1
|
McGinley MP, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021; 398:1184-1194. [PMID: 34175020 DOI: 10.1016/s0140-6736(21)00244-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The sphingosine 1-phosphate (S1P) signalling pathways have important and diverse functions. S1P receptors (S1PRs) have been proposed as a therapeutic target for various diseases due to their involvement in regulation of lymphocyte trafficking, brain and cardiac function, vascular permeability, and vascular and bronchial tone. S1PR modulators were first developed to prevent rejection by the immune system following renal transplantation, but the only currently approved indication is multiple sclerosis. The primary mechanism of action of S1PR modulators in multiple sclerosis is through binding S1PR subtype 1 on lymphocytes resulting in internalisation of the receptor and loss of responsiveness to the S1P gradient that drives lymphocyte egress from lymph nodes. The reduction in circulating lymphocytes presumably limits inflammatory cell migration into the CNS. Four S1PR modulators (fingolimod, siponimod, ozanimod, and ponesimod) have regulatory approval for multiple sclerosis. Preclinical evidence and ongoing and completed clinical trials support development of S1PR modulators for other therapeutic indications.
Collapse
|
Review |
4 |
158 |
2
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Su B, You H, Zhang T, Li X, Song H, Li C, Sun T, Jiang C. Macrophage-Disguised Manganese Dioxide Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Modulating Inflammatory Microenvironment in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101526. [PMID: 34436822 PMCID: PMC8529435 DOI: 10.1002/advs.202101526] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Collapse
|
research-article |
4 |
156 |
3
|
Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD, Gajewski TF. The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med 2017; 214:381-400. [PMID: 28115575 PMCID: PMC5294847 DOI: 10.1084/jem.20160485] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Although the presence of tumor-infiltrating lymphocytes (TILs) indicates an endogenous antitumor response, immune regulatory pathways can subvert the effector phase and enable tumor escape. Negative regulatory pathways include extrinsic suppression mechanisms, but also a T cell-intrinsic dysfunctional state. A more detailed study has been hampered by a lack of cell surface markers defining tumor-specific dysfunctional TILs, and PD-1 alone is not sufficient. Recently, we identified the transcription factor Egr2 as a critical component in controlling the anergic state in vitro. In this study, we show that the Egr2-driven cell surface proteins LAG-3 and 4-1BB can identify dysfunctional tumor antigen-specific CD8+ TIL. Co-expression of 4-1BB and LAG-3 was seen on a majority of CD8+ TILs, but not in lymphoid organs. Functional analysis revealed defective IL-2 and TNF production yet retained expression of IFN-γ and regulatory T cell-recruiting chemokines. Transcriptional and phenotypic characterization revealed coexpression of multiple additional co-stimulatory and co-inhibitory receptors. Administration of anti-LAG-3 plus anti-4-1BB mAbs was therapeutic against tumors in vivo, which correlated with phenotypic normalization. Our results indicate that coexpression of LAG-3 and 4-1BB characterize dysfunctional T cells within tumors, and that targeting these receptors has therapeutic utility.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
155 |
4
|
Miguez A, García-Díaz Barriga G, Brito V, Straccia M, Giralt A, Ginés S, Canals JM, Alberch J. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015; 24:4958-70. [PMID: 26063761 DOI: 10.1093/hmg/ddv218] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/07/2015] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
Collapse
|
|
10 |
109 |
5
|
Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate Receptor Modulator Therapy for Multiple Sclerosis: Differential Downstream Receptor Signalling and Clinical Profile Effects. Drugs 2021; 81:207-231. [PMID: 33289881 PMCID: PMC7932974 DOI: 10.1007/s40265-020-01431-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lysophospholipids are a class of bioactive lipid molecules that produce their effects through various G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P) is perhaps the most studied lysophospholipid and has a role in a wide range of physiological and pathophysiological events, via signalling through five distinct GPCR subtypes, S1PR1 to S1PR5. Previous and continuing investigation of the S1P pathway has led to the approval of three S1PR modulators, fingolimod, siponimod and ozanimod, as medicines for patients with multiple sclerosis (MS), as well as the identification of new S1PR modulators currently in clinical development, including ponesimod and etrasimod. S1PR modulators have complex effects on S1PRs, in some cases acting both as traditional agonists as well as agonists that produce functional antagonism. S1PR subtype specificity influences their downstream effects, including aspects of their benefit:risk profile. Some S1PR modulators are prodrugs, which require metabolic modification such as phosphorylation via sphingosine kinases, resulting in different pharmacokinetics and bioavailability, contrasting with others that are direct modulators of the receptors. The complex interplay of these characteristics dictates the clinical profile of S1PR modulators. This review focuses on the S1P pathway, the characteristics and S1PR binding profiles of S1PR modulators, the mechanisms of action of S1PR modulators with regard to immune cell trafficking and neuroprotection in MS, together with a summary of the clinical effectiveness of the S1PR modulators that are approved or in late-stage development for patients with MS. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects (MP4 65540 kb).
