1
|
Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363:1-24. [PMID: 21824625 PMCID: PMC7094330 DOI: 10.1016/j.jcis.2011.07.017] [Citation(s) in RCA: 783] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/12/2022]
Abstract
In this article, several applications of nanomaterials in food packaging and food safety are reviewed, including: polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomaterial-based assays for the detection of food-relevant analytes (gasses, small organic molecules and food-borne pathogens). In addition to covering the technical aspects of these topics, the current commercial status and understanding of health implications of these technologies are also discussed. These applications were chosen because they do not involve direct addition of nanoparticles to consumed foods, and thus are more likely to be marketed to the public in the short term.
Collapse
|
research-article |
14 |
783 |
2
|
Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses 2018; 10:E205. [PMID: 29671810 PMCID: PMC5923499 DOI: 10.3390/v10040205] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods.
Collapse
|
Review |
7 |
329 |
3
|
Chen H, Zhang W, Yang X, Wang P, McGrath SP, Zhao FJ. Effective methods to reduce cadmium accumulation in rice grain. CHEMOSPHERE 2018; 207:699-707. [PMID: 29857202 DOI: 10.1016/j.chemosphere.2018.05.143] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Contamination of cadmium (Cd) in paddy soil is a serious environmental problem threatening food safety in some parts of southern China, where rice grain Cd concentration often exceeds the Chinese limit (0.2 mg kg-1). We tested the effect of CaCO3 liming combined with growing low Cd cultivars on Cd accumulation in rice grain in 2-year field trials. A liming model was used to predict the doses of lime required. Lime (2.25-7.5 t ha-1) was applied in 2016 only and the effect monitored in both 2016 and 2017. Soil pH was increased from the initial 5.5 to the target value 6.5 by 7.5 t ha-1 CaCO3. Liming greatly reduced CaCl2-extractable Cd in the rhizospheric soil. Grain Cd concentration in the control exceeded the limit by 2-5 times. Liming at 7.5 t ha-1 decreased grain Cd concentration by 70-80% in both seasons without affecting grain yield. Grain Cd concentration was below the limit in the 7.5 t ha-1 liming treatment in both seasons. Grain Cd concentration correlated closely with CaCl2-extractable Cd in rhizospheric soil at the grain maturing stage. Seasonal difference in grain Cd concentration was attributed to the soil water status at the grain maturing stage. Liming had no significant effect on grain arsenic concentration or speciation. A single application of CaCO3 to raise soil pH to 6.5, combined with low Cd cultivars and delayed drainage of paddy water during late grain filling stage, was highly effective at reducing Cd accumulation in rice grain.
Collapse
|
|
7 |
135 |
4
|
Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 2020; 104:4281-4288. [PMID: 32215710 PMCID: PMC7190587 DOI: 10.1007/s00253-020-10542-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
The ability to rapidly detect viable pathogens in food is important for public health and food safety reasons. Culture-based detection methods, the traditional means of demonstrating microbial viability, tend to be laborious, time consuming and slow to provide results. Several culture-independent methods to detect viable pathogens have been reported in recent years, including both nucleic acid-based (PCR combined with use of cell viability dyes or reverse-transcriptase PCR to detect messenger RNA) and phage-based (plaque assay or phage amplification and lysis plus PCR/qPCR, immunoassay or enzymatic assay to detect host DNA, progeny phages or intracellular components) methods. Some of these newer methods, particularly phage-based methods, show promise in terms of speed, sensitivity of detection and cost compared with culture for food testing. This review provides an overview of these new approaches and their food testing applications, and discusses their current limitations and future prospects in relation to detection of viable pathogens in food. KEY POINTS: • Cultural methods may be 'gold standard' for assessing viability of pathogens, but they are too slow. • Nucleic acid-based methods offer speed of detection but not consistently proof of cell viability. • Phage-based methods appear to offer best alternative to culture for detecting viable pathogens.
Collapse
|
Review |
5 |
127 |
5
|
Druml B, Cichna-Markl M. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis. Food Chem 2014; 158:245-54. [PMID: 24731338 DOI: 10.1016/j.foodchem.2014.02.111] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/02/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms.
