1
|
van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. CHEMOSPHERE 2012; 88:1119-53. [PMID: 22537891 DOI: 10.1016/j.chemosphere.2012.03.067] [Citation(s) in RCA: 1881] [Impact Index Per Article: 144.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 05/18/2023]
Abstract
Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and halogen containing PFRs. Most of the PFRs have a mechanism of action in the solid phase of burning materials (char formation), but some may also be active in the gas phase. Some PFRs are reactive FRs, which means they are chemically bound to a polymer, whereas others are additive and mixed into the polymer. The focus of this report is limited to the PFRs mentioned in the literature as potential substitutes for BFRs. The physico-chemical properties, applications and production volumes of PFRs are given. Non-halogenated PFRs are often used as plasticisers as well. Limited information is available on the occurrence of PFRs in the environment. For triphenyl phosphate (TPhP), tricresylphosphate (TCP), tris(2-chloroethyl)phosphate (TCEP), tris(chloropropyl)phosphate (TCPP), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and tetrekis(2-chlorethyl)dichloroisopentyldiphosphate (V6) a number of studies have been performed on their occurrence in air, water and sediment, but limited data were found on their occurrence in biota. Concentrations found for these PFRs in air were up to 47 μg m(-3), in sediment levels up to 24 mg kg(-1) were found, and in surface water concentrations up to 379 ng L(-1). In all these matrices TCPP was dominant. Concentrations found in dust were up to 67 mg kg(-1), with TDCPP being the dominant PFR. PFR concentrations reported were often higher than polybrominated diphenylether (PBDE) concentrations, and the human exposure due to PFR concentrations in indoor air appears to be higher than exposure due to PBDE concentrations in indoor air. Only the Cl-containing PFRs are carcinogenic. Other negative human health effects were found for Cl-containing PFRs as well as for TCP, which suggest that those PFRs would not be suitable alternatives for BFRs. TPhP, diphenylcresylphosphate (DCP) and TCP would not be suitable alternatives either, because they are considered to be toxic to (aquatic) organisms. Diethylphosphinic acid is, just like TCEP, considered to be very persistent. From an environmental perspective, resorcinol-bis(diphenylphosphate) (RDP), bisphenol-A diphenyl phosphate (BADP) and melamine polyphosphate, may be suitable good substitutes for BFRs. Information on PFR analysis in air, water and sediment is limited to TCEP, TCPP, TPhP, TCP and some other organophosphate esters. For air sampling passive samplers have been used as well as solid phase extraction (SPE) membranes, SPE cartridges, and solid phase micro-extraction (SPME). For extraction of PFRs from water SPE is recommended, because this method gives good recoveries (67-105%) and acceptable relative standard deviations (RSDs) (<20%), and offers the option of on-line coupling with a detection system. For the extraction of PFRs from sediment microwave-assisted extraction (MAE) is recommended. The recoveries (78-105%) and RSDs (3-8%) are good and the method is faster and requires less solvent compared to other methods. For the final instrumental analysis of PFRs, gas chromatography-flame photometric detection (GC-FPD), GC-nitrogen-phosphorus detection (NPD), GC-atomic emission detection (AED), GC-mass spectrometry (MS) as well as liquid chromatography (LC)-MS/MS and GC-Inductively-coupled plasma-MS (ICP-MS) are used. GC-ICP-MS is a promising method, because it provides much less complex chromatograms while offering the same recoveries and limits of detection (LOD) (instrumental LOD is 5-10 ng mL(-1)) compared to GC-NPD and GC-MS, which are frequently used methods for PFR analysis. GC-MS offers a higher selectivity than GC-NPD and the possibility of using isotopically labeled compounds for quantification.
Collapse
|
Review |
13 |
1881 |
2
|
Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:9-17. [PMID: 14698924 PMCID: PMC1241790 DOI: 10.1289/ehp.6559] [Citation(s) in RCA: 1131] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen because of the occurrence of several classes of BFRs in the environment and in human biota. The widespread production and use of BFRs; strong evidence of increasing contamination of the environment, wildlife, and people; and limited knowledge of potential effects heighten the importance of identifying emerging issues associated with the use of BFRs. In this article, we briefly review scientific issues associated with the use of tetrabromobisphenol A, hexabromocyclododecane, and three commercial mixtures of polybrominated diphenyl ethers and discuss data gaps. Overall, the toxicology database is very limited; the current literature is incomplete and often conflicting. Available data, however, raise concern over the use of certain classes of brominated flame retardants.
Collapse
|
Review |
21 |
1131 |
3
|
Wei GL, Li DQ, Zhuo MN, Liao YS, Xie ZY, Guo TL, Li JJ, Zhang SY, Liang ZQ. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:29-46. [PMID: 25290907 DOI: 10.1016/j.envpol.2014.09.012] [Citation(s) in RCA: 898] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 05/20/2023]
Abstract
Due to the restricted use and ban of brominated flame retardants, organophosphorus compounds (OPs), extensively used as flame retardants and plasticizers, are ubiquitous in various environmental compartments worldwide. The present study shows that the release of OPs from a wide variety of commercial products and wastewater discharge might be considered as primary emission sources and that high potential of long-range atmospheric transport and persistence of OPs would be responsible for their presence in various matrices on a global scale. The occurrence and environmental behaviors of OPs in diverse matrices (e.g., dust, air, water, sediment, soil and biota) are reviewed. Human exposures to OPs via dermal contact, dust ingestion, inhalation and dietary intake are comprehensively evaluated. Finally, this study identifies gaps in the existing issues and generates a future agenda for the emerging contaminants OPs.