Collapse
|
Review |
4 |
105 |
6
|
Stockstill K, Doyle TM, Yan X, Chen Z, Janes K, Little JW, Braden K, Lauro F, Giancotti LA, Harada CM, Yadav R, Xiao WH, Lionberger JM, Neumann WL, Bennett GJ, Weng HR, Spiegel S, Salvemini D. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med 2018; 215:1301-1313. [PMID: 29703731 PMCID: PMC5940258 DOI: 10.1084/jem.20170584] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/31/2017] [Accepted: 03/21/2018] [Indexed: 11/04/2022] Open
Abstract
The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain. Mice with astrocyte-specific alterations of S1pr1 did not develop neuropathic pain and lost their ability to respond to S1PR1 inhibition, strongly implicating astrocytes as a primary cellular substrate for S1PR1 activity. At the molecular level, S1PR1 engaged astrocyte-driven neuroinflammation and altered glutamatergic homeostasis, processes blocked by S1PR1 antagonism. Our findings establish S1PR1 as a target for therapeutic intervention and provide insight into cellular and molecular pathways. As FTY720 also shows promising anticancer potential and is FDA approved, rapid clinical translation of our findings is anticipated.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
102 |
7
|
Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milstien S, Spiegel S. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol 2015; 136:1035-46.e6. [PMID: 25842287 PMCID: PMC4591101 DOI: 10.1016/j.jaci.2015.02.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory condition defined by episodic shortness of breath with expiratory wheezing and cough, is a serious health concern affecting more than 250 million persons. Genome-wide association studies have identified ORM (yeast)-like protein isoform 3 (ORMDL3) as a gene associated with susceptibility to asthma. Although its yeast ortholog is a negative regulator of de novo ceramide biosynthesis, how ORMDL3 contributes to asthma pathogenesis is not known. OBJECTIVES We sought to decipher the molecular mechanism for the pathologic functions of ORMDL3 in asthma and the relationship to its evolutionarily conserved role in regulation of ceramide homeostasis. METHODS We determined the relationship between expression of ORMDL3 and ceramide in epithelial and inflammatory cells and in asthma pathogenesis in mice. RESULTS Although small increases in ORMDL3 expression decrease ceramide levels, remarkably, higher expression in lung epithelial cells and macrophages in vitro and in vivo increased ceramide production, which promoted chronic inflammation, airway hyperresponsiveness, and mucus production during house dust mite-induced allergic asthma. Moreover, nasal administration of the immunosuppressant drug FTY720/fingolimod reduced ORMDL3 expression and ceramide levels and mitigated airway inflammation and hyperreactivity and mucus hypersecretion in house dust mite-challenged mice. CONCLUSIONS Our findings demonstrate that overexpression of ORMDL3 regulates ceramide homeostasis in cells in a complex manner and suggest that local FTY720 administration might be a useful therapeutic intervention for the control of allergic asthma.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
96 |
8
|
Karuppuchamy T, Behrens EH, González-Cabrera P, Sarkisyan G, Gima L, Boyer JD, Bamias G, Jedlicka P, Veny M, Clark D, Peach R, Scott F, Rosen H, Rivera-Nieves J. Sphingosine-1-phosphate receptor-1 (S1P 1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease. Mucosal Immunol 2017; 10:162-171. [PMID: 27049060 PMCID: PMC5053832 DOI: 10.1038/mi.2016.35] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 02/04/2023]
Abstract
The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4+CD45RBhi cells, and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function.