Collapse
|
Review |
11 |
115 |
6
|
Huang C, Shi J, Ma W, Li Z, Wang J, Li J, Wang X. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int 2018; 111:631-641. [PMID: 30007727 DOI: 10.1016/j.foodres.2018.05.071] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022]
Abstract
Application of bacteriophages to eliminate foodborne pathogens in food matrices is an emerging research field. In this study, a promising phage candidate specific for Salmonella strains was screened and its ability to decrease Salmonella counts in some food, such as milk, sausage, and lettuce, was investigated. A total of 58 Salmonella phages were isolated from a wastewater treatment plant, sewage near a river, farm ditch near a lake, and poultry house. Among them, phages LPST10, LPST18, and LPST23 were highly efficient in infecting Salmonella Typhimurium ATCC 14028. In particular, phage LPST10 could infect all the tested Salmonella Typhimurium and Salmonella Enteritidis strains with high efficiency. Bacterial challenge tests revealed that phage LPST10 and its combination with phages LPST18 and LPST23 could consistently inhibit the growth of multiple strains. Phage LPST10 presented a lysis time of about 50 min with a burst size of 101 PFU/CFU, exhibited two distinct phases in the one-step growth curve, and was stable at a pH range of 3-13 that corresponds to the pH of most of the foods (pH 3.5-7.5) and at temperatures between 30 °C and 60 °C. Transmission electron microscopy demonstrated that phage LPST10 belongs to the Siphoviridae family, with an icosahedral head with a diameter of 83.26 nm and tail length and width of approximately 144.89 nm and 10.9 nm, respectively. A significant decrease in the bacterial counts (0.92-5.12 log10 CFU/sample) and an increase in phage titers (0-2.96 log10 PFU/sample) were observed in different food matrices tested. These results demonstrated that phage LPST10 is a promising candidate for controlling Salmonella contamination in foods owing to its safety and effectiveness.
Collapse
|
|
7 |
102 |
7
|
Islam MS, Zhou Y, Liang L, Nime I, Liu K, Yan T, Wang X, Li J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019; 11:E841. [PMID: 31510005 PMCID: PMC6784009 DOI: 10.3390/v11090841] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022] Open
Abstract
Salmonella contamination in foods and their formation of biofilms in food processing facility are the primary bacterial cause of a significant number of foodborne outbreaks and infections. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol in food matrices and reducing biofilms. In this study, 42 Salmonella phages were isolated from environmentally-sourced water samples. We characterized the host range and lytic capacity of phages LPSTLL, LPST94 and LPST153 against Salmonella spp., and all showed a wide host range and broad lytic activity. Electron microscopy analysis indicated that LPSTLL, LPST94, and LPST153 belonged to the family of Siphoviridae, Ackermannviridae and Podoviridae, respectively. We established a phage cocktail containing three phages (LPSTLL, LPST94 and LPST153) that had broad spectrum to lyse diverse Salmonella serovars. A significant decrease was observed in Salmonella with a viable count of 3 log10 CFU in milk and chicken breast at either 25 °C or 4 °C. It was found that treatment with phage cocktail was able to significantly reduced biofilm on a 96-well microplate (44-63%) and on a stainless steel surface (5.23 to 6.42 log10). These findings demonstrated that the phage cocktail described in this study can be potentially used as a biological control agent against Salmonella in food products and also has the effect to reduce Salmonella formed biofilms.
