups revealed that IP-10 showed a strong, positive correlation with viral load and negative correlation with CD4(+) T-cell counts. The growth factors vascular endothelial growth factor, epidermal growth factor, and FGF-2 all showed a positive correlation with increased CD4(+) T-cell counts. CONCLUSION Untreated, progressive HIV infection was associated with decreased serum levels of cytokines important in T-cell homeostasis (IL-15) and T-cell phenotype determination (IL-12), and increased levels of innate inflammatory mediators such as IP-10 and TNF-α. HAART was associated with cytokine profiles that more closely resembled those of HIV-uninfected women. The distinctive pattern of cytokine levels in the three study groups may provide insights into HIV pathogenesis, and responses to therapy.
Collapse
Collaborators
Kathryn Anastos, Howard Minkoff, Mary Young, Ruth Greenblatt, Alexandra Levine, Mardge Cohen, Stephen Gange,
Collapse
|
Research Support, N.I.H., Extramural |
14 |
103 |
14
|
Venkataraman G, Sasisekharan V, Herr AB, Ornitz DM, Waksman G, Cooney CL, Langer R, Sasisekharan R. Preferential self-association of basic fibroblast growth factor is stabilized by heparin during receptor dimerization and activation. Proc Natl Acad Sci U S A 1996; 93:845-50. [PMID: 8570646 PMCID: PMC40145 DOI: 10.1073/pnas.93.2.845] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Central to signaling by fibroblast growth factors (FGFs) is the oligomeric interaction of the growth factor and its high-affinity cell surface receptor, which is mediated by heparin-like polysaccharides. It has been proposed that the binding of heparin-like polysaccharides to FGF induces a conformational change in FGF, resulting in the formation of FGF dimers or oligomers, and this biologically active form is 'presented' to the FGF receptor for signal transduction. In this study, we show that monomeric basic FGF (FGF-2) preferentially self-associates and forms FGF-2 dimers and higher-order oligomers. As a consequence, FGF-2 monomers are oriented for binding to heparin-like polysaccharides. We also show that heparin-like polysaccharides can readily bind to self-associated FGF-2 without causing a conformational change in FGF-2 or disrupting the FGF-2 self-association, but that the bound polysaccharides only additionally stabilize the FGF-2 self-association. The preferential self-association corresponds to FGF-2 translations along two of the unit cell axes of the FGF-2 crystal structures. These two axes represent the two possible heparin binding directions, whereas the receptor binding sites are oriented along the third axis. Thus, we propose that preferential FGF-2 self-association, further stabilized by heparin, like "beads on a string," mediates FGF-2-induced receptor dimerization and activation. The observed FGF-2 self-association, modulated by heparin, not only provides a mechanism of growth factor activation but also represents a regulatory mechanism governing FGF-2 biological activity.
Collapse
|
research-article |
29 |
83 |
15
|
Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons. Leukemia 2002; 16:791-8. [PMID: 11986939 DOI: 10.1038/sj.leu.2402472] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Accepted: 01/14/2002] [Indexed: 11/09/2022]
Abstract
Besides vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), matrix metalloproteinases (MMPs) play critical roles in angiogenesis, tumor invasion and metastasis. Increased angiogenesis is observed in chronic B lymphocytic leukemia (B-CLL) and published data reported VEGF and bFGF production in this disease. The purpose of this study was to investigate MMP expression in early stage B-CLL. Elevated MMP-9 concentrations were detected by ELISA in the sera of B-CLL patients (median level 250 ng/ml) compared with healthy donors (67 ng/ml) (P < 0.0001), and immunostaining with antibodies against MMP-9 and B cell antigens (CD19, CD23) substantiated the presence of MMP-9 in tumoral B lymphocytes. By using RT-PCR, ELISA and zymography experiments, we confirmed that B-CLL cells expressed and released the pro-form of MMP-9 with Mr 92 kDa (158-1300 pg/ml/10(6) cells/48 h), p-aminophenylmercuric acetate generating a 82 kDa active form. In contrast, the production of MMP-9 by normal counterpart B cells was significantly low (28-169 pg/ml/10(6)cells/48 h). Moreover, B-CLL culture supernatants contained bFGF (median levels 17 pg/ml/10(6) cells/48 h), VEGF (1.4 pg/ml/10(6) cells/48 h) and TNF-alpha (0.2 pg/ml/10(6) cells/48 h). TNF-alpha and VEGF antibodies blocked MMP-9 at the mRNA and protein levels. Interferons (IFNs) type I or type II repressed MMP-9 gelatinolytic activity in a dose and time dependency, and this was reflected by a parallel inhibition of MMP-9 mRNA and protein. IFNs however did not affect the production of bFGF, VEGF and TNF-alpha. Together, our data show that B-CLL lymphocytes synthesize MMP-9 and emphasize the specific inhibitory actions of IFNs on its expression.