Collapse
|
research-article |
8 |
93 |
9
|
Zhong Y, Tian F, Ma H, Wang H, Yang W, Liu Z, Liao A. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci 2020; 260:118077. [PMID: 32810509 DOI: 10.1016/j.lfs.2020.118077] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
AIMS Multiple myeloma (MM) is the second hematological plasma cell malignany and sensitive to fingolimod (FTY720), a novel immunosuppressant. Previous study shows FTY720-induced apoptosis and autophagy can cause cell death in MM cells, however, the high death rate cannot fully be explained. The study aims to investigate further mechanism of how FTY720 kills MM cells. MATERIALS AND METHODS Experiments are performed on 25 human primary cell samples and two MM cell lines by flow cytometry, fluorescence microscopy, and transmission electron microscopy. Expressions of relative factors are tested by qRT-PCR or western blot. KEY FINDINGS Ferroptosis-specific inhibitors, deferoxamine mesylate (DFOM) and ferropstatin-1 (Fer-1), reverse FTY720-induced cell death in MM cells. Glutathione peroxidase 4 (GPX4) and soluble carrier family 7 member 11 (SLC7A11), key regulators of ferroptosis, are highly expressed in primary MM cells and can be decreased by FTY720 at the mRNA and protein level in MM cells. In addition, FTY720 induces other characteristic changes of ferroptosis. Furthermore, FTY720 can dephosphorylate AMP-activated protein kinase subunit ɑ (AMPKɑ) at the Thr172 site by activating protein phosphatase 2A (PP2A) and reduce the expression of phosphorylated eukaryotic elongation factor 2 (eEF2), finally cause MM cell death. Using LB-100, a PP2A inhibitor, AICAR, an agonist of AMPK, and bafilomycin A1 (Baf-A1), an autophagy inhibitor, we discover that FTY720 induces ferroptosis and autophagy through the PP2A/AMPK pathway, and ferroptosis and autophagy can reinforce each other. SIGNIFICANCE These results provide a new perspective on the treatment of MM.
Collapse
|
Journal Article |
5 |
74 |
10
|
Zhang X, Niedermann G. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response. Int J Radiat Oncol Biol Phys 2018. [PMID: 29534901 DOI: 10.1016/j.ijrobp.2018.01.094] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cell-mediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. METHODS AND MATERIALS In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 × 9.18 Gy in 3 or 5 days or with 5 × 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. RESULTS In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8+ T cells. TIL infiltration and local and systemic tumor-specific CD8+ T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8+ T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No synergies were found in the B16 wild-type model lacking an exogenous antigen. CONCLUSIONS Our data suggest that combination therapy with hRT schedules extending into the period during which treatment-induced T cells infiltrate the irradiated tumor can provoke local and systemic antitumor effects similar to those with therapy using shorter schedules, if the regional lymph nodes supply sufficient tumor-specific T cells. This has implications for planning clinical RT/immune checkpoint blockade trials.
Collapse
MESH Headings
- Animals
- Antibodies/therapeutic use
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/radiation effects
- Combined Modality Therapy
- Fingolimod Hydrochloride/pharmacology
- Flow Cytometry
- Humans
- Immunosuppressive Agents/pharmacology
- Immunotherapy, Adoptive/methods
- Interferon-gamma/analysis
- Lymphocyte Activation/immunology
- Lymphocyte Activation/radiation effects
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/radiation effects
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/pathology
- Melanoma, Experimental/radiotherapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Programmed Cell Death 1 Receptor/immunology
- Radiation Dose Hypofractionation
- Relative Biological Effectiveness
Collapse
|
Journal Article |
7 |
71 |
11
|
Mauer AS, Hirsova P, Maiers JL, Shah VH, Malhi H. Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2017; 312:G300-G313. [PMID: 28039158 PMCID: PMC5401989 DOI: 10.1152/ajpgi.00222.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a lipotoxic disorder, wherein proinflammatory lipids, such as ceramide and its derivative sphingosine 1-phosphate (S1P), contribute to macrophage-associated liver inflammation. For example, we have previously demonstrated a role for S1P in steatotic hepatocyte-derived S1P-enriched extracellular vesicles in macrophage chemotaxis in vitro. Therefore, we hypothesized that FTY720, an S1P antagonist, would ameliorate NASH by inhibiting proinflammatory monocyte chemotaxis. To test our hypothesis, NASH was established in C57BL/6 male mice by feeding a diet high in fructose, saturated fat, and cholesterol for 22 wk. Then mice received daily intraperitoneal injections of FTY720 for 2 wk before analysis of liver injury, inflammation, and fibrosis. FTY720-treated mice with NASH demonstrated improved liver histology with a significant reduction in hepatocyte ballooning and inflammatory foci. Hepatomegaly was reversed, and liver triglycerides were reduced following FTY720 administration to mice with NASH. Correspondingly, serum ALT levels, hepatic inflammatory macrophage accumulation, and the expression of Ly6C in recruited myeloid cells was reduced in FTY720-treated mice. Hepatic collagen accumulation and expression of α-smooth muscle actin were significantly lowered as well. Body composition, energy consumption and utilization, and hepatic sphingolipid composition remained unchanged following FTY720 administration. FTY720 ameliorates murine nonalcoholic steatohepatitis. Reduction in liver injury and inflammation is associated with a reduction in hepatic macrophage accumulation, likely due to dampened recruitment of circulating myeloid cells into the liver. Nonalcoholic steatohepatitis may be a novel indication for the therapeutic use of FTY720.NEW & NOTEWORTHY There are no approved pharmacologic therapies for nonalcoholic steatohepatitis (NASH), the leading cause of chronic liver disease worldwide. This study describes the use of FTY720, a novel small molecule, for the amelioration of NASH in a mouse model. We demonstrate that 2-wk administration of FTY720 to mice with NASH led to a reduction in liver injury, inflammation, and fibrosis. These data provide a preclinical rationale for studying this drug in human NASH.