Collapse
|
|
10 |
898 |
4
|
Darnerud PO. Toxic effects of brominated flame retardants in man and in wildlife. ENVIRONMENT INTERNATIONAL 2003; 29:841-53. [PMID: 12850100 DOI: 10.1016/s0160-4120(03)00107-7] [Citation(s) in RCA: 704] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Brominated flame retardants (BFRs) are ubiquitous industrial chemicals, and many of them are produced in large volumes. Due to this fact, several BFRs are found in quantifiable levels in wildlife, as well as in humans. However, we are still lacking information on the effects of BFR in wildlife and, especially, in man. This review summarises the biological effects of polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA) and derivates, hexabromocyclododecane (HBCD) and polybrominated biphenyls (PBBs), however excluding other aspects such as environmental levels. These BFR groups were selected because of a large volume production (PBDEs, TBBPA and derivates), and availability of some toxicity data in spite of much lower production volumes (HBCD and PBBs). In addition, the increase in levels of PBDEs in human (breast milk) and wildlife samples during later time made it especially interesting to include this BFR group. PBDES: The commercial PBDE products predominantly consist of so-called penta-, octa- and decabromodiphenyl ether products. Each product consists of a rather narrow range of congeners and is named after the dominating congener as regards the bromination pattern. Generally, the PentaBDEs seem to cause adverse effects at the comparably lowest dose, whereas much higher doses were needed for effects of the DecaBDEs. The critical effects of PentaBDEs are those on neurobehavioural development (from 0.6 mg/kg body weight) and, at somewhat higher dose, thyroid hormone levels in rats and mice, of OctaBDEs on fetal toxicity/teratogenicity in rats and rabbits (from 2 mg/kg body weight), and of DecaBDEs on thyroid, liver and kidney morphology in adult animals (from 80 mg/kg body weight). Carcinogenicity studies, only performed for DecaBDEs, show some effects at very high levels, and IARC (1990) evaluates DecaBDEs not classifiable as to its carcinogenicity to humans. TBBPA: The toxicity of TBBPA in the experimental in vivo studies is suggested to be low. In most reported studies, only doses in g/kg body weight were effective, but at least one study suggested renal effects at around 250 mg/kg body weight. Although difficult to include and interpret in a quantitative risk assessment, the in vitro effects on immunological and thyroid hormones, as well as binding to erythrocytes should be noted. Before a solid standpoint could be reached on TBBPA toxicity additional studies must be performed. This statement is even more valid regarding the TBBPA derivates, where there is an almost complete lack of toxicity data. HBCD: Also in the case of HBCD, relevant toxicity studies are lacking. Based on the present animal studies, a critical effect is seen in the liver and on thyroid hormones (LOAEL 100 mg/kg body weight/day). However, in a recent short paper behavioural effects in mice pups were observed already at 0.9 mg/kg body weight, and behavioural effects may be a sensitive endpoint for HBCD, as well as for other BFRs. PBBS: Due to the Michigan accident in 1973-1974, many toxicity studies on PBBs are available. The critical experimental effects are those on reproduction and carcinogenicity, and a NOAEL of 0.15 mg/kg body weight/day could be suggested based on the cancer effects. In man no unequivocal effects have been observed, although in some studies neurological and musculoskeletal symptoms were suggested. Based on the carcinogenic effects in animals, a human TDI of 0.15 microg/kg body weight has been presented. To conclude, the toxicity data are almost entirely based on experimental models. There are differences among the BFR groups, as well as within these groups, both regarding type of toxic effect and at what dose it appears. As BFRs will continue to appear both in industrial applications and, even if the production has ceased, in our environment, there is a continued need for effects studies on BFRs.
Collapse
|
Review |
22 |
704 |
5
|
Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A. In Vitro Profiling of the Endocrine-Disrupting Potency of Brominated Flame Retardants. Toxicol Sci 2006; 92:157-73. [PMID: 16601080 DOI: 10.1093/toxsci/kfj187] [Citation(s) in RCA: 556] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, increasing evidence has become available that some brominated flame retardants (BFRs) may have endocrine-disrupting (ED) potencies. The goal of the current study was to perform a systematic in vitro screening of the ED potencies of BFRs (1) to elucidate possible modes of action of BFRs in man and wildlife and (2) to classify BFRs with similar profiles of ED potencies. A test set of 27 individual BFRs were selected, consisting of 19 polybrominated diphenyl ether congeners, tetrabromobisphenol-A, hexabromocyclododecane, 2,4,6-tribromophenol, ortho-hydroxylated brominated diphenyl ether 47, and tetrabromobisphenol-A-bis(2,3)dibromopropyl ether. All BFRs were tested for their potency to interact with the arylhydrocarbon receptor, androgen receptor (AR), progesterone receptor (PR), and estrogen receptor. In addition, all BFRs were tested for their potency to inhibit estradiol (sulfation by estradiol sulfotransferase (E2SULT), to interfere with thyroid hormone 3,3',5-triiodothyronine (T3)-mediated cell proliferation, and to compete with T3-precursor thyroxine for binding to the plasma transport protein transthyretin (TTR). The results of the in vitro screening indicated that BFRs have ED potencies, some of which had not or only marginally been described before (AR antagonism, PR antagonism, E2SULT inhibition, and potentiation of T3-mediated effects). For some BFRs, the potency to induce AR antagonism, E2SULT inhibition, and TTR competition was higher than for natural ligands or clinical drugs used as positive controls. Based on their similarity in ED profiles, BFRs were classified into five different clusters. These findings support further investigation of the potential ED effects of these environmentally relevant BFRs in man and wildlife.