Collapse
|
research-article |
6 |
98 |
8
|
Hamada N, Ogino H. Food safety regulations: what we learned from the Fukushima nuclear accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 111:83-99. [PMID: 21996550 DOI: 10.1016/j.jenvrad.2011.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
On 11 March 2011, the magnitude-9.0 earthquake and a substantial tsunami struck off the northeast coast of Japan. The Fukushima nuclear power plants were inundated and stricken, followed by radionuclide releases outside the crippled reactors. Provisional regulation values for radioactivity in food and drink were set on 17 March and were adopted from the preset index values, except that for radioiodines in water and milk ingested by infants. For radiocesiums, uranium, plutonium and transuranic α emitters, index values were defined in all food and drink not to exceed a committed effective dose of 5 mSv/year. Index values for radioiodines were defined not to exceed a committed equivalent dose to the thyroid of 50 mSv/year, and set in water, milk and some vegetables, but not in other foodstuffs. Index values were calculated as radioactive concentrations of indicator radionuclides ((131)I for radioiodines, (134)Cs and (137)Cs for radiocesiums) by postulating the relative radioactive concentration of coexisting radionuclides (e.g., (132)I, (133)I, (134)I, (135)I and (132)Te for (131)I). Surveys were thence conducted to monitor levels of (131)I, (134)Cs and (137)Cs. Provisional regulation values were exceeded in tap water, raw milk and some vegetables, and restrictions on distribution and consumption began on 21 March. Fish contaminated with radioiodines at levels of concern were then detected, so that the provisional regulation value for radioiodines in seafood adopted from that in vegetables were additionally set on 5 April. Overall, restrictions started within 25 days after the first excess in each food or drink item, and maximum levels were detected in leafy vegetables (54,100 Bq/kg for (131)I, and a total of 82,000 Bq/kg for (134)Cs and (137)Cs). This paper focuses on the logic behind such food safety regulations, and discusses its underlying issues. The outlines of the food monitoring results for 24,685 samples and the enforced restrictions will also be described.
Collapse
|
Historical Article |
13 |
97 |
9
|
Bai J, Jeon B, Ryu S. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol 2019; 77:52-60. [PMID: 30297056 DOI: 10.1016/j.fm.2018.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/13/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
Salmonella contamination of fresh produce is the primary bacterial cause of a significant number of foodborne outbreaks and infections. Bacteriophages can be used as natural antibacterial agents to control foodborne pathogens. However, the rapid development of bacterial resistance to phage infection is a significant barrier to practical phage application. To overcome this problem, we developed a novel phage cocktail consisting of the three phages (BSPM4, BSP101 and BSP22A) that target different host receptors, including flagella, O-antigen and BtuB, respectively. Whole genome sequence analysis of the phages revealed that three phages do not harbor genes involved in lysogen formation or toxin production, suggesting they are safe for use as biocontrol agents in foods. In vitro treatment of the phage cocktail resulted in a significant reduction in the development of bacterial resistance. Phage cocktail treatments achieved 4.7-5.5 log CFU/cm2 reduction of viable cell number in iceberg lettuce and 4.8-5.8 log CFU/cm2 reduction in cucumber after 12 h at room temperature (25 °C). The phage cocktail exhibited good antimicrobial efficiency, suggesting that it could reduce S. Typhimurium contamination of fresh produce. The strategy of developing cocktails of phages that target multiple host receptors can be used to develop novel biocontrol agents of S. Typhimurium.
Collapse
|
|
6 |
94 |
10
|
Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, Soto AM, Trasande L, Trier X, Scheringer M. Scientific Challenges in the Risk Assessment of Food Contact Materials. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:095001. [PMID: 28893723 PMCID: PMC5915200 DOI: 10.1289/ehp644] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Food contact articles (FCAs) are manufactured from food contact materials (FCMs) that include plastics, paper, metal, glass, and printing inks. Chemicals can migrate from FCAs into food during storage, processing, and transportation. Food contact materials' safety is evaluated using chemical risk assessment (RA). Several challenges to the RA of FCAs exist. OBJECTIVES We review regulatory requirements for RA of FCMs in the United States and Europe, identify gaps in RA, and highlight opportunities for improving the protection of public health. We intend to initiate a discussion in the wider scientific community to enhance the safety of food contact articles. DISCUSSION Based on our evaluation of the evidence, we conclude that current regulations are insufficient for addressing chemical exposures from FCAs. RA currently focuses on monomers and additives used in the manufacture of products, but it does not cover all substances formed in the production processes. Several factors hamper effective RA for many FCMs, including a lack of information on chemical identity, inadequate assessment of hazardous properties, and missing exposure data. Companies make decisions about the safety of some food contact chemicals (FCCs) without review by public authorities. Some chemical migration limits cannot be enforced because analytical standards are unavailable. CONCLUSION We think that exposures to hazardous substances migrating from FCAs require more attention. We recommend a) limiting the number and types of chemicals authorized for manufacture and b) developing novel approaches for assessing the safety of chemicals in FCAs, including unidentified chemicals that form during or after production. https://doi.org/10.1289/EHP644.