Collapse
|
research-article |
8 |
70 |
12
|
Blumenfeld S, Staun-Ram E, Miller A. Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFβ in patients with Multiple Sclerosis. J Autoimmun 2016; 70:40-51. [PMID: 27055778 DOI: 10.1016/j.jaut.2016.03.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023]
Abstract
Fingolimod, an oral therapeutic agent approved for patients with relapsing-remitting Multiple Sclerosis (MS), has been shown to prevent lymphocyte egress from secondary lymphoid tissues; however the specific drug effect on B cells in fingolimod-treated patients remains to be fully elucidated. We present here a comprehensive analysis on the proportions of B cell subsets in the periphery, and the levels of activation, functional surface markers and cytokine profile of B cells in MS patients, following initiation of fingolimod therapy, using flow cytometry and cytokine bead array. Fingolimod therapy increased the ratio of naïve to memory cells, elevated the percentage of plasma cells and highly increased the proportion of transitional B cells as well as additional regulatory subsets, including: IL10(+), CD25(+) and CD5(+) B cells. The percentage of activated CD69(+) cells was highly elevated in the remaining circulating B cells, which produced increased levels of IL10, TGFβ, IL6, IL4, LTα, TNFα and IFNγ cytokines, with an overall increased ratio of TGFβ to pro-inflammatory cytokines. Furthermore, fingolimod therapy reduced ICAM-1(+) cells, suggesting a possible reduction in antigen-presenting capacity. Phosphorylated-fingolimod was shown in vitro to reduce S1PR1 RNA and protein, to slightly increase viability and to activate anti-apoptotic Bcl2 in transformed B cells of patients with MS. In conclusion, fingolimod therapy modulates significantly the composition of circulating B cells, promoting regulatory subsets and an anti-inflammatory cytokine repertoire.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
68 |
13
|
García Nores GD, Ly CL, Cuzzone DA, Kataru RP, Hespe GE, Torrisi JS, Huang JJ, Gardenier JC, Savetsky IL, Nitti MD, Yu JZ, Rehal S, Mehrara BJ. CD4 + T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun 2018; 9:1970. [PMID: 29773802 PMCID: PMC5958132 DOI: 10.1038/s41467-018-04418-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
T cell-mediated responses have been implicated in the development of fibrosis, impaired lymphangiogenesis, and lymphatic dysfunction in secondary lymphedema. Here we show that CD4+ T cells are necessary for lymphedema pathogenesis by utilizing adoptive transfer techniques in CD4 knockout mice that have undergone tail skin and lymphatic excision or popliteal lymph node dissection. We also demonstrate that T cell activation following lymphatic injury occurs in regional skin-draining lymph nodes after interaction with antigen-presenting cells such as dendritic cells. CD4+ T cell activation is associated with differentiation into a mixed T helper type 1 and 2 phenotype, as well as upregulation of adhesion molecules and chemokines that promote migration to the skin. Most importantly, we find that blocking T cell release from lymph nodes using a sphingosine-1-phosphate receptor modulator prevents lymphedema, suggesting that this approach may have clinical utility.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
63 |
14
|
Zhang L, Ding K, Wang H, Wu Y, Xu J. Traumatic Brain Injury-Induced Neuronal Apoptosis is Reduced Through Modulation of PI3K and Autophagy Pathways in Mouse by FTY720. Cell Mol Neurobiol 2016; 36:131-42. [PMID: 26099903 PMCID: PMC11482378 DOI: 10.1007/s10571-015-0227-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
FTY720 is a synthetic compound produced by modification of metabolite from Isaria sinclairii. It is a novel type of immunosuppressive agent inhibiting lymphocyte egress from secondary lymphoid tissues, thereby causing peripheral lymphopenia. Growing evidences have suggested that apoptosis and autophagy were involved in the secondary brain injury after traumatic brain injury (TBI) although FTY720 exerted neuroprotective effects in a variety of neurological diseases except TBI. The present study was aimed to investigate the role of FTY720 in a mouse model of TBI. In experiment 1, ICR mice were divided into four groups: sham group, TBI group, TBI + vehicle group, and TBI + FTY720 group. And the injured cerebral cortex (including both contused and penumbra) was used for analysis. We found that FTY720 administration after TBI improved neurobehavioral function, alleviated brain edema, accompanied by modulation of apoptotic indicators such as Bcl-2, Bcl-xL, Bax, and cytochrome c. In experiment 2, ICR mice were also divided into four groups: sham group, TBI + vehicle group, TBI + FTY720 group, and TBI + FTY720 + inhibitors group. And the injured cerebral cortex (including both contused and penumbra) was used for analysis. We found that FTY720 increased the expression of phospho-protein kinase B (AKT) and some autophagy markers such as LC3 and Beclin 1. In addition, the apoptosis inhibition effect of FTY720 was partly abrogated by the phosphatidylinositide 3-kinases (PI3K)/AKT pathway inhibitor LY294002 and autophagy inhibitor 3-methyladenine. Collectively, our data provide the first evidence that FTY720 exerted neuroprotective effects after TBI, at least in part, through the activation of PI3K/AKT pathway and autophagy.