Collapse
|
|
23 |
74 |
16
|
Zhao H, Liu H, Chen Y, Xin X, Li J, Hou Y, Zhang Z, Zhang X, Xie C, Geng M, Ding J. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2007; 66:8779-87. [PMID: 16951194 DOI: 10.1158/0008-5472.can-06-1382] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitors of tumor angiogenesis and metastasis are increasingly emerging as promising agents for cancer therapy. Recently, heparanase inhibitors have offered a new avenue for such work because heparanase is thought to be critically involved in the metastatic and angiogenic potentials of tumor cells. Here, we report that oligomannurarate sulfate (JG3), a novel marine-derived oligosaccharide, acts as a heparanase inhibitor. Our results revealed that JG3 significantly inhibited tumor angiogenesis and metastasis, both in vitro and in vivo, by combating heparanase activity via binding to the KKDC and QPLK domains of the heparanase molecule. The JG3-heparanase interaction was competitively inhibited by low molecular weight heparin (4,000 Da) but not by other glycosaminoglycans. In addition, JG3 abolished heparanase-driven invasion, inhibited the release of heparan sulfate-sequestered basic fibroblast growth factor (bFGF) from the extracellular matrix, and repressed subsequent angiogenesis. Moreover, JG3 inactivated bFGF-induced bFGF receptor and extracellular signal-regulated kinase 1/2 phosphorylation and blocked bFGF-triggered angiogenic events by directly binding to bFGF. Thus, JG3 seems to inhibit both major heparanase activities by simultaneously acting as a substrate mimetic and as a competitive inhibitor of heparan sulfate. These findings suggest that JG3 should be considered as a promising candidate agent for cancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
71 |
17
|
DeFatta RJ, Nathan CA, De Benedetti A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 2000; 110:928-33. [PMID: 10852506 DOI: 10.1097/00005537-200006000-00007] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The translation initiation factor eIF4E is elevated in all head and neck squamous cell cancers (HNSCCs) and appears to be essential in the progression of solid tumors. Overexpression of eIF4E results in preferential upregulation of two angiogenic factors, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). We wanted to determine whether reducing eIF4E in a HNSCC cell line could suppress its oncogenic properties and in turn decrease expression of VEGF and FGF-2. METHODS Levels of eIF4E protein expression were determined in a panel of HNSCC cell lines. An episomal vector containing antisense RNA to eIF4E was used to reduce the eIF4E level in one of these cell lines, FaDu. After a stable transfection, Western blot analysis was performed to determine the level of eIF4E and FGF-2 reduction, while an enzyme-linked immunosorbent assay (ELISA) was used to determine the level of VEGF reduction. In vitro and in vivo experiments were performed to determine whether there was a reversion in the tumorigenic properties of the FaDu cells. RESULTS All six cell lines had elevated levels of eIF4E compared with Detroit 551, a normal cell line. Reducing eIF4E expression via antisense RNA suppressed both the tumorigenic and angiogenic properties of the FaDu cells, as demonstrated by loss of capacity to grow in soft agar, reduced expression of angiogenic factors, and loss of tumorigenicity in nude mice. CONCLUSIONS Antisense RNA therapy to eIF4E can potentially be used as adjuvant therapy for head and neck cancers, particularly in cases in which elevated eIF4E is found in the surgical margins.