Collapse
|
case-report |
8 |
91 |
11
|
Amaya-González S, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Aptamer-based analysis: a promising alternative for food safety control. SENSORS (BASEL, SWITZERLAND) 2013; 13:16292-311. [PMID: 24287543 PMCID: PMC3892839 DOI: 10.3390/s131216292] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
Ensuring food safety is nowadays a top priority of authorities and professional players in the food supply chain. One of the key challenges to determine the safety of food and guarantee a high level of consumer protection is the availability of fast, sensitive and reliable analytical methods to identify specific hazards associated to food before they become a health problem. The limitations of existing methods have encouraged the development of new technologies, among them biosensors. Success in biosensor design depends largely on the development of novel receptors with enhanced affinity to the target, while being stable and economical. Aptamers fulfill these characteristics, and thus have surfaced as promising alternatives to natural receptors. This Review describes analytical strategies developed so far using aptamers for the control of pathogens, allergens, adulterants, toxins and other forbidden contaminants to ensure food safety. The main progresses to date are presented, highlighting potential prospects for the future.
Collapse
|
Review |
12 |
90 |
12
|
Bhat R, Reddy KRN. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade. Food Chem 2016; 215:425-37. [PMID: 27542495 DOI: 10.1016/j.foodchem.2016.07.161] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils.
Collapse
|
Review |
9 |
88 |
13
|
Sulakvelidze A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3137-3146. [PMID: 23670852 DOI: 10.1002/jsfa.6222] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/28/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA.
Collapse
|
Review |
12 |
86 |
14
|
Hammond B, Kough J, Herouet-Guicheney C, Jez JM. Toxicological evaluation of proteins introduced into food crops. Crit Rev Toxicol 2013; 43 Suppl 2:25-42. [PMID: 24164515 PMCID: PMC3835160 DOI: 10.3109/10408444.2013.842956] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/13/2022]
Abstract
This manuscript focuses on the toxicological evaluation of proteins introduced into GM crops to impart desired traits. In many cases, introduced proteins can be shown to have a history of safe use. Where modifications have been made to proteins, experience has shown that it is highly unlikely that modification of amino acid sequences can make a non-toxic protein toxic. Moreover, if the modified protein still retains its biological function, and this function is found in related proteins that have a history of safe use (HOSU) in food, and the exposure level is similar to functionally related proteins, then the modified protein could also be considered to be "as-safe-as" those that have a HOSU. Within nature, there can be considerable evolutionary changes in the amino acid sequence of proteins within the same family, yet these proteins share the same biological function. In general, food crops such as maize, soy, rice, canola etc. are subjected to a variety of processing conditions to generate different food products. Processing conditions such as cooking, modification of pH conditions, and mechanical shearing can often denature proteins in these crops resulting in a loss of functional activity. These same processing conditions can also markedly lower human dietary exposure to (functionally active) proteins. Safety testing of an introduced protein could be indicated if its biological function was not adequately characterized and/or it was shown to be structurally/functionally related to proteins that are known to be toxic to mammals.
Collapse
|
Review |
12 |
78 |
15
|
Bergholz TM, Moreno Switt AI, Wiedmann M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol 2014; 22:275-81. [PMID: 24572764 DOI: 10.1016/j.tim.2014.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to the detection, prevention, and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data-mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. Although practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions.
Collapse
|
Review |
11 |
76 |
16
|
Bülbül G, Hayat A, Andreescu S. Portable Nanoparticle-Based Sensors for Food Safety Assessment. SENSORS 2015; 15:30736-58. [PMID: 26690169 PMCID: PMC4721746 DOI: 10.3390/s151229826] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed.
Collapse
|
Review |
10 |
73 |
17
|
Petersen M, Yu Z, Lu X. Application of Raman Spectroscopic Methods in Food Safety: A Review. BIOSENSORS 2021; 11:187. [PMID: 34201167 PMCID: PMC8229164 DOI: 10.3390/bios11060187] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Food detection technologies play a vital role in ensuring food safety in the supply chains. Conventional food detection methods for biological, chemical, and physical contaminants are labor-intensive, expensive, time-consuming, and often alter the food samples. These limitations drive the need of the food industry for developing more practical food detection tools that can detect contaminants of all three classes. Raman spectroscopy can offer widespread food safety assessment in a non-destructive, ease-to-operate, sensitive, and rapid manner. Recent advances of Raman spectroscopic methods further improve the detection capabilities of food contaminants, which largely boosts its applications in food safety. In this review, we introduce the basic principles of Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and micro-Raman spectroscopy and imaging; summarize the recent progress to detect biological, chemical, and physical hazards in foods; and discuss the limitations and future perspectives of Raman spectroscopic methods for food safety surveillance. This review is aimed to emphasize potential opportunities for applying Raman spectroscopic methods as a promising technique for food safety detection.