Collapse
|
|
19 |
556 |
6
|
Meeker JD, Stapleton HM. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:318-23. [PMID: 20194068 PMCID: PMC2854757 DOI: 10.1289/ehp.0901332] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/13/2009] [Indexed: 05/15/2023]
Abstract
BACKGROUND Organophosphate (OP) compounds, such as tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP), are commonly used as additive flame retardants and plasticizers in a wide range of materials. Although widespread human exposure to OP flame retardants is likely, there is a lack of human and animal data on potential health effects. OBJECTIVE We explored relationships of TDCPP and TPP concentrations in house dust with hormone levels and semen quality parameters. METHODS We analyzed house dust from 50 men recruited through a U.S. infertility clinic for TDCPP and TPP. Relationships with reproductive and thyroid hormone levels, as well as semen quality parameters, were assessed using crude and multivariable linear regression. RESULTS TDCPP and TPP were detected in 96% and 98% of samples, respectively, with widely varying concentrations up to 1.8 mg/g. In models adjusted for age and body mass index, an interquartile range (IQR) increase in TDCPP was associated with a 3% [95% confidence interval (CI), 5% to 1%) decline in free thyroxine and a 17% (95% CI, 432%) increase in prolactin. There was a suggestive inverse association between TDCPP and free androgen index that became less evident in adjusted models. In the adjusted models, an IQR increase in TPP was associated with a 10% (95% CI, 219%) increase in prolactin and a 19% (95% CI, 30% to 5%) decrease in sperm concentration. CONCLUSION OP flame retardants may be associated with altered hormone levels and decreased semen quality in men. More research on sources and levels of human exposure to OP flame retardants and associated health outcomes are needed.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
530 |
7
|
Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Niedzwiecki M, Wang RY, Perera F. Prenatal exposure to PBDEs and neurodevelopment. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:712-719. [PMID: 20056561 PMCID: PMC2866690 DOI: 10.1289/ehp.0901340] [Citation(s) in RCA: 497] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/04/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds that are persistent and bioaccumulative and therefore have become ubiquitous environment contaminants. Animal studies suggest that prenatal PBDE exposure may result in adverse neurodevelopmental effects. OBJECTIVE In a longitudinal cohort initiated after 11 September 2001, including 329 mothers who delivered in one of three hospitals in lower Manhattan, New York, we examined prenatal PBDE exposure and neurodevelopment when their children were 12-48 and 72 months of age. METHODS We analyzed 210 cord blood specimens for selected PBDE congeners and assessed neurodevelopmental effects in the children at 12-48 and 72 months of age; 118, 117, 114, 104, and 96 children with available cord PBDE measurements were assessed at 12, 24, 36, 48, and 72 months, respectively. We used multivariate regression analyses to evaluate the associations between concentrations of individual PBDE congeners and neurodevelopmental indices. RESULTS Median cord blood concentrations of PBDE congeners 47, 99, and 100 were 11.2, 3.2, and 1.4 ng/g lipid, respectively. After adjustment for potential confounders, children with higher concentrations of BDEs 47, 99, or 100 scored lower on tests of mental and physical development at 12-48 and 72 months. Associations were significant for 12-month Psychomotor Development Index (BDE-47), 24-month Mental Development Index (MDI) (BDE-47, 99, and 100), 36-month MDI (BDE-100), 48-month full-scale and verbal IQ (BDE-47, 99, and 100) and performance IQ (BDE-100), and 72-month performance IQ (BDE-100). CONCLUSIONS This epidemiologic study demonstrates neurodevelopmental effects in relation to cord blood PBDE concentrations. Confirmation is needed in other longitudinal studies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
497 |
8
|
Watanabe I, Sakai SI. Environmental release and behavior of brominated flame retardants. ENVIRONMENT INTERNATIONAL 2003; 29:665-682. [PMID: 12850086 DOI: 10.1016/s0160-4120(03)00123-5] [Citation(s) in RCA: 450] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, environmental problems relating to brominated flame retardants (BFRs) have become a matter of greater concern than ever before, because of the recent marked increase in levels of polybrominated diphenyl ethers (PBDEs) found in human milk in Sweden and North America. The question that arises is whether environmental levels of PBDEs and other BFRs will continue to increase, causing toxic effects to humans. In an attempt to elucidate the current state of the science of BFRs, we review the consumer demand for BFRs (mainly in Japan), the characteristics of waste flame-retarded products, sources of emission, environmental behavior, routes of exposure of humans, temporal trends, and thermal-breakdown products of BFRs. At present, flame-retarded consumer products manufactured 10-20 years ago, when PBDEs were frequently used, are being dumped. The possible major sources of emission of BFRs into the environment are effluent and flue gases from BFR factories and other facilities processing BFRs. With respect to the environmental behavior of BFRs, the lower brominated compounds are, on the whole, predicted to be more volatile, more water soluble, and more bioaccumulative than the higher brominated compounds. The most probable route for exposure of the general human population to PBDEs, especially the lower brominated congeners, is through the diet. The release of BFRs from consumer products treated with these compounds could also lead to human exposure. Temporal trends in PBDE levels in the environment and in humans worldwide seem to vary considerably, depending on the regions or country, with possible reflections of the historic and current use of PBDEs. The environment and the general human population are also exposed to the thermal-breakdown products of PBDEs, such as polybrominated and mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PBDDs/DFs and mixed PXDDs/DFs).