Collapse
|
|
25 |
70 |
18
|
Azadi S, Johnson LE, Paquet-Durand F, Perez MTR, Zhang Y, Ekström PAR, van Veen T. CNTF+BDNF treatment and neuroprotective pathways in the rd1 mouse retina. Brain Res 2007; 1129:116-29. [PMID: 17156753 DOI: 10.1016/j.brainres.2006.10.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 11/22/2022]
Abstract
The rd1 mouse is a relevant model for studying the mechanisms of photoreceptor degeneration in retinitis pigmentosa. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain derived neurotrophic factor (BDNF) is known to rescue photoreceptors in cultured rd1 retinal explants. To shed light on the underlying mechanisms, we studied the effects of 9 days (starting at postnatal day 2) in vitro CNTF+BDNF treatment on the endogenous production of CNTF, BDNF, fibroblast growth factor 2 (FGF2), or the activation of extracellular signal-regulated kinase (ERK), Akt and cAMP-response-element-binding protein (CREB) in retinal explants. In rd1 explants, CNTF+BDNF decreased the number of TUNEL-positive photoreceptors. The treatment also increased endogenous rd1 levels of CNTF and BDNF, but lowered the level of FGF2 expression in rd1 explants. When wild-type explants were treated, endogenous CNTF was similarly increased, while BDNF and FGF2 levels remained unaffected. In addition, treatment of rd1 retinas strongly increased the phosphorylation of ERK, Akt and CREB. In treated wild-type explants, the same parameters were either unchanged (ERK) or decreased (Akt and CREB). The results suggest a role for Akt, ERK and CREB in conveying the neuroprotective effect of CNTF+BDNF treatment in rd1 retinal explants.
Collapse
|
|
18 |
63 |
19
|
Saito K, Mori S, Iwakura M, Sakamoto S. Immunohistochemical localization of transforming growth factor beta, basic fibroblast growth factor and heparan sulphate glycosaminoglycan in gingival hyperplasia induced by nifedipine and phenytoin. J Periodontal Res 1996; 31:545-55. [PMID: 8971653 DOI: 10.1111/j.1600-0765.1996.tb00519.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although drug-induced gingival hyperplasia has been extensively studied, the pathogenesis of this disorder has not been clarified to date. Transforming growth factor beta (TGF beta) and basic fibroblast growth factor (bFGF) have been shown to be implicated in diverse fibrotic and hyperplastic diseases. Heparan sulphate proteoglycan (HSPG), which is composed of heparan sulphate glycosaminoglycan (HSGAG), has also been shown to play an important role in the pathogenesis of tissue overgrowth by enhancing the functions of bFGF. However, the possible implication of these growth factors in gingival hyperplasia has not been studied. Immunohistochemical localization of TGF beta, bFGF, their receptors and HSGAG was studied in 4 nifedipine-induced and 5 phenytoin-induced hyperplastic gingival tissues, and 5 non-hyperplastic control gingival tissues to elucidate the pathogenesis of this disease. Significant immunostaining against TGF beta, bFGF, the receptors of these two growth factors and HSGAG was observed in the lamina propria of hyperplastic gingival tissues while less immunostaining was observed in the controls. The mean numbers of immunostained cells against TGF beta, bFGF, their receptors in a square unit (0.1 x 0.1 mm) of the lamina propria, which were counted to 10 units of each hyperplastic gingival tissue, were significantly higher than those of the controls. The results suggest that the increased synthesis of TGF beta, bFGF, their receptors and HSGAG may be related to the pathogenesis of drug-induced gingival hyperplasia.