Collapse
|
Review |
4 |
68 |
18
|
Lin HY, Huang CH, Park J, Pathania D, Castro CM, Fasano A, Weissleder R, Lee H. Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS NANO 2017; 11:10062-10069. [PMID: 28792732 DOI: 10.1021/acsnano.7b04318] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adverse food reactions, including food allergies, food sensitivities, and autoimmune reaction (e.g., celiac disease) affect 5-15% of the population and remain a considerable public health problem requiring stringent food avoidance and epinephrine availability for emergency events. Avoiding problematic foods is practically difficult, given current reliance on prepared foods and out-of-home meals. In response, we developed a portable, point-of-use detection technology, termed integrated exogenous antigen testing (iEAT). The system consists of a disposable antigen extraction device coupled with an electronic keychain reader for rapid sensing and communication. We optimized the prototype iEAT system to detect five major food antigens in peanuts, hazelnuts, wheat, milk, and eggs. Antigen extraction and detection with iEAT requires <10 min and achieves high-detection sensitivities (e.g., 0.1 mg/kg for gluten, lower than regulatory limits of 20 mg/kg). When testing under restaurant conditions, we were able to detect hidden food antigens such as gluten within "gluten-free" food items. The small size and rapid, simple testing of the iEAT system should help not only consumers but also other key stakeholders such as clinicians, food industries, and regulators to enhance food safety.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
67 |
19
|
Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One 2011; 6:e16989. [PMID: 21359231 PMCID: PMC3040210 DOI: 10.1371/journal.pone.0016989] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023] Open
Abstract
As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.
Collapse
|
Comparative Study |
14 |
63 |
20
|
Abstract
Ensuring the safety and quality of food and medical products has never been more complicated. Societies around the world face increasingly complex challenges that require harnessing the best available science and technology on behalf of patients and consumers. This effort requires a strong field of regulatory science to develop new tools, standards, and approaches that efficiently and consistently assess the safety, efficacy, quality, and performance of products. Yet, despite being a critical component of the scientific enterprise, regulatory science has long been underappreciated and underfunded.
Collapse
|
Editorial |
14 |
63 |
21
|
Clemens S. Safer food through plant science: reducing toxic element accumulation in crops. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5537-5557. [PMID: 31408148 DOI: 10.1093/jxb/erz366] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
Natural processes and human activities have caused widespread background contamination with non-essential toxic elements. The uptake and accumulation of cadmium (Cd), arsenic (As), and lead (Pb) by crop plants results in chronic dietary exposure and is associated with various health risks. Current human intake levels are close to what is provisionally regarded as safe. This has recently triggered legislative actions to introduce or lower limits for toxic elements in food. Arguably, the most effective way to reduce the risk of slow poisoning is the breeding of crops with much lower accumulation of contaminants. The past years have seen tremendous progress in elucidating molecular mechanisms of toxic element transport. This was achieved in the model systems Arabidopsis thaliana and, most importantly, rice, the major source of exposure to As and Cd for a large fraction of the global population. Many components of entry and sequestration pathways have been identified. This knowledge can now be applied to engineer crops with reduced toxic element accumulation especially in edible organs. Most obvious in the case of Cd, it appears likely that subtle genetic intervention has the potential to reduce human exposure to non-essential toxic elements almost immediately. This review outlines the risks and discusses our current state of knowledge with emphasis on transgenic and gene editing approaches.