Collapse
|
Review |
22 |
450 |
9
|
Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012; 355:240-8. [PMID: 21939731 DOI: 10.1016/j.mce.2011.09.005] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/29/2011] [Accepted: 09/02/2011] [Indexed: 11/17/2022]
Abstract
In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert thyroid effects through a variety of mechanisms of action, and some animal experiments and in vitro studies have focused on elucidating the mode of action of specific chemical compounds. Long-term human studies on effects of environmental chemicals on thyroid related outcomes such as growth and development are still lacking. The human exposure scenario with life long exposure to a vast mixture of chemicals in low doses and the large physiological variation in thyroid hormone levels between individuals render human studies very difficult. However, there is now reasonably firm evidence that PCBs have thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties.
Collapse
|
Review |
13 |
444 |
10
|
Costa LG, Giordano G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology 2007; 28:1047-67. [PMID: 17904639 PMCID: PMC2118052 DOI: 10.1016/j.neuro.2007.08.007] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 07/24/2007] [Accepted: 08/14/2007] [Indexed: 11/20/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in a variety of consumer products. In the past 25 years, PBDEs have become ubiquitous environmental contaminants. They have been detected in soil, air, sediments, birds, marine species, fish, house dust, and human tissues, blood and breast milk. Diet and house dust appear to be the major sources of PBDE exposure in the general population, though occupational exposure can also occur. Levels of PBDEs in human tissues are particularly high in North America, compared to Asian and European countries, and have been increasing in the past 30 years. Concentrations of PBDEs are particularly high in breast milk, resulting in high exposure of infants. In addition, for toddlers, dust has been estimated to account for a large percentage of exposure. PBDEs can also cross the placenta, as they have been detected in fetal blood and liver. Tetra-, penta- and hexaBDEs are most commonly present in human tissues. The current greatest concern for potential adverse effects of PBDEs relates to their developmental neurotoxicity. Pre- or postnatal exposure of mice or rats to various PBDEs has been shown to cause long-lasting changes in spontaneous motor activity, mostly characterized as hyperactivity or decreased habituation, and to disrupt performance in learning and memory tests. While a reduction in circulating thyroid hormone (T(4)) may contribute to the developmental neurotoxicity of PBDEs, direct effects on the developing brain have also been reported. Among these, PBDEs have been shown to affect signal transduction pathways and to cause oxidative stress. Levels of PBDEs causing developmental neurotoxicity in animals are not much dissimilar from levels found in highly exposed infants and toddlers.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
420 |
11
|
Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AOW, Wong CSC, Luksemburg WJ, Wong AS. Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 149:131-40. [PMID: 17412468 DOI: 10.1016/j.envpol.2007.01.044] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/20/2006] [Accepted: 01/06/2007] [Indexed: 05/14/2023]
Abstract
This paper reviews the concentrations of persistent organic pollutants such as flame retardants (PBDEs), dioxins/furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals/metalloid concentrations of different environmental media at Guiyu, a traditional rice-growing village located in southeastern Guangdong Province (PR China), which has turned into an intensive electronic-waste (e-waste) recycling site. Incomplete combustion of e-waste in open air and dumping of processed materials are the major sources of various toxic chemicals. By comparing with existing data available in other areas and also guidelines adopted in different countries, it is obvious that the environment is highly contaminated by these toxic chemicals derived from the recycling processes. For example, the monthly concentration of the sum of 22 PBDE congeners contained in PM(2.5) (16.8ngm(-3)) of air samples at Guiyu was 100 times higher than published data. In order to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways of different toxic chemicals which may affect the workers and local residents especially mothers, infants and children.
Collapse
|
Review |
18 |
410 |
12
|
Rahman F, Langford KH, Scrimshaw MD, Lester JN. Polybrominated diphenyl ether (PBDE) flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2001; 275:1-17. [PMID: 11482396 DOI: 10.1016/s0048-9697(01)00852-x] [Citation(s) in RCA: 407] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polybrominated diphenyl ether, PBDE, flame retardants are now a world-wide pollution problem reaching even remote areas. They have been found to bioaccumulate and there are concerns over the health effects of exposure to PBDEs, they also have potential endocrine disrupting properties. They are lipophilic compounds so are easily removed from the aqueous environment and are predicted to sorb onto sediments and particulate matter or to fatty tissue, aiding their distribution throughout the environment. PBDEs are structurally similar to PCBs and DDT and, therefore, their chemical properties, persistence and distribution in the environment follow similar patterns. Concentrations of PBDEs found in environmental samples are now higher than those of PCBs. Evidence to date demonstrates that PBDEs are a growing problem in the environment and concern over their fate and effects is warranted. The manufacture of reactive and additive flame retardants is briefly discussed and their fate and behaviour in the environment is assessed. PBDE toxicology is reviewed and methods of analysis are evaluated.
Collapse
|
Comparative Study |
24 |
407 |
13
|
Lorber M. Exposure of Americans to polybrominated diphenyl ethers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2008; 18:2-19. [PMID: 17426733 DOI: 10.1038/sj.jes.7500572] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polybrominated diphenyl ethers, PBDEs, are a class of brominated flame retardants that, like other persistent organic pollutants (POPs), have been found in humans, wildlife, and biota worldwide. Unlike other POPs, however, the key routes of human exposure are not thought to be food and fish, but rather are from their use in household consumer products, and to the high levels of PBDEs found in house dust. The exposure of Americans to PBDEs was systematically evaluated in this study. First, exposure media data on PBDE congeners were compiled. Then, an adult intake dose was derived using exposure factors in combination with these data. The exposure pathways evaluated included food and water ingestion, inhalation, and ingestion and dermal contact to house dust. These intakes were converted to a body burden using a simple pharmacokinetic (PK) model. The predicted body burdens were compared with representative profiles of PBDEs in blood and milk. The adult intake dose of total PBDEs was estimated to be 7.7 ng/kg body weight/day, and children's estimated intakes were higher at 49.3 ng/kg/day for ages 1-5, 14.4 ng/kg/day for 6-11, and 9.1 ng/kg/day for 12-19. The much higher dose for the child age 1-5 was due to the doubling of dust ingestion from 50 to 100 mg/day. The predicted adult body burden of total PBDEs was 33.8 ng/kg lipid weight (lwt), compared to representative measurements in blood and milk at 64.0 and 93.7 ng/g lwt, respectively Most of this apparent underprediction in total concentration was due to an underprediction of the key congener, BDE 47. The value for BDE 47 half-life in the body was identified as the variable most likely in error in this exercise. Other congener predictions compared well with measurements, suggesting general validity with the approach. An important finding from this assessment is that the food intake estimate of about 1.3 ng/kg/day (of the 7.7 ng/kg/day total) cannot explain current US body burdens; exposures to PBDEs in house dust accounted for 82% of the overall estimated intakes.