Collapse
|
research-article |
9 |
62 |
15
|
Potenza RL, De Simone R, Armida M, Mazziotti V, Pèzzola A, Popoli P, Minghetti L. Fingolimod: A Disease-Modifier Drug in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics 2016; 13:918-927. [PMID: 27456702 PMCID: PMC5081121 DOI: 10.1007/s13311-016-0462-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fingolimod phosphate (FTY720), the first approved oral therapy for multiple sclerosis, primarily acts as an immunomodulator. Its concomitant effects in the central nervous system, however, indicate a potentially broader spectrum of activity in neurodegenerative diseases. In the present study, we investigated the possible effects of fingolimod in a mouse model of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by a strong neuroinflammatory component. Fingolimod (0.1 and 1 mg/kg i.p.) was administered to mSOD1G93A mice, a well-characterized mouse model of ALS, starting from the onset of motor symptoms to the end stage of the disease. The drug was able to improve the neurological phenotype (p < 0.05) and to extend the survival (p < 0.01) of ALS mice. The beneficial effect of fingolimod administration was associated with a significant modulation of neuroinflammatory and protective genes (CD11b, Foxp3, iNOS, Il1β, Il10, Arg1, and Bdnf) in motor cortex and spinal cord of animals. Our data show, for the first time, that fingolimod is protective in ALS mice and that its beneficial effects are accompanied by a modulation of microglial activation and innate immunity. Considering that the treatment was started in already symptomatic mice, our data strongly support fingolimod as a potential new therapeutic approach to ALS.
Collapse
|
research-article |
9 |
60 |
16
|
Camp SM, Bittman R, Chiang ET, Moreno-Vinasco L, Mirzapoiazova T, Sammani S, Lu X, Sun C, Harbeck M, Roe M, Natarajan V, Garcia JGN, Dudek SM. Synthetic analogs of FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] differentially regulate pulmonary vascular permeability in vivo and in vitro. J Pharmacol Exp Ther 2009; 331:54-64. [PMID: 19592667 PMCID: PMC2766218 DOI: 10.1124/jpet.109.153544] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022] Open
Abstract
Novel therapies are needed to address the vascular endothelial cell (EC) barrier disruption that occurs in inflammatory diseases such as acute lung injury (ALI). We previously demonstrated the potent barrier-enhancing effects of both sphingosine 1-phosphate (S1P) and the structurally similar compound FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] in inflammatory lung injury. In this study, we examined the therapeutic potential of several novel FTY720 analogs to reduce vascular leak. Similar to S1P and FTY720, the (R)- and (S)-enantiomers of FTY720 phosphonate and enephosphonate analogs produce sustained EC barrier enhancement in vitro, as seen by increases in transendothelial electrical resistance (TER). In contrast, the (R)- and (S)-enantiomers of FTY720-regioisomeric analogs disrupt EC barrier integrity in a dose-dependent manner. Barrier-enhancing FTY720 analogs demonstrate a wider protective concentration range in vitro (1-50 microM) and greater potency than either S1P or FTY720. In contrast to FTY720-induced EC barrier enhancement, S1P and the FTY720 analogs dramatically increase TER within minutes in association with cortical actin ring formation. Unlike S1P, these FTY720 analogs exhibit differential phosphorylation effects without altering the intracellular calcium level. Inhibitor studies indicate that barrier enhancement by these analogs involves signaling via G(i)-coupled receptors, tyrosine kinases, and lipid rafts. Consistent with these in vitro responses, the (S)-phosphonate analog of FTY720 significantly reduces multiple indices of alveolar and vascular permeability in a lipopolysaccharide-mediated murine model of ALI (without significant alterations in leukocyte counts). These results demonstrate the capacity for FTY720 analogs to significantly decrease pulmonary vascular leakage and inflammation in vitro and in vivo.
