1
|
Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 2006; 103:15729-35. [PMID: 17043226 PMCID: PMC1635072 DOI: 10.1073/pnas.0603395103] [Citation(s) in RCA: 4333] [Impact Index Per Article: 228.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the atmosphere demands that holding atmospheric CO(2) levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
4333 |
2
|
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008; 320:889-92. [PMID: 18487183 DOI: 10.1126/science.1136674] [Citation(s) in RCA: 2306] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
17 |
2306 |
3
|
Abstract
Lipases constitute the most important group of biocatalysts for biotechnological applications. The high-level production of microbial lipases requires not only the efficient overexpression of the corresponding genes but also a detailed understanding of the molecular mechanisms governing their folding and secretion. The optimisation of industrially relevant lipase properties can be achieved by directed evolution. Furthermore, novel biotechnological applications have been successfully established using lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure pharmaceuticals, agrochemicals, and flavour compounds.
Collapse
|
Review |
23 |
875 |
4
|
|
|
18 |
827 |
5
|
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: a review. J Environ Sci (China) 2008; 20:14-27. [PMID: 18572517 DOI: 10.1016/s1001-0742(08)60002-9] [Citation(s) in RCA: 812] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.
Collapse
|
Review |
17 |
812 |
6
|
Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF. The Oceanic Sink for Anthropogenic CO2. Science 2004; 305:367-71. [PMID: 15256665 DOI: 10.1126/science.1097403] [Citation(s) in RCA: 808] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
Collapse
|
|
21 |
808 |
7
|
Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:4467-4475. [PMID: 12387425 DOI: 10.1021/es0158861] [Citation(s) in RCA: 618] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.
Collapse
|
|
23 |
618 |
8
|
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, Cropper M, Ferraro G, Hanna J, Hanrahan D, Hu H, Hunter D, Janata G, Kupka R, Lanphear B, Lichtveld M, Martin K, Mustapha A, Sanchez-Triana E, Sandilya K, Schaefli L, Shaw J, Seddon J, Suk W, Téllez-Rojo MM, Yan C. Pollution and health: a progress update. Lancet Planet Health 2022; 6:e535-e547. [PMID: 35594895 PMCID: PMC11995256 DOI: 10.1016/s2542-5196(22)00090-0] [Citation(s) in RCA: 595] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/23/2023]
Abstract
The Lancet Commission on pollution and health reported that pollution was responsible for 9 million premature deaths in 2015, making it the world's largest environmental risk factor for disease and premature death. We have now updated this estimate using data from the Global Burden of Diseases, Injuriaes, and Risk Factors Study 2019. We find that pollution remains responsible for approximately 9 million deaths per year, corresponding to one in six deaths worldwide. Reductions have occurred in the number of deaths attributable to the types of pollution associated with extreme poverty. However, these reductions in deaths from household air pollution and water pollution are offset by increased deaths attributable to ambient air pollution and toxic chemical pollution (ie, lead). Deaths from these modern pollution risk factors, which are the unintended consequence of industrialisation and urbanisation, have risen by 7% since 2015 and by over 66% since 2000. Despite ongoing efforts by UN agencies, committed groups, committed individuals, and some national governments (mostly in high-income countries), little real progress against pollution can be identified overall, particularly in the low-income and middle-income countries, where pollution is most severe. Urgent attention is needed to control pollution and prevent pollution-related disease, with an emphasis on air pollution and lead poisoning, and a stronger focus on hazardous chemical pollution. Pollution, climate change, and biodiversity loss are closely linked. Successful control of these conjoined threats requires a globally supported, formal science-policy interface to inform intervention, influence research, and guide funding. Pollution has typically been viewed as a local issue to be addressed through subnational and national regulation or, occasionally, using regional policy in higher-income countries. Now, however, it is increasingly clear that pollution is a planetary threat, and that its drivers, its dispersion, and its effects on health transcend local boundaries and demand a global response. Global action on all major modern pollutants is needed. Global efforts can synergise with other global environmental policy programmes, especially as a large-scale, rapid transition away from all fossil fuels to clean, renewable energy is an effective strategy for preventing pollution while also slowing down climate change, and thus achieves a double benefit for planetary health.