Collapse
|
Review |
17 |
384 |
14
|
Liu X, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:173-81. [PMID: 22446829 DOI: 10.1016/j.aquatox.2012.02.019] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) are frequently detected in environment and biota. However, knowledge on their potential toxicological effects is limited. Endocrine disrupting potentials of six OPFRs, i.e., tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP), tris-(1,3-dichloro-2-propyl) phosphate (TDCPP), tris-(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tricresyl phosphate (TCP), were investigated using human cell lines as well as zebrafish (Danio rerio). Sex hormone synthesis and steroidogenic gene transcriptions were measured using H295R cells. With MVLN cells, estrogen receptor binding activities of OPFRs were evaluated. In zebrafish, sex hormones and related gene transcriptions were determined for each sex after 14d exposure to OPFRs. All six OPFRs increased both 17β-estradiol (E2) and testosterone (T) concentrations in H295R cells. In addition, transcription of four major steroidogenic genes was up-regulated and that of two sulfotransferase genes was down-regulated. In MVLN cells, no OPFRs acted as estrogen receptor agonists, while TDCPP, TPP, and TCP acted as antagonists inhibiting binding of E2 to estrogen receptor. After 14d of zebrafish exposure, TCP, TDCPP, or TPP significantly increased plasma T and E2 concentrations, but did not change 11-ketotestosterone (11-KT) among female fish. Among males, both T and 11-KT decreased and E2 increased. In general, transcription of CYP17 and CYP19a genes was significantly up-regulated in both sexes, while vitellogenin (VTG) 1 gene was down- and up-regulated in female and male fish, respectively. The results of this study showed that OPFRs could alter sex hormone balance through several mechanisms including alterations of steroidogenesis or estrogen metabolism.
Collapse
|
|
13 |
338 |
15
|
Hale RC, Alaee M, Manchester-Neesvig JB, Stapleton HM, Ikonomou MG. Polybrominated diphenyl ether flame retardants in the North American environment. ENVIRONMENT INTERNATIONAL 2003; 29:771-9. [PMID: 12850095 DOI: 10.1016/s0160-4120(03)00113-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
North America consumes over half of the world's production of polybrominated diphenyl ether (PBDE) flame retardants. About 98% of global demand for the Penta-BDE mixture, the constituents of which are the most bioaccumulative and environmentally widespread, resides here. However, research on the environmental distribution of PBDEs in North America has lagged behind that in Northern Europe. Examination of available governmentally maintained release data suggests that Deca-BDE use in the US substantially exceeds that in Canada. Penta-BDE use probably follows a similar pattern. PBDE demand in Mexico is uncertain, but is assumed to be comparatively modest. Recent research examining air, water, sediment, sewage sludge and aquatic biota suggests that Penta-BDE constituents are present in geographically disparate locations in the US and Canada. The less brominated congeners have been observed in areas distant from their known use or production, e.g. the Arctic. PBDEs have been detected in low concentrations in North American air, water and sediment, but much higher levels in aquatic biota. Increased burdens as a function of position in the food web have been noted. PBDE concentrations in US and Canadian sewage sludges appear to be at least 10-fold greater than European levels and may be a useful barometer of release. In general, PBDE concentrations in environmental media reported in North America are comparable or exceed those observed elsewhere in the world. In contrast to Europe, environmental burdens are increasing over time here, consistent with the greater consumption of the commercial mixtures. However, data remain relatively scarce. Deca-BDE in the North American environment appears largely restricted to points of release, e.g. urban areas and those where PBDE-containing sewage sludges have been applied. This lack of redistribution is likely due to its extremely low volatility and water solubility. Penta-BDE and Deca-BDE products are used in different applications and this may also be a factor controlling their environmental release.