Collapse
|
Comparative Study |
16 |
55 |
17
|
Yao S, Li L, Sun X, Hua J, Zhang K, Hao L, Liu L, Shi D, Zhou H. FTY720 Inhibits MPP +-Induced Microglial Activation by Affecting NLRP3 Inflammasome Activation. J Neuroimmune Pharmacol 2019; 14:478-492. [PMID: 31069623 DOI: 10.1007/s11481-019-09843-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons and excessive microglial activation in the substantia nigra pars compacta (SNpc). In the present study, we aimed to demonstrate the therapeutic effectiveness of the potent sphingosine-1-phosphate receptor antagonist fingolimod (FTY720) in an animal model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and to identify the potential mechanisms underlying these therapeutic effects. C57BL/6J mice were orally administered FTY720 before subcutaneous injection of MPTP. Open-field and rotarod tests were performed to determine the therapeutic effect of FTY720. The damage to dopaminergic neurons and the production of monoamine neurotransmitters were assessed using immunohistochemistry, high-performance liquid chromatography, and flow cytometry. Immunofluorescence (CD68- positive) and enzyme-linked immunosorbent assay were used to analyze the activation of microglia, and the levels of activated signaling molecules were measured using Western blotting. Our findings indicated that FTY720 significantly attenuated MPTP-induced behavioral deficits, reduced the loss of dopaminergic neurons, and increased dopamine release. FTY720 directly inhibited MPTP-induced microglial activation in the SNpc, suppressed the production of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α in BV-2 microglial cells treated with 1-methyl-4-phenylpyridinium (MPP+), and subsequently decreased apoptosis in SH-SY5Y neuroblastoma cells. Moreover, in MPP+-treated BV-2 cells and primary microglia, FTY720 treatment significantly attenuated the increases in the phosphorylation of PI3K/AKT/GSK-3β, reduced ROS generation and p65 activation, and also inhibited the activation of NLRP3 inflammasome and caspase-1. In conclusion, FTY720 may reduce PD progression by inhibiting NLRP3 inflammasome activation via its effects on ROS generation and p65 activation in microglia. These findings provide novel insights into the mechanisms underlying the therapeutic effects of FTY720, suggesting its potential as a novel therapeutic strategy against PD. Graphical Abstract FTY720 may reduce ROS production by inhibiting the PI3K/AKT/GSK-3β signaling pathway, while at the same time reducing p65 phosphorylation, thus decreasing NLRP3 inflammasome activation through these two pathways, ultimately reducing microglia activation-induced neuronal damage.
Collapse
|
|
6 |
51 |
18
|
Li S, Song C, Yang S, Yu W, Zhang W, Zhang G, Xi Z, Lu E. Supercritical CO 2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater 2019; 94:253-267. [PMID: 31154054 DOI: 10.1016/j.actbio.2019.05.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 01/27/2023]
Abstract
Bone tissue engineering has substantial potential for the treatment of massive bone defects; however, efficient vascularization coupled with bone regeneration still remains a challenge in this field. In the current study, supercritical carbon dioxide (scCO2) foaming technique was adopted to fabricate mesoporous bioactive glasses (MBGs) particle-poly (lactic-co-glycolic acid) (PLGA) composite scaffolds with appropriate mechanical and degradation properties as well as in vitro bioactivity. The MBG-PLGA scaffolds incorporating the bioactive lipid FTY720 (designated as FTY/MBG-PLGA) exhibited simultaneously sustained release of the bioactive lipid and ions. In addition to providing a favorable microenvironment for cellular adhesion and proliferation, FTY/MBG-PLGA scaffolds significantly facilitated the in vitro osteogenic differentiation of rBMSCs and also markedly stimulated the upregulation of Hif-1α expression via the activation of the Erk1/2 pathway, which mediated the osteogenic and pro-angiogenic effects on rBMSCs. Furthermore, FTY/MBG-PLGA extracts induced superior in vitro angiogenic performance of HUVECs. In vivo evaluation of critical-sized rat calvarial bone defects indicated that FTY/MBG-PLGA scaffolds potently promoted vascularized bone regeneration. Notably, the significantly enhanced formation of type H vessels (CD31hiEmcnhi neo-vessels) was observed in newly formed bone tissue in FTY/MBG-PLGA group, strongly suggesting that FTY720 and therapeutic ions released from the scaffolds synergistically induced more type H vessel formation, which indicated the coupling of angiogenesis and osteogenesis to achieve efficiently vascularized bone regeneration. Overall, the results indicated that the foamed porous MBG-PLGA scaffolds incorporating bioactive lipids achieved desirable vascularization-coupled bone formation and could be a promising strategy for bone regenerative medicine. STATEMENT OF SIGNIFICANCE: Efficacious coupling of vascularizationandbone formation is critical for the restoration of large bone defects. Anoveltechnique was used to fabricate composite scaffolds incorporating bioactive lipids which possessedsynergistic cues of bioactive lipids and therapeutic ions to potently promotebone regenerationas well as vascularization. The underlying molecular mechanism for the osteogenic and pro-angiogenic effects of the compositescaffolds was unveiled. Interestingly, the scaffolds were furtherfoundto enhance the formation oftype H capillarieswithin the bone healing microenvironment to couple angiogenesis to osteogenesis to achieve satisfyingvascularizedbone regeneration.These findings provide a novel strategy to develop efficiently vascularized engineering constructs to treat massive bone defects.