Collapse
|
|
29 |
62 |
20
|
Sperinde GV, Nugent MA. Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 1998; 37:13153-64. [PMID: 9748322 DOI: 10.1021/bi980600z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated in a number of vascular disorders. bFGF interacts with high-affinity receptors and heparan sulfate proteoglycans (HSPG) at the cell surface. HSPG have been demonstrated to enhance bFGF binding to its receptors, yet no known role for HSPG in modulating postbinding events has been identified. In the present study, we analyzed bFGF internalization, intracellular distribution, degradation, and stimulation of DNA synthesis within native and HSPG-deficient VSMC. HSPG-deficient VSMC were generated by treating cells with sodium chlorate to inhibit the sulfation of HSPG. We found that stimulation of DNA synthesis by bFGF in chlorate-treated VSMC was markedly reduced as compared with native cells, even at doses of bFGF where receptor binding was similar in the two conditions. This was not a general lack of mitogenic potential, as the addition of calf serum, or epidermal growth factor, stimulated DNA synthesis to a similar extent in native and chlorate-treated cells. Analysis of the accumulation of internalized bFGF within cytoplasmic and nuclear fractions of native and HSPG-deficient VSMC showed striking differences. At early time points (0-2 h), nearly identical amounts of bFGF were observed in the cytoplasmic fractions under both conditions, yet significant amounts of bFGF were only found in the nuclear fractions of native cells. At later time points (2-48 h), the amount of cytoplasmic bFGF was significantly greater in the native compared to HSPG-deficient cells, and nuclear deposition of bFGF began to reach similar levels under both conditions. Furthermore, the intracellular half-life of bFGF was dramatically prolonged in native compared to HSPG-deficient cells, in part, due to decreased bFGF degradation in native cells. Thus, HSPG appears to accelerate nuclear localization, increase cytoplasmic capacity, and inhibit intracellular degradation of bFGF in VSMC. Modulation of intracellular processing of bFGF by HSPG might control the biological activity of bFGF in VSMC.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cells, Cultured
- Chlorates/pharmacology
- DNA/antagonists & inhibitors
- DNA/biosynthesis
- DNA/drug effects
- Fibroblast Growth Factor 2/drug effects
- Fibroblast Growth Factor 2/metabolism
- Heparan Sulfate Proteoglycans/deficiency
- Heparan Sulfate Proteoglycans/physiology
- Humans
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mice
- Mice, Inbred BALB C
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Processing, Post-Translational/drug effects
- Receptors, Fibroblast Growth Factor/metabolism
- Temperature
Collapse
|
|
27 |
56 |
21
|
Shim JS, Kim JH, Lee J, Kim SN, Kwon HJ. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. PLANTA MEDICA 2004; 70:171-173. [PMID: 14994197 DOI: 10.1055/s-2004-815496] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A homoisoflavanone, 5,7-dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-6-methoxychroman-4-one ( 1), was isolated from the bulb of Cremastra appendiculata (D. Don) Makino (Orchidaceae) as a potent inhibitor of angiogenesis. It inhibited basic fibroblast growth factor (bFGF)-induced in vitro angiogenesis and in vivo angiogenesis of the chorioallantoic membrane (CAM) of chick embryo without showing any toxicity.
Collapse
|
|
21 |
56 |
22
|
Caldwell MA, Garcion E, terBorg MG, He X, Svendsen CN. Heparin stabilizes FGF-2 and modulates striatal precursor cell behavior in response to EGF. Exp Neurol 2004; 188:408-20. [PMID: 15246840 DOI: 10.1016/j.expneurol.2004.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/24/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
Fibroblast and epidermal growth factors (FGF-2 and EGF) are powerful mitogens for neural precursor cells isolated from the developing striatum and grown as neurospheres. However, questions remain as to the exact role of each of these molecules, and how the proteoglycan heparin may modify their behavior. Here, we show that FGF-2 is remarkably unstable in culture media, but that heparin could completely prevent its degradation, which led to faster cell growth rates. In addition, heparin significantly increased the number of cells within the E14 striatum responding to a brief pulse of FGF-2. In contrast, EGF was unable to stimulate the growth of E14 striatal precursors. However, EGF could induce the division of E18 striatal precursors as neurospheres and acted synergistically with FGF-2. FGF-2/heparin neurospheres generated significantly more neurons than EGF neurospheres. Interestingly, the addition of heparin to EGF neurospheres, which had no effects on EGF stability or growth rates, increased the numbers of neurons generated to that seen for FGF-2/heparin neurospheres. EGF neurospheres were found to produce FGF-2, but addition of heparin did not affect its concentration within cells or in the medium suggesting this released FGF-2 may already be bound to a proteoglycan. In addition, expanding cells with EGF plus heparin in the presence of an FGF-2 blocker did not have a significant effect on the number of neurons generated confirming that the increase in neuronal number is through a mechanism which is independent of FGF-2.