Collapse
|
Review |
22 |
320 |
16
|
Dishaw LV, Powers CM, Ryde IT, Roberts SC, Seidler FJ, Slotkin TA, Stapleton HM. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol Appl Pharmacol 2011; 256:281-9. [PMID: 21255595 PMCID: PMC3089808 DOI: 10.1016/j.taap.2011.01.005] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 11/20/2022]
Abstract
Organophosphate flame retardants (OPFRs) are used as replacements for the commercial PentaBDE mixture that was phased out in 2004. OPFRs are ubiquitous in the environment and detected at high concentrations in residential dust, suggesting widespread human exposure. OPFRs are structurally similar to neurotoxic organophosphate pesticides, raising concerns about exposure and toxicity to humans. This study evaluated the neurotoxicity of tris (1,3-dichloro-2-propyl) phosphate (TDCPP) compared to the organophosphate pesticide, chlorpyrifos (CPF), a known developmental neurotoxicant. We also tested the neurotoxicity of three structurally similar OPFRs, tris (2-chloroethyl) phosphate (TCEP), tris (1-chloropropyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP), and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a major component of PentaBDE. Using undifferentiated and differentiating PC12 cells, changes in DNA synthesis, oxidative stress, differentiation into dopaminergic or cholinergic neurophenotypes, cell number, cell growth and neurite growth were assessed. TDCPP displayed concentration-dependent neurotoxicity, often with effects equivalent to or greater than equimolar concentrations of CPF. TDCPP inhibited DNA synthesis, and all OPFRs decreased cell number and altered neurodifferentiation. Although TDCPP elevated oxidative stress, there was no adverse effect on cell viability or growth. TDCPP and TDBPP promoted differentiation into both neuronal phenotypes, while TCEP and TCPP promoted only the cholinergic phenotype. BDE-47 had no effect on cell number, cell growth or neurite growth. Our results demonstrate that different OPFRs show divergent effects on neurodifferentiation, suggesting the participation of multiple mechanisms of toxicity. Additionally, these data suggest that OPFRs may affect neurodevelopment with similar or greater potency compared to known and suspected neurotoxicants.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
311 |
17
|
Roze E, Meijer L, Bakker A, Van Braeckel KNJA, Sauer PJJ, Bos AF. Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive, and behavioral performance at school age. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1953-8. [PMID: 20049217 PMCID: PMC2799472 DOI: 10.1289/ehp.0901015] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 08/31/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age. METHODS This study was part of the prospective Groningen infant COMPARE (Comparison of Exposure-Effect Pathways to Improve the Assessment of Human Health Risks of Complex Environmental Mixtures of Organohalogens) study. It included 62 children in whose mothers the following compounds had been determined in the 35th week of pregnancy: 2,2'-bis-(4 chlorophenyl)-1,1'-dichloroethene, pentachlorophenol (PCP), polychlorinated biphenyl congener 153 (PCB-153), 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4OH-CB-107), 4OH-CB-146, 4OH-CB-187, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), BDE-99, BDE-100, BDE-153, BDE-154, and hexabromocyclododecane. Thyroid hormones were determined in umbilical cord blood. When the children were 5-6 years of age, we assessed their neuropsychological functioning: motor performance (coordination, fine motor skills), cognition (intelligence, visual perception, visuomotor integration, inhibitory control, verbal memory, and attention), and behavior. RESULTS Brominated flame retardants correlated with worse fine manipulative abilities, worse attention, better coordination, better visual perception, and better behavior. Chlorinated OHCs correlated with less choreiform dyskinesia. Hydroxylated polychlorinated biphenyls correlated with worse fine manipulative abilities, better attention, and better visual perception. The wood protective agent (PCP) correlated with worse coordination, less sensory integrity, worse attention, and worse visuomotor integration. CONCLUSIONS Our results demonstrate for the first time that transplacental transfer of polybrominated flame retardants is associated with the development of children at school age. Because of the widespread use of these compounds, especially in the United States, where concentrations in the environment are four times higher than in Europe, these results cause serious concern.
Collapse
|
research-article |
16 |
307 |
18
|
Hakk H, Letcher RJ. Metabolism in the toxicokinetics and fate of brominated flame retardants--a review. ENVIRONMENT INTERNATIONAL 2003; 29:801-28. [PMID: 12850098 DOI: 10.1016/s0160-4120(03)00109-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several classes of brominated flame retardants (BFRs), namely polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCCD), bis(2,4,6-tribromophenoxy)ethane (BTBPE), and tris(2,3-dibromopropyl)phosphate (Tris), have been identified as environmental contaminants. PBDEs, TBBPA, and HBCCD are of particular concern due to increasing environmental concentrations and their ubiquitous presence in the tissues of humans and wildlife from Europe, Japan, and North America. Regardless, the toxicokinetics, in particular metabolism, of BFRs has received little attention. The present review summarizes the current state of knowledge of BFR metabolism, which is an important factor in determining the bioaccumulation, fate, toxicokinetics, and potential toxicity of BFRs in exposed organisms. Of the minimal metabolism research done, BFRs have been shown to be susceptible to several metabolic processes including oxidative debromination, reductive debromination, oxidative CYP enzyme-mediated biotransformation, and/or Phase II conjugation (glucuronidation and sulfation).However, substantially more research on metabolism is necessary to fully assess BFR fate, uptake and elimination kinetics, metabolic pathways, inter-species differences, the influence of congener structure, and the potential health risks to exposed organisms.
Collapse
|
Review |
22 |
305 |
19
|
Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Fernie K, Toms LML, Takigami H. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. ENVIRONMENT INTERNATIONAL 2014; 65:147-58. [PMID: 24486972 DOI: 10.1016/j.envint.2014.01.006] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 05/03/2023]
Abstract
In this paper, we have compiled and reviewed the most recent literature, published in print or online from January 2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. More data are now becoming available for remote areas not previously studied, Indian Ocean islands, for example. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in polar bears and some birds at high trophic levels in northern Europe. This may be partially a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance of this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey. Temporal trends for both PBDEs and HBCD in Asia are unclear currently. A knowledge gap has been noted in relation to metabolism and/or debromination of BDE209 and HBCD in birds. Further monitoring of human exposure and environmental contamination in areas of e-waste recycling, particularly in Asia and Africa, is warranted. More data on temporal trends of BDE and HBCD concentrations in a variety of matrices and locations are needed before the current status of these compounds can be fully assessed, and the impact of regulation and changing usage patterns among different flame retardants determined.