Collapse
|
Review |
6 |
62 |
22
|
Lee H, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol 2015; 51:74-80. [PMID: 26187830 DOI: 10.1016/j.fm.2015.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Microwave-powered cold plasma treatment (CPT) was evaluated as a means to improve the microbiological safety of fresh vegetables and dried fruits. The CPT at 900 W, conducted for 10 min using nitrogen as a plasma-forming gas, inactivated Salmonella Typhimurium inoculated on cabbage and lettuce by approximately 1.5 log CFU/g. The CPT at 400-900 W and 667 Pa, conducted for 1-10 min using a helium-oxygen gas mixture, inactivated Listeria monocytogenes on cabbage by 0.3-2.1 log CFU/g in a time-dependent manner (P < 0.05). The Weibull model adequately described the inactivation of L. monocytogenes on cabbage by CPT. The CPT at the optimum conditions of treatment power (400 W) and time (10 min) inactivated L. monocytogenes on lettuce by 1.8 ± 0.2 log CFU/g. As the water activity of the dried figs increased from 0.70 to 0.93, the reductions in numbers of Escherichia coli O157:H7 and L. monocytogenes on figs increased from 0.5 to 1.3 log CFU/g and from 1.0 to 1.6 log CFU/g, respectively. The microbial inactivation by CPT increased synergistically when the pH of the figs was reduced from 6 to 4. CTPs have potential application to increase the microbiological safety of vegetables and dried fruits.
Collapse
|
|
10 |
62 |
23
|
Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F. Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 2017; 37:411-428. [PMID: 27075621 DOI: 10.3109/07388551.2016.1164664] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
Collapse
|
Review |
8 |
62 |
24
|
Merz S, Shozugawa K, Steinhauser G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2875-85. [PMID: 25621976 PMCID: PMC4351624 DOI: 10.1021/es5057648] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In an unprecedented food monitoring campaign for radionuclides, the Japanese government took action to secure food safety after the Fukushima nuclear accident (Mar. 11, 2011). In this work we analyze a part of the immense data set, in particular radiocesium contaminations in food from the first year after the accident. Activity concentrations in vegetables peaked immediately after the campaign had commenced, but they decreased quickly, so that by early summer 2011 only a few samples exceeded the regulatory limits. Later, accumulating mushrooms and dried produce led to several exceedances of the limits again. Monitoring of meat started with significant delay, especially outside Fukushima prefecture. After a buildup period, contamination levels of meat peaked by July 2011 (beef). Levels then decreased quickly, but peaked again in September 2011, which was primarily due to boar meat (a known accumulator of radiocesium). Tap water was less contaminated; any restrictions for tap water were canceled by April 1, 2011. Pre-Fukushima (137)Cs and (90)Sr levels (resulting from atmospheric nuclear explosions) in food were typically lower than 0.5 Bq/kg, whereby meat was typically higher in (137)Cs and vegetarian produce was usually higher in (90)Sr. The correlation of background radiostrontium and radiocesium indicated that the regulatory assumption after the Fukushima accident of a maximum activity of (90)Sr being 10% of the respective (137)Cs concentrations may soon be at risk, as the (90)Sr/(137)Cs ratio increases with time. This should be taken into account for the current Japanese food policy as the current regulation will soon underestimate the (90)Sr content of Japanese foods.
Collapse
|
research-article |
10 |
56 |
25
|
Jeong DW, Lee B, Her JY, Lee KG, Lee JH. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int J Food Microbiol 2016; 236:9-16. [PMID: 27427871 DOI: 10.1016/j.ijfoodmicro.2016.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/10/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022]
Abstract
To select starters for the production of meju and doenjang, traditional Korean fermented soybean foods, we assessed the safety and technological properties of their predominant isolates, Staphylococcus saprophyticus, Staphylococcus succinus and Staphylococcus xylosus. Phenotypic antibiotic resistance, hemolysis and biofilm formation were strain-specific. None of the S. succinus isolates exhibited antibiotic resistance or hemolytic activities. Thirty-three selected strains, identified through safety assessments of 81 coagulase-negative staphylococci (CNS) isolates, produced cadaverine, putrescine, and tyramine, but not histamine in the laboratory setting. The production of these three biogenic amines may, however, be insignificant considering the high levels of tyramine produced by the control, Enterococcus faecalis. The 33 CNS strains could grow on tryptic soy agar containing 21% NaCl (w/v), exhibited acid producing activity at 15% NaCl, and expressed strain-specific protease and lipase activities. S. succinus 14BME1, the selected starter candidate, produced significant amounts of benzeneacetic acid, 2,3-butanediol, trimethylpyrazine, and tetramethylpyrazine through soybean fermentation.
Collapse
|
|
9 |
54 |