Collapse
|
Review |
3 |
595 |
9
|
Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, Scamman D, Arnell N, Ayeb-Karlsson S, Ford LB, Belesova K, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Hess JJ, Hsu SC, Jankin S, Jamart L, Jay O, Kelman I, Kiesewetter G, Kinney P, Kjellstrom T, Kniveton D, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Batista ML, Lowe R, MacGuire F, Sewe MO, Martinez-Urtaza J, Maslin M, McAllister L, McGushin A, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oreszczyn T, Otto M, Owfi F, Pearman O, Rabbaniha M, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shi L, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell J, Tabatabaei M, Taylor J, Triñanes J, Wagner F, Wilkinson P, Winning M, Yglesias-González M, Zhang S, Gong P, Montgomery H, Costello A. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet 2022; 400:1619-1654. [PMID: 36306815 PMCID: PMC7616806 DOI: 10.1016/s0140-6736(22)01540-9] [Citation(s) in RCA: 467] [Impact Index Per Article: 155.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022]
Abstract
The 2022 report of the Lancet Countdown is published as the world confronts profound and concurrent systemic shocks. Countries and health systems continue to contend with the health, social, and economic impacts of the COVID-19 pandemic, while Russia’s invasion of Ukraine and a persistent fossil fuel overdependence has pushed the world into global energy and cost-of-living crises. As these crises unfold, climate change escalates unabated. Its worsening impacts are increasingly affecting the foundations of human health and wellbeing, exacerbating the vulnerability of the world’s populations to concurrent health threats. During 2021 and 2022, extreme weather events caused devastation across every continent, adding further pressure to health services already grappling with the impacts of the COVID-19 pandemic. Floods in Australia, Brazil, China, western Europe, Malaysia, Pakistan, South Africa, and South Sudan caused thousands of deaths, displaced hundreds of thousands of people, and caused billions of dollars in economic losses. Wildfires caused devastation in Canada, the USA, Greece, Algeria, Italy, Spain, and Türkiye, and record temperatures were recorded in many countries, including Australia, Canada, India, Italy, Oman, Türkiye, Pakistan, and the UK. With advancements in the science of detection and attribution studies, the influence of climate change over many events has now been quantified. Because of the rapidly increasing temperatures, vulnerable populations (adults older than 65 years, and children younger than one year of age) were exposed to 3·7 billion more heatwave days in 2021 than annually in 1986–2005 (indicator 1.1.2 ), and heat-related deaths increased by 68% between 2000–04 and 2017–21 (indicator 1.1.5 ), a death toll that was significantly exacerbated by the confluence of the COVID-19 pandemic. Simultaneously, the changing climate is affecting the spread of infectious diseases, putting populations at higher risk of emerging diseases and co-epidemics. Coastal waters are becoming more suitable for the transmission of Vibrio pathogens; the number of months suitable for malaria transmission increased by 31·3% in the highland areas of the Americas and 13·8% in the highland areas of Africa from 1951–60 to 2012–21, and the likelihood of dengue transmission rose by 12% in the same period (indicator 1.3.1). The coexistence of dengue outbreaks with the COVID-19 pandemic led to aggravated pressure on health systems, misdiagnosis, and difficulties in management of both diseases in many regions of South America, Asia, and Africa. The economic losses associated with climate change impacts are also increasing pressure on families and economies already challenged with the synergistic effects of the COVID-19 pandemic and the international cost-of-living and energy crises, further undermining the socioeconomic determinants that good health depends on. Heat exposure led to 470 billion potential labour hours lost globally in 2021 (indicator 1.1.4 ), with potential income losses equivalent to 0·72% of the global economic output, increasing to 5·6% of the GDP in low Human Development Index (HDI) countries, where workers are most vulnerable to the effects of financial fluctuations (indicator 4.1.3 ). Meanwhile, extreme weather events caused damage worth US$253 billion in 2021, particularly burdening people in low HDI countries in which almost none of the losses were insured (indicator 4.1.1 ). Through multiple and interconnected pathways, every dimension of food security is being affected by climate change, aggravating the impacts of other coexisting crises. The higher temperatures threaten crop yields directly, with the growth seasons of maize on average 9 days shorter in 2020, and the growth seasons of winter wheat and spring wheat 6 days shorter than for 1981–2010 globally (indicator 1.4 ). The threat to crop yields adds to the rising impact of extreme weather on supply chains, socioeconomic pressures, and the risk of infectious disease transmission, undermining food availability, access, stability, and utilisation. New analysis suggests that extreme heat was associated with 98 million more people reporting moderate to severe food insecurity in 2020 than annually in 1981–2010, in 103 countries analysed (indicator 1.4 ). The increasingly extreme weather worsens the stability of global food systems, acting in synergy with other concurrent crises to reverse progress towards hunger eradication. Indeed, the prevalence of undernourishment increased during the COVID-19 pandemic, and up to 161 million more people faced hunger during the COVID-19 pandemic in 2020 than in 2019. This situation is now worsened by Russia’s invasion of Ukraine and the energy and cost-of-living crises, with impacts on international agricultural production and supply chains threatening to result in 13 million additional people facing undernutrition in 2022.