Collapse
|
|
21 |
54 |
23
|
Tokuda H, Kozawa O, Uematsu T. Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J Bone Miner Res 2000; 15:2371-9. [PMID: 11127202 DOI: 10.1359/jbmr.2000.15.12.2371] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously showed that basic fibroblast growth factor (bFGF) activates p38 mitogen-activated protein (MAP) kinase via Ca2+ mobilization, resulting in interleukin-6 (IL-6) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of bFGF on the release of vascular endothelial growth factor (VEGF) in these cells. bFGF stimulated VEGF release dose dependently in the range between 10 and 100 ng/ml. SB203580, an inhibitor of p38 MAP kinase, markedly enhanced the bFGF-induced VEGF release. bFGF induced the phosphorylation of both p42/p44 MAP kinase and p38 MAP kinase. PD98059, an inhibitor of upstream kinase of p42/p44 MAP kinase, reduced the VEGF release. SB203580 enhanced the phosphorylation of p42/p44 MAP kinase induced by bFGF. The enhancement by SB203580 of the bFGF-stimulated VEGF release was suppressed by PD98059. The depletion of extracellular Ca2+ by [ethylenebis(oxyethylenenitrilo)]tetracetic acid (EGTA) or 1,2-bis-(O-aminophinoxy)-ethane-N,N,N,N-tetracetic acid tetracetoxymethyl ester (BAPTA/AM), a chelator of intracellular Ca2+, suppressed the bFGF-induced VEGF release. A23187, a Ca ionophore, or thapsigargin, known to induce Ca2+ release from intracellular Ca2+ store, stimulated the release of VEGF by itself. A23187 induced the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase. PD98059 suppressed the VEGF release induced by A23187. SB203580 had little effect on either A23187-induced VEGF release or the phosphorylation of p42/p44 MAP kinase by A23187. These results strongly suggest that bFGF stimulates VEGF release through p42/p44 MAP kinase in osteoblasts and that the VEGF release is negatively regulated by bFGF-activated p38 MAP kinase.
Collapse
|
|
25 |
49 |
24
|
Abstract
Thalidomide exerts in vitro heterogeneous biological effects on hematopoiesis which have supported its possible use in treating myelodysplastic syndromes (MDS). Some recent clinical trials have confirmed that thalidomide may improve anemia and, less frequently, other cytopenias, in a proportion of younger patients with low-risk MDS (11-56%, on intention-to-treat analysis). Of interest, erythroid responses may be achieved also in transfusion-dependent subjects with high serum levels of endogenous erythropoietin, a subset of MDS patients with little chance of responding to recombinant erythropoietin, alone or in combination with G-CSF. Older patients, however, often do not tolerate the drug even at very low doses. How thalidomide acts in MDS is not clear. Some data suggest several mechanisms possibly involving stimulation of erythropoiesis through activation of physiological compensative mechanisms and reduction of apoptosis. The combination of thalidomide with other molecules active on hematopoiesis and the use of more effective and less toxic analogs are currently under clinical investigation.
Collapse
|
|
21 |
49 |
25
|
Mukherjee A, Westwell AD, Bradshaw TD, Stevens MFG, Carmichael J, Martin SG. Cytotoxic and antiangiogenic activity of AW464 (NSC 706704), a novel thioredoxin inhibitor: an in vitro study. Br J Cancer 2005; 92:350-8. [PMID: 15655539 PMCID: PMC2361836 DOI: 10.1038/sj.bjc.6602338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AW464 (NSC 706704) is a novel benzothiazole substituted quinol compound active against colon, renal and certain breast cancer cell lines. NCI COMPARE analysis indicates possible interaction with thioredoxin/thioredoxin reductase, which is upregulated under hypoxia. Through activity on HIF1α, VEGF levels are regulated and angiogenesis controlled. A thioredoxin inhibitor could therefore exhibit enhanced hypoxic toxicity and indirect antiangiogenic effects. In vitro experiments were performed on colorectal and breast cancer cell lines under both normoxic and hypoxic conditions and results compared against those obtained with normal cell lines, fibroblasts and keratinocytes. Antiangiogenic effects were studied using both large and microvessel cells. Indirect antiangiogenic effects (production of angiogenic growth factors) were studied via ELISA. We show that AW464 exerts antiproliferative effects on tumour cell lines as well as endothelial cells with an IC50 of ∼0.5 μM. Fibroblasts are however resistant. Proliferating, rather than quiescent, endothelial cells are sensitive to the drug indicating potential antiangiogenic rather than antivascular action. Endothelial differentiation is also inhibited in vitro. Hypoxia (1% O2 for 48 h) sensitises colorectal cells to lower drug concentrations, and in HT29s greater inhibition of VEGF is observed under such conditions. In contrast, bFGF levels are unaffected, suggesting possible involvement of HIF1α. Thus, AW464 is a promising chemotherapeutic drug that may have enhanced potency under hypoxic conditions and also additional antiangiogenic activity.
Collapse
|
Journal Article |
20 |
47 |