Collapse
|
Review |
11 |
293 |
20
|
Law RJ, Alaee M, Allchin CR, Boon JP, Lebeuf M, Lepom P, Stern GA. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. ENVIRONMENT INTERNATIONAL 2003; 29:757-770. [PMID: 12850094 DOI: 10.1016/s0160-4120(03)00110-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we review the available data for polybrominated diphenylethers (PBDEs) and other flame retardants in wildlife, with the exception of fishes from Europe and North America which are covered in more detail elsewhere. More data are available for PBDEs than for other compounds, and these show that some of these compounds have become widely distributed in the environment, being found in samples from Europe, Australia, Azerbaijan, North America and the Arctic. Most available data relate to birds and their eggs and marine mammals, but the results of two food web studies are also included. The detection of PBDEs in pelagic marine mammals which feed in deep offshore waters, including baleen whales, indicate that these compounds have found their way into deep-water, oceanic food webs as well as the coastal/shallow sea examples described in detail. In the North Sea study, the most marked increase in lipid-normalised concentrations of six BDE congeners occurred during transfer from predatory fish to marine mammals. In the St. Lawrence Estuary study, marked differences in the ratios observed between species suggested that some fish species may be able to metabolise BDE99.A number of time trend studies have also been conducted, notably in guillemot eggs from Sweden (1969-2000), beluga whales from the Canadian Arctic (1982-1997 and 1989-2001) and from the St. Lawrence Estuary (1988-1999), and ringed seals from the Canadian Arctic (1981-2000). In the temperate latitudes, from these and other studies (e.g. in dated sediment cores), PBDE concentrations began to rise earlier than in those from high latitudes, in line with data for production and use. These trends have now slowed in many cases. Declines could be expected in Europe for many congeners following the cessation of manufacture and use of the penta-mix formulation in the EU, though these are not yet apparent in environmental samples. In Arctic biota, however, the rapidly rising concentrations seen currently in Canada could be expected to continue for some time, reflecting continued production and use of the penta-mix formulation in North America (>95% of the world total) and the impact of long-range atmospheric transport.
Collapse
|
Review |
22 |
266 |
21
|
Main KM, Kiviranta H, Virtanen HE, Sundqvist E, Tuomisto JT, Tuomisto J, Vartiainen T, Skakkebaek NE, Toppari J. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1519-26. [PMID: 17938745 PMCID: PMC2022640 DOI: 10.1289/ehp.9924] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 05/30/2007] [Indexed: 05/02/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are widely used in Western countries. OBJECTIVES Because the prevalence of cryptorchidism appears to be increasing, we investigated whether exposure to PBDEs was associated with testicular maldescent. METHODS In a prospective Danish-Finnish study, 1997-2001, all boys were examined for cryptorchidism. We analyzed whole placentas (for 95 cryptorchid/185 healthy boys) and individual breast milk samples (62/68) for 14 PBDEs and infant serum samples for gonadotropins, sex-hormone binding globulin, testosterone, and inhibin B. RESULTS In 86 placenta-milk pairs, placenta PBDE concentrations in fat were lower than in breast milk, and a larger number of congeners were nondetectable. There was no significant difference between boys with and without cryptorchidism for individual congeners, the sum of 5 most prevalent, or all 14 congeners. The concentration of PBDEs in breast milk was significantly higher in boys with cryptorchidism than in controls (sum of BDEs 47, 153, 99, 100, 28, 66, and 154: median, 4.16 vs. 3.16 ng/g fat; p < 0.007). There was a positive correlation between the sum of PBDEs and serum luteinizing hormone (p < 0.033). The sum of PBDEs in breast milk did not differ between Denmark and Finland (median, 3.52 vs. 3.44 ng/g fat), but significant differences in some individual congeners were found. CONCLUSIONS Two different proxies were used for prenatal PBDE exposure, and levels in breast milk, but not in placenta, showed an association with congenital cryptorchidism. Other environmental factors may contribute to cryptorchidism. Our observations are of concern because human exposure to PBDEs is high in some geographic areas.
Collapse
|
research-article |
18 |
256 |
22
|
Dingemans MML, van den Berg M, Westerink RHS. Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:900-7. [PMID: 21245014 PMCID: PMC3223008 DOI: 10.1289/ehp.1003035] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/18/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND/OBJECTIVE Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH-) or methoxylated forms have been detected in humans. Because this raises concern about adverse effects on the developing brain, we reviewed the scientific literature on these mechanisms. DATA SYNTHESIS Many rodent studies reported behavioral changes after developmental, neonatal, or adult exposure to PBDEs, and other studies documented subtle structural and functional alterations in brains of PBDE-exposed animals. Functional effects have been observed on synaptic plasticity and the glutamate-nitric oxide-cyclic guanosine monophosphate pathway. In the brain, changes have been observed in the expression of genes and proteins involved in synapse and axon formation, neuronal morphology, cell migration, synaptic plasticity, ion channels, and vesicular neurotransmitter release. Cellular and molecular mechanisms include effects on neuronal viability
(via apoptosis and oxidative stress), neuronal differentiation and migration, neurotransmitter release/uptake, neurotransmitter receptors and ion channels, calcium (Ca²⁺) homeostasis, and intracellular signaling pathways. DISCUSSION Bioactivation of PBDEs by hydroxylation has been observed for several endocrine end points. This has also been observed for mechanisms related to neurodevelopment, including binding to thyroid hormone receptors and transport proteins, disruption of Ca²⁺ homeostasis, and modulation of GABA and nicotinic acetylcholine receptor function. CONCLUSIONS The increased hazard for developmental neurotoxicity by hydroxylated (OH-)PBDEs compared with their parent congeners via direct neurotoxicity and thyroid disruption clearly warrants further investigation into a) the role of oxidative metabolism in producing active metabolites of PBDEs and their impact on brain development; b) concentrations of parent and OH-PBDEs in the brain; and c) interactions between different environmental contaminants during exposure to mixtures, which may increase neurotoxicity.