Collapse
|
Review |
3 |
467 |
10
|
Navarro RM, Peña MA, Fierro JLG. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem Rev 2007; 107:3952-91. [PMID: 17715983 DOI: 10.1021/cr0501994] [Citation(s) in RCA: 450] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
18 |
450 |
11
|
Jacobson MZ, Colella WG, Golden DM. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 2005; 308:1901-5. [PMID: 15976300 DOI: 10.1126/science.1109157] [Citation(s) in RCA: 397] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
397 |
12
|
|
|
15 |
305 |
13
|
Mai B, Qi S, Zeng EY, Yang Q, Zhang G, Fu J, Sheng G, Peng P, Wang Z. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:4855-4863. [PMID: 14620810 DOI: 10.1021/es034514k] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The coastal region off Macao is a known depositional zone for persistent organic pollutants (POPs) in the Pearl River Delta and Estuary of southern China and an important gateway for the regional contributions of contamination to the globe. This paper presents a comprehensive assessment of the input sources and transport pathways of polycyclic aromatic hydrocarbons (PAHs) found in the coastal sediments of Macao, based on measurements of 48 2-7 ring PAHs and 7 sulfur/oxygenated (S/O) PAH derivatives in 45 sediment, 13 street dust, and 68 aerosol samples. Total sediment PAHs concentrations ranged from 294 to 12741 ng/g, categorized as moderate contamination compared to other regions of Asia and the world. In addition, the PAH compounds appeared to be bound more strongly to aromatics-rich soot particles than to natural organic matter, implying a prevailing atmospheric transport route for PAHs to Macao's coast. Compositional analysis and principal component analysis (PCA) suggested that different classes of PAHs in the coastal sediments of Macao may have been derived from different input sources via various transport pathways. For example, alkylated and S/O PAHs were likely derived from fossil fuel leakage and transported to sediments by both aerosols particles and street runoff. High-molecular-weight parent PAHs were predominantly originated from automobile exhausts and distributed by direct and indirect atmospheric deposition. Low-molecular-weight parent PAHs, on the other hand, may have stemmed from lower temperature combustion and fossil fuel (such as diesel) spillage from ships and boats and were transported to sediments by river runoff or direct discharge as well as by air-water exchange.
Collapse
|
|
22 |
244 |
14
|
Hansen J, Sato M, Ruedy R, Lacis A, Oinas V. Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci U S A 2000; 97:9875-80. [PMID: 10944197 PMCID: PMC27611 DOI: 10.1073/pnas.170278997] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2000] [Indexed: 11/18/2022] Open
Abstract
A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO(2) greenhouse gases (GHGs), such as chlorofluorocarbons, CH(4), and N(2)O, not by the products of fossil fuel burning, CO(2) and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO(2) GHGs has declined in the past decade. If sources of CH(4) and O(3) precursors were reduced in the future, the change in climate forcing by non-CO(2) GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO(2) emissions, this reduction of non-CO(2) GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties.
Collapse
|
research-article |
25 |
241 |
15
|
Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006; 443:439-43. [PMID: 17006511 DOI: 10.1038/nature05132] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 08/03/2006] [Indexed: 11/09/2022]
Abstract
Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.