Collapse
|
|
6 |
50 |
19
|
Li X, Wang MH, Qin C, Fan WH, Tian DS, Liu JL. Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS One 2017; 12:e0188748. [PMID: 29186197 PMCID: PMC5706683 DOI: 10.1371/journal.pone.0188748] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
The bioactive, signaling lipid, sphingosine-1-phosphate (S1P), and its analog, fingolimod (FTY720), have previously shown neuroprotective effects against ischemic brain injury. However, the underlying mechanisms have not yet been fully clarified. The roles of autophagy in ischemic stroke are being increasingly recognized. In the present study, we sought to determine whether the S1P pathway is involved in neuronal autophagy and investigate its possible mechanisms following stroke. Interestingly, we found that FTY720 significantly attenuates infarct volumes and reduces neuronal apoptosis on days 1 and 3 post stroke, accompanied by amelioration of functional deficits. Additionally, FTY720 was found to decrease the induction of autophagosome proteins, microtubule-associated protein 1 light chain 3(LC3-II) and Beclin1, following ischemic stroke in a dose-dependent manner. Meanwhile, protein levels of the mammalian target of rapamycin (mTOR) and the 70-kDa ribosomal protein, S6 kinase1 (p70S6K), were also up-regulated in FTY720-treated animals, and the nonspecific SphK inhibitor, N,N-dimethylsphingosine (DMS), was found to cause a reverse effect. Our results indicate that modulation of the S1P signaling pathway by FTY720 could effectively decrease neuronal autophagy through the mTOR/p70S6K pathway and attenuate ischemic brain injury in mice.
Collapse
|
Journal Article |
8 |
49 |
20
|
Luangrath MA, Schmidt ME, Hartwig SM, Varga SM. Tissue-Resident Memory T Cells in the Lungs Protect against Acute Respiratory Syncytial Virus Infection. Immunohorizons 2021; 5:59-69. [PMID: 33536235 PMCID: PMC8299542 DOI: 10.4049/immunohorizons.2000067] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in young children. The T cell response plays a critical role in facilitating clearance of an acute RSV infection, and memory T cell responses are vital for protection against secondary RSV exposures. Tissue-resident memory (TRM) T cells have been identified as a subset of memory T cells that reside in nonlymphoid tissues and are critical for providing long-term immunity. There is currently limited information regarding the establishment and longevity of TRM T cell responses elicited following an acute RSV infection as well as their role in protection against repeated RSV infections. In this study, we examined the magnitude, phenotype, and protective capacity of TRM CD4 and CD8 T cells in the lungs of BALB/c mice following an acute RSV infection. TRM CD4 and CD8 T cells were established within the lungs and waned by 149 d following RSV infection. To determine the protective capacity of TRMs, FTY720 administration was used to prevent trafficking of peripheral memory T cells into the lungs prior to challenge of RSV-immune mice, with a recombinant influenza virus expressing either an RSV-derived CD4 or CD8 T cell epitope. We observed enhanced viral clearance in RSV-immune mice, suggesting that TRM CD8 T cells can contribute to protection against a secondary RSV infection. Given the protective capacity of TRMs, future RSV vaccine candidates should focus on the generation of these cell populations within the lung to induce effective immunity against RSV infection.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
47 |
21
|
Yazdi A, Baharvand H, Javan M. Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY720). Neuroscience 2015; 311:34-44. [PMID: 26475743 DOI: 10.1016/j.neuroscience.2015.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disorder which affects the central nervous system (CNS) and is recognized as the major cause of nervous system disability in young adults. Enhancing myelin repair by stimulating endogenous progenitors is a main goal in efforts for MS treatment. Fingolimod (FTY720) which is administrated as an oral medicine for relapsing-remitting MS has direct effects on neural cells. In this study, we hypothesized if daily treatment with FTY720 enhances endogenous myelin repair in a model of local demyelination induced by lysolecithin (LPC). We examined the response of inflammatory cells as well as resident OPCs and evaluated the number of newly produced myelinating cells in animals which were under daily treatment with FTY720. FTY720 at doses 0.3 and 1mg/kg decreased the inflammation score at the site of LPC injection and decreased the extent of demyelination. FTY720 especially at the lower dose increased the number of remyelinated axons and newly produced myelinating cells. These data indicate that repetitive treatment with FTY720, behind an anti-inflammatory effect, exerts beneficial effects on the process of endogenous repair of demyelinating insults.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
22
|
Gstalder C, Ader I, Cuvillier O. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model. Mol Cancer Ther 2016; 15:2465-2474. [PMID: 27507852 DOI: 10.1158/1535-7163.mct-16-0167] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Female