Collapse
|
Review |
14 |
254 |
23
|
Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 2003; 192:95-106. [PMID: 14550744 DOI: 10.1016/s0041-008x(03)00217-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Flame retardants are used to suppress or inhibit combustion processes in an effort to reduce the risk of fire. One class of flame retardants, polybrominated diphenyl ethers (PBDEs), are present and increasing in the environment and in human milk. The present study shows that neonatal exposure to 2,2',4,4',5,5'-hexaBDE (PBDE 153), a PBDE persistent both in environment and in human milk, can induce developmental neurotoxic effects, such as changes in spontaneous behaviour (hyperactivity), impairments in learning and memory, and reduced amounts of nicotinic receptors, effects that get worse with age. Neonatal NMRI male mice were orally exposed on day 10 to 0.45, 0.9, or 9.0 mg of PBDE 153/kg of body weight. Spontaneous behaviour (locomotion, rearing, and total activity) was observed in 2-, 4-, and 6-month-old mice, Morris water maze at an age of 6 months. The behaviour tests showed that the effects were dose-response and time-response related. Animals showing defects in learning and memory also showed significantly reduced amounts of nicotinic receptors in hippocampus, using alpha-bungarotoxin binding assay. The observed developmental neurotoxic effects seen for PBDE 153 are similar to those seen for PBDE 99 and for certain PCBs. Furthermore, PBDEs appear to as potent as the PCBs.
Collapse
|
|
22 |
248 |
24
|
Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjödin A, Hauser R, Webster GM, Chen A, Lanphear BP. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:513-20. [PMID: 24622245 PMCID: PMC4014765 DOI: 10.1289/ehp.1307261] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/20/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) may be involved in the etiology of autism spectrum disorders, but identifying relevant chemicals within mixtures of EDCs is difficult. OBJECTIVE Our goal was to identify gestational EDC exposures associated with autistic behaviors. METHODS We measured the concentrations of 8 phthalate metabolites, bisphenol A, 25 polychlorinated biphenyls (PCBs), 6 organochlorine pesticides, 8 brominated flame retardants, and 4 perfluoroalkyl substances in blood or urine samples from 175 pregnant women in the HOME (Health Outcomes and Measures of the Environment) Study (Cincinnati, OH). When children were 4 and 5 years old, mothers completed the Social Responsiveness Scale (SRS), a measure of autistic behaviors. We examined confounder-adjusted associations between 52 EDCs and SRS scores using a two-stage hierarchical analysis to account for repeated measures and confounding by correlated EDCs. RESULTS Most of the EDCs were associated with negligible absolute differences in SRS scores (≤ 1.5). Each 2-SD increase in serum concentrations of polybrominated diphenyl ether-28 (PBDE-28) (β = 2.5; 95% CI: -0.6, 5.6) or trans-nonachlor (β = 4.1; 95% CI: 0.8-7.3) was associated with more autistic behaviors. In contrast, fewer autistic behaviors were observed among children born to women with detectable versus nondetectable concentrations of PCB-178 (β = -3.0; 95% CI: -6.3, 0.2), β-hexachlorocyclohexane (β = -3.3; 95% CI: -6.1, -0.5), or PBDE-85 (β = -3.2; 95% CI: -5.9, -0.5). Increasing perfluorooctanoate (PFOA) concentrations were also associated with fewer autistic behaviors (β = -2.0; 95% CI: -4.4, 0.4). CONCLUSIONS Some EDCs were associated with autistic behaviors in this cohort, but our modest sample size precludes us from dismissing chemicals with null associations. PFOA, β-hexachlorocyclohexane, PCB-178, PBDE-28, PBDE-85, and trans-nonachlor deserve additional scrutiny as factors that may be associated with childhood autistic behaviors.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
244 |
25
|
Kuriyama SN, Talsness CE, Grote K, Chahoud I. Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:149-54. [PMID: 15687051 PMCID: PMC1277857 DOI: 10.1289/ehp.7421] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/04/2004] [Indexed: 05/18/2023]
Abstract
In utero exposure to a single low dose of 2,2 ,4,4 ,5-pentabromodiphenyl ether (PBDE-99) disrupts neurobehavioral development and causes permanent effects on the rat male reproductive system apparent in adulthood. PBDEs, a class of flame retardants, are widely used in every sector of modern life to prevent fire. They are persistent in the environment, and increasing levels of PBDEs have been found in biota and human breast milk. In the present study we assessed the effects of developmental exposure to one of the most persistent PBDE congeners (PBDE-99) on juvenile basal motor activity levels and adult male reproductive health. Wistar rat dams were treated by gavage on gestation day 6 with a single low dose of 60 or 300 microg PBDE-99/kg body weight (bw). In offspring, basal locomotor activity was evaluated on postnatal days 36 and 71, and reproductive performance was assessed in males at adulthood. The exposure to low-dose PBDE-99 during development caused hyperactivity in the offspring at both time points and permanently impaired spermatogenesis by the means of reduced sperm and spermatid counts. The doses used in this study (60 and 300 microg/kg bw) are relevant to human exposure levels, being approximately 6 and 29 times, respectively, higher than the highest level reported in human breast adipose tissue. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents and supports the premise that low-dose studies should be encouraged for hazard identification of persistent environmental pollutants.
Collapse
|
research-article |
20 |
243 |