Collapse
|
|
19 |
233 |
16
|
Sofowote UM, McCarry BE, Marvin CH. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6007-6014. [PMID: 18767658 DOI: 10.1021/es800219z] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A total of 26 suspended sediment samples collected over a 5-year period in Hamilton Harbour, Ontario, Canada and surrounding creeks were analyzed for a suite of polycyclic aromatic hydrocarbons and sulfur heterocycles. Hamilton Harbour sediments contain relatively high levels of polycyclic aromatic compounds and heavy metals due to emissions from industrial and mobile sources. Two receptor modeling methods using factor analyses were compared to determine the profiles and relative contributions of pollution sources to the harbor; these methods are principal component analyses (PCA) with multiple linear regression analysis (MLR) and positive matrix factorization (PMF). Both methods identified four factors and gave excellent correlation coefficients between predicted and measured levels of 25 aromatic compounds; both methods predicted similar contributions from coal tar/coal combustion sources to the harbor (19 and 26%, respectively). One PCA factor was identified as contributions from vehicular emissions (61%); PMF was able to differentiate vehicular emissions into two factors, one attributed to gasoline emissions sources (28%) and the other to diesel emissions sources (24%). Overall, PMF afforded better source identification than PCA with MLR. This work constitutes one of the few examples of the application of PMF to the source apportionment of sediments; the addition of sulfur heterocycles to the analyte list greatly aided in the source identification process.
Collapse
|
|
17 |
230 |
17
|
Perera F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:E16. [PMID: 29295510 PMCID: PMC5800116 DOI: 10.3390/ijerph15010016] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Fossil-fuel combustion by-products are the world's most significant threat to children's health and future and are major contributors to global inequality and environmental injustice. The emissions include a myriad of toxic air pollutants and carbon dioxide (CO₂), which is the most important human-produced climate-altering greenhouse gas. Synergies between air pollution and climate change can magnify the harm to children. Impacts include impairment of cognitive and behavioral development, respiratory illness, and other chronic diseases-all of which may be "seeded" in utero and affect health and functioning immediately and over the life course. By impairing children's health, ability to learn, and potential to contribute to society, pollution and climate change cause children to become less resilient and the communities they live in to become less equitable. The developing fetus and young child are disproportionately affected by these exposures because of their immature defense mechanisms and rapid development, especially those in low- and middle-income countries where poverty and lack of resources compound the effects. No country is spared, however: even high-income countries, especially low-income communities and communities of color within them, are experiencing impacts of fossil fuel-related pollution, climate change and resultant widening inequality and environmental injustice. Global pediatric health is at a tipping point, with catastrophic consequences in the absence of bold action. Fortunately, technologies and interventions are at hand to reduce and prevent pollution and climate change, with large economic benefits documented or predicted. All cultures and communities share a concern for the health and well-being of present and future children: this shared value provides a politically powerful lever for action. The purpose of this commentary is to briefly review the data on the health impacts of fossil-fuel pollution, highlighting the neurodevelopmental impacts, and to briefly describe available means to achieve a low-carbon economy, and some examples of interventions that have benefited health and the economy.
Collapse
|
discussion |
8 |
224 |
18
|
Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. ENVIRONMENTAL RESEARCH 2021; 195:110754. [PMID: 33577774 DOI: 10.1016/j.envres.2021.110754] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
The burning of fossil fuels - especially coal, petrol, and diesel - is a major source of airborne fine particulate matter (PM2.5), and a key contributor to the global burden of mortality and disease. Previous risk assessments have examined the health response to total PM2.5, not just PM2.5 from fossil fuel combustion, and have used a concentration-response function with limited support from the literature and data at both high and low concentrations. This assessment examines mortality associated with PM2.5 from only fossil fuel combustion, making use of a recent meta-analysis of newer studies with a wider range of exposure. We also estimated mortality due to lower respiratory infections (LRI) among children under the age of five in the Americas and Europe, regions for which we have reliable data on the relative risk of this health outcome from PM2.5 exposure. We used the chemical transport model GEOS-Chem to estimate global exposure levels to fossil-fuel related PM2.5 in 2012. Relative risks of mortality were modeled using functions that link long-term exposure to PM2.5 and mortality, incorporating nonlinearity in the concentration response. We estimate a global total of 10.2 (95% CI: -47.1 to 17.0) million premature deaths annually attributable to the fossil-fuel component of PM2.5. The greatest mortality impact is estimated over regions with substantial fossil fuel related PM2.5, notably China (3.9 million), India (2.5 million) and parts of eastern US, Europe and Southeast Asia. The estimate for China predates substantial decline in fossil fuel emissions and decreases to 2.4 million premature deaths due to 43.7% reduction in fossil fuel PM2.5 from 2012 to 2018 bringing the global total to 8.7 (95% CI: -1.8 to 14.0) million premature deaths. We also estimated excess annual deaths due to LRI in children (0-4 years old) of 876 in North America, 747 in South America, and 605 in Europe. This study demonstrates that the fossil fuel component of PM2.5 contributes a large mortality burden. The steeper concentration-response function slope at lower concentrations leads to larger estimates than previously found in Europe and North America, and the slower drop-off in slope at higher concentrations results in larger estimates in Asia. Fossil fuel combustion can be more readily controlled than other sources and precursors of PM2.5 such as dust or wildfire smoke, so this is a clear message to policymakers and stakeholders to further incentivize a shift to clean sources of energy.
