1
|
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002; 3:201-15. [PMID: 11994752 DOI: 10.1038/nrn755] [Citation(s) in RCA: 8330] [Impact Index Per Article: 362.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
Collapse
|
Review |
23 |
8330 |
2
|
|
Review |
35 |
4484 |
3
|
Cowan N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 2001; 24:87-114; discussion 114-85. [PMID: 11515286 DOI: 10.1017/s0140525x01003922] [Citation(s) in RCA: 2885] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.
Collapse
|
|
24 |
2885 |
4
|
Conway MA, Pleydell-Pearce CW. The construction of autobiographical memories in the self-memory system. Psychol Rev 2000; 107:261-88. [PMID: 10789197 DOI: 10.1037/0033-295x.107.2.261] [Citation(s) in RCA: 2072] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The authors describe a model of autobiographical memory in which memories are transitory mental constructions within a self-memory system (SMS). The SMS contains an autobiographical knowledge base and current goals of the working self. Within the SMS, control processes modulate access to the knowledge base by successively shaping cues used to activate autobiographical memory knowledge structures and, in this way, form specific memories. The relation of the knowledge base to active goals is reciprocal, and the knowledge base "grounds" the goals of the working self. It is shown how this model can be used to draw together a wide range of diverse data from cognitive, social, developmental, personality, clinical, and neuropsychological autobiographical memory research.
Collapse
|
Review |
25 |
2072 |
5
|
Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004; 22:394-400. [PMID: 15110032 DOI: 10.1016/j.neuroimage.2003.12.030] [Citation(s) in RCA: 1969] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 12/12/2022] Open
Abstract
Kendall's coefficient concordance (KCC) can measure the similarity of a number of time series. It has been used for purifying a given cluster in functional MRI (fMRI). In the present study, a new method was developed based on the regional homogeneity (ReHo), in which KCC was used to measure the similarity of the time series of a given voxel to those of its nearest neighbors in a voxel-wise way. Six healthy subjects performed left and right finger movement tasks in event-related design; five of them were additionally scanned in a rest condition. KCC was compared among the three conditions (left finger movement, right finger movement, and the rest). Results show that bilateral primary motor cortex (M1) had higher KCC in either left or right finger movement condition than in rest condition. Contrary to prediction and to activation pattern, KCC of ipsilateral M1 is significantly higher than contralateral M1 in unilateral finger movement conditions. These results support the previous electrophysiologic findings of increasing ipsilateral M1 excitation during unilateral movement. ReHo can consider as a complementary method to model-driven method, and it could help reveal the complexity of the human brain function. More work is needed to understand the neural mechanism underlying ReHo.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
1969 |
6
|
Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23 Suppl 1:S69-84. [PMID: 15501102 DOI: 10.1016/j.neuroimage.2004.07.016] [Citation(s) in RCA: 1677] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We present a set of techniques for embedding the physics of the imaging process that generates a class of magnetic resonance images (MRIs) into a segmentation or registration algorithm. This results in substantial invariance to acquisition parameters, as the effect of these parameters on the contrast properties of various brain structures is explicitly modeled in the segmentation. In addition, the integration of image acquisition with tissue classification allows the derivation of sequences that are optimal for segmentation purposes. Another benefit of these procedures is the generation of probabilistic models of the intrinsic tissue parameters that cause MR contrast (e.g., T1, proton density, T2*), allowing access to these physiologically relevant parameters that may change with disease or demographic, resulting in nonmorphometric alterations in MR images that are otherwise difficult to detect. Finally, we also present a high band width multiecho FLASH pulse sequence that results in high signal-to-noise ratio with minimal image distortion due to B0 effects. This sequence has the added benefit of allowing the explicit estimation of T2* and of reducing test-retest intensity variability.
Collapse
|
|
21 |
1677 |
7
|
Abstract
Finding one's way around an environment and remembering the events that occur within it are crucial cognitive abilities that have been linked to the hippocampus and medial temporal lobes. Our review of neuropsychological, behavioral, and neuroimaging studies of human hippocampal involvement in spatial memory concentrates on three important concepts in this field: spatial frameworks, dimensionality, and orientation and self-motion. We also compare variation in hippocampal structure and function across and within species. We discuss how its spatial role relates to its accepted role in episodic memory. Five related studies use virtual reality to examine these two types of memory in ecologically valid situations. While processing of spatial scenes involves the parahippocampus, the right hippocampus appears particularly involved in memory for locations within an environment, with the left hippocampus more involved in context-dependent episodic or autobiographical memory.