- Fingolimod Hydrochloride/pharmacology
- Gene Expression
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lysophospholipids
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Oxygen Consumption
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction/drug effects
- Sphingosine/analogs & derivatives
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Remodeling/drug effects
- Xenograft Model Antitumor Assays
Collapse
|
Journal Article |
9 |
43 |
23
|
Groves A, Kihara Y, Jonnalagadda D, Rivera R, Kennedy G, Mayford M, Chun J. A Functionally Defined In Vivo Astrocyte Population Identified by c-Fos Activation in a Mouse Model of Multiple Sclerosis Modulated by S1P Signaling: Immediate-Early Astrocytes ( ieAstrocytes). eNeuro 2018; 5:ENEURO.0239-18.2018. [PMID: 30255127 PMCID: PMC6153337 DOI: 10.1523/eneuro.0239-18.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022] Open
Abstract
Astrocytes have prominent roles in central nervous system (CNS) function and disease, with subpopulations defined primarily by morphologies and molecular markers often determined in cell culture. Here, we identify an in vivo astrocyte subpopulation termed immediate-early astrocytes (ieAstrocytes) that is defined by functional c-Fos activation during CNS disease development. An unbiased screen for CNS cells showing c-Fos activation during experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), was developed by using inducible, TetTag c-Fos reporter mice that label activated cells with a temporally stable, nuclear green fluorescent protein (GFP). Four-dimensional (3D over time) c-Fos activation maps in the spinal cord were produced by combining tissue clearing (iDISCO) and confocal microscopy that identified onset and expansion of GFP+ cell populations during EAE. More than 95% of the GFP+ cells showed glial fibrillary acidic protein (GFAP) immunoreactivity-in contrast to absent or rare labeling of neurons, microglia, and infiltrating immune cells-which constituted ieAstrocytes that linearly increased in number with progression of EAE. ieAstrocyte formation was reduced by either astrocyte-specific genetic removal of sphingosine 1-phosphate receptor 1 (S1P1) or pharmacological inhibition by fingolimod (FTY720), an FDA-approved MS medicine that can functionally antagonize S1P1. ieAstrocytes thus represent a functionally defined subset of disease-linked astrocytes that are the first and predominant CNS cell population activated during EAE, and that track with disease severity in vivo. Their reduction by a disease-modifying agent supports their therapeutic relevance to MS and potentially other neuroinflammatory and neurodegenerative diseases.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
43 |
24
|
Muls N, Dang HA, Sindic CJM, van Pesch V. Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PLoS One 2014; 9:e113025. [PMID: 25411844 PMCID: PMC4239031 DOI: 10.1371/journal.pone.0113025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs. Conclusions In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
40 |
25
|
Sukocheva OA, Lukina E, McGowan E, Bishayee A. Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:123-158. [PMID: 32085881 DOI: 10.1016/bs.apcsb.2019.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morbidity of inflammatory gastrointestinal (GI) diseases continues to grow resulting in worsen quality of life and increased burden on public medical systems. Complex and heterogenous illnesses, inflammatory bowel diseases (IBDs) encompass several inflammation -associated pathologies including Crohn's disease and ulcerative colitis. IBD is often initiated by a complex interplay between host genetic and environmental factors, lifestyle and diet, and intestinal bacterial components. IBD inflammatory signature was linked to the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) signaling pathway that is currently targeted by IBD therapies. Sphingolipid signaling was identified as one of the key mediators and regulators of pro-inflammatory conditions, and, specifically, TNF-α related signaling. All GI tissues and circulating immune/blood cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinases (SphK1 and SphK2) that generate sphingosine-1-phosphate (S1P), a bioactive lipid and ligand for five G-protein coupled membrane S1P receptors (S1PRs). Numerous normal and pathogenic inflammatory responses are mediated by SphK/S1P/S1PRs signaling axis including lymphocyte trafficking and activation of cytokine signaling machinery. SphK1/S1P/S1PRs axis has recently been defined as a target for the treatment of GI diseases including IBD/colitis. Several SphK1 inhibitors and S1PRs antagonists have been developed as novel anti-inflammatory agents. In this review, we discuss the mechanisms of SphK/S1P signaling in inflammation-linked GI disorders. The potential role of SphK/S1PRs inhibitors in the prevention and treatment of IBD/colitis is critically evaluated.
Collapse
|
Review |
5 |
39 |