Collapse
|
|
4 |
222 |
19
|
Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat AT, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J. The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 2001; 291:1031-6. [PMID: 11161214 DOI: 10.1126/science.1057103] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.
Collapse
|
|
24 |
219 |
20
|
Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 2002; 419:915-7. [PMID: 12410307 DOI: 10.1038/nature01136] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Accepted: 09/12/2002] [Indexed: 11/09/2022]
Abstract
Soils contain the largest near-surface reservoir of terrestrial carbon and so knowledge of the factors controlling soil carbon storage and turnover is essential for understanding the changing global carbon cycle. The influence of climate on decomposition of soil carbon has been well documented, but there remains considerable uncertainty in the potential response of soil carbon dynamics to the rapid global increase in reactive nitrogen (coming largely from agricultural fertilizers and fossil fuel combustion). Here, using 14C, 13C and compound-specific analyses of soil carbon from long-term nitrogen fertilization plots, we show that nitrogen additions significantly accelerate decomposition of light soil carbon fractions (with decadal turnover times) while further stabilizing soil carbon compounds in heavier, mineral-associated fractions (with multidecadal to century lifetimes). Despite these changes in the dynamics of different soil pools, we observed no significant changes in bulk soil carbon, highlighting a limitation inherent to the still widely used single-pool approach to investigating soil carbon responses to changing environmental conditions. It remains to be seen if the effects observed here-caused by relatively high, short-term fertilizer additions-are similar to those arising from lower, long-term additions of nitrogen to natural ecosystems from atmospheric deposition, but our results suggest nonetheless that current models of terrestrial carbon cycling do not contain the mechanisms needed to capture the complex relationship between nitrogen availability and soil carbon storage.
Collapse
|
|
23 |
208 |
21
|
Santos DV, Reiter ER, DiNardo LJ, Costanzo RM. Hazardous events associated with impaired olfactory function. ACTA ACUST UNITED AC 2004; 130:317-9. [PMID: 15023839 DOI: 10.1001/archotol.130.3.317] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To evaluate the risk of olfactory-related hazardous events in patients with impaired olfactory function. DESIGN Retrospective cohort study. SETTING A university-based clinic for smell and taste disorders. PATIENTS A total of 445 patients who underwent olfactory testing between 1983 and 2001. INTERVENTIONS Patient interview, olfactory testing. MAIN OUTCOME MEASURES (1) Frequency of olfactory-related hazardous events including cooking incidents (ie, burning pots or pans), undetected fires, undetected gas leaks, and ingestion of spoiled foods or toxic substances; (2) level of olfactory function (anosmia; severe, moderate, or mild hyposmia; or normosmia) as determined by olfactory testing. RESULTS Olfactory testing revealed that 76% of patients had some degree of impairment; 30% had complete anosmia. Thirty-seven percent of patients with olfactory impairment but only 19% of patients without impairment experienced at least 1 olfactory-related hazardous event. Of the hazardous events reported by impaired patients, cooking-related incidents were most common, representing 45%, with ingestion of spoiled food (25%), inability to detect a gas leak (23%), and inability to smell a fire (7%) reported less frequently. There was a significant correlation between frequency of hazardous events and degree of olfactory impairment (Cochran-Armitage trend test, P<.001): at least 1 hazardous event was reported by 45.2% of patients with anosmia, 34.1% with severe hyposmia, 32.8% with moderate hyposmia, 24.2% with mild hyposmia, and 19.0% of patients with with normal olfaction by testing. CONCLUSION Patients with impaired olfactory function are more likely to experience olfactory-related hazardous events than those with normal olfactory function.