Collapse
|
Review |
23 |
1606 |
8
|
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106:2322-45. [PMID: 21795627 PMCID: PMC3214121 DOI: 10.1152/jn.00339.2011] [Citation(s) in RCA: 1593] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/20/2011] [Indexed: 01/22/2023] Open
Abstract
The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1593 |
9
|
Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 2014; 18:177-85. [PMID: 24440116 DOI: 10.1016/j.tics.2013.12.003] [Citation(s) in RCA: 1377] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
|
|
11 |
1377 |
10
|
Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2004; 3:255-74. [PMID: 15040547 DOI: 10.3758/cabn.3.4.255] [Citation(s) in RCA: 1374] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We performed meta-analyses on 60 neuroimaging (PET and fMRI) studies of working memory (WM), considering three types of storage material (spatial, verbal, and object), three types of executive function (continuous updating of WM, memory for temporal order, and manipulation of information in WM), and interactions between material and executive function. Analyses of material type showed the expected dorsal-ventral dissociation between spatial and nonspatial storage in the posterior cortex, but not in the frontal cortex. Some support was found for left frontal dominance in verbal WM, but only for tasks with low executive demand. Executive demand increased right lateralization in the frontal cortex for spatial WM. Tasks requiring executive processing generally produce more dorsal frontal activations than do storage-only tasks, but not all executive processes show this pattern. Brodmann's areas (BAs) 6, 8, and 9, in the superior frontal cortex, respond most when WM must be continuously updated and when memory for temporal order must be maintained. Right BAs 10 and 47, in the ventral frontal cortex, respond more frequently with demand for manipulation (including dual-task requirements or mental operations). BA 7, in the posterior parietal cortex, is involved in all types of executive function. Finally, we consider a potential fourth executive function: selective attention to features of a stimulus to be stored in WM, which leads to increased probability of activating the medial prefrontal cortex (BA 32) in storage tasks.
Collapse
|
Review |
21 |
1374 |
11
|
Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 2003; 6:115-6. [PMID: 12536210 DOI: 10.1038/nn1003] [Citation(s) in RCA: 1259] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 12/04/2002] [Indexed: 11/09/2022]
|
|
22 |
1259 |
12
|
Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51:899-908. [PMID: 20331461 DOI: 10.1111/j.1528-1167.2010.02536.x] [Citation(s) in RCA: 1209] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
15 |
1209 |
13
|
Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage 2005; 26:471-9. [PMID: 15907304 DOI: 10.1016/j.neuroimage.2005.02.004] [Citation(s) in RCA: 1176] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 01/27/2005] [Accepted: 02/04/2005] [Indexed: 01/07/2023] Open
Abstract
Alerting, orienting, and executive control are widely thought to be relatively independent aspects of attention that are linked to separable brain regions. However, neuroimaging studies have yet to examine evidence for the anatomical separability of these three aspects of attention in the same subjects performing the same task. The attention network test (ANT) examines the effects of cues and targets within a single reaction time task to provide a means of exploring the efficiency of the alerting, orienting, and executive control networks involved in attention. It also provides an opportunity to examine the brain activity of these three networks as they operate in a single integrated task. We used event-related functional magnetic resonance imaging (fMRI) to explore the brain areas involved in the three attention systems targeted by the ANT. The alerting contrast showed strong thalamic involvement and activation of anterior and posterior cortical sites. As expected, the orienting contrast activated parietal sites and frontal eye fields. The executive control network contrast showed activation of the anterior cingulate along with several other brain areas. With some exceptions, activation patterns of these three networks within this single task are consistent with previous fMRI studies that have been studied in separate tasks. Overall, the fMRI results suggest that the functional contrasts within this single task differentially activate three separable anatomical networks related to the components of attention.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
1176 |
14
|
Abstract
Abstract
Measures of brain activation (e.g., changes in scalp electrical potentials) have become the most popular method for inferring brain function. However, examining brain disruption (e.g., examining behavior after brain injury) can complement activation studies. Activation techniques identify regions involved with a task, whereas disruption techniques are able to discover which regions are crucial for a task. Voxel-based lesion mapping can be used to determine relationships between behavioral measures and the location of brain injury, revealing the function of brain regions. Lesion mapping can also correlate the effectiveness of neurosurgery with the location of brain resection, identifying optimal surgical targets. Traditionally, voxel-based lesion mapping has employed the chi-square test when the clinical measure is binomial and the Student's t test when measures are continuous. Here we suggest that the Liebermeister approach for binomial data is more sensitive than the chi-square test. We also suggest that a test described by Brunner and Munzel is more appropriate than the t test for nonbinomial data because clinical and neuropsychological data often violate the assumptions of the t test. We test our hypotheses comparing statistical tests using both simulated data and data obtained from a sample of stroke patients with disturbed spatial perception. We also developed software to implement these tests (