Collapse
|
Journal Article |
21 |
207 |
22
|
Abstract
Information from a variety of sources has been assembled to give a global picture of hexachlorobenzene (HCB) emissions in the mid 1990s. No single overwhelming source of HCB was identified. The best estimates of global HCB emissions from different categories of sources are as follows: pesticides application - 6500 kg/yr; manufacturing - 9500 kg/yr; combustion - 7000 kg/yr, includes 500 kg from biomass burning. This adds up to total current HCB emissions of approximately 23,000 kg/yr with an estimated range 12,000-92,000 kg/yr. A substantial portion of HCB measured in the atmosphere is thought to come from volatilization of "old" HCB on the soil from past contamination along with unidentified sources. No information on potential sources in developing countries was available.
Collapse
|
Review |
24 |
201 |
23
|
Agarwal T, Khillare PS, Shridhar V, Ray S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:1033-9. [PMID: 18757133 DOI: 10.1016/j.jhazmat.2008.07.058] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 07/12/2008] [Accepted: 07/15/2008] [Indexed: 05/21/2023]
Abstract
Surface soil (0-5 cm) from various agricultural sites in Delhi was analyzed to discern the contents of 16 priority polycyclic aromatic hydrocarbons (PAHs). Reference and deuterated standards were used for identification and quantification of PAHs by high performance liquid chromatography (HPLC) with UV detection. summation operator(16)PAHs ranged from 830 to 3880 microg kg(-1) (dry wt.) with an arithmetic mean of 1910+/-1020 microg kg(-1) summation operator(16)PAHs values at the urban sites were 2-5 times higher as compared to the rural sites. In general, low molecular weight PAHs were predominant. Total organic carbon (TOC) was found to be significantly correlated with summation operator(16)PAHs. Isomer pair ratios and Principal component analysis (PCA) suggested biomass and fossil fuel combustion as the main sources of PAHs. The toxic equivalency factors (TEFs) were used to estimate benzo[a]pyrene-equivalent concentration (B[a]P(eq)). Therewith, PAH content of urban agricultural soil was found to have more carcinogenic potential.
Collapse
|
|
16 |
200 |
24
|
Jahnke H, Schönborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. Top Curr Chem (Cham) 2006; 61:133-81. [PMID: 7032 DOI: 10.1007/bfb0046059] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrocatalysis in fuel cells requires as well substances capable of catalyzing the anodic oxidation of fuels as catalysts for the cathodic reduction of oxygen. Several dyestuffs that catalyze oxygen reduction are known, but up to now only one has been described as active in anodic reactions. All these dyestuffs are N4-chelates. Comparative studies have shown that chelates with other types of coordination, in particular N202-, 04-, N2S2- and S4-chelates, are able to catalyze the reduction of oxygen, though they are considerably less active than the N4-compounds. With a given type of coordination, the nature of the central atom has a decisive influence on the catalytic activity of the dyestuff, whereas substitution on the organic skeleton has only a slight effect. Thermal pretreatment of the N4-chelates can considerably increase their stability in electrolytes containing sulfuric acid. All the experimental results point to the conclusion that, with electrocatalysts, as with natural oxygen carriers, the interaction essential for catalysis takes place between the oxygen and the central metal ion. Various assumptions may be made as to the nature of the rate-determining step. The cathodic reduction of oxygen can be regarded as redox catalysis, or it can be considered from the standpoint of molecular orbital theory. The models hitherto suggested for the mechanism of oxygen reduction are tested against the experimental results and a modified model based on MO theory is put forward.
Collapse
|
Review |
19 |
199 |
25
|
Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K. The renewable chemicals industry. CHEMSUSCHEM 2008; 1:283-289. [PMID: 18605090 DOI: 10.1002/cssc.200700168] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple and educational tools are introduced to allow initial estimates of which chemical processes could be viable. Specifically, fossil and renewables value chains are used to indicate where renewable feedstocks can be optimally valorized. Additionally, C factors are introduced that specify the amount of CO2 produced per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes to arrive at cost-competitive and environmentally friendly processes.
Collapse
|
|
17 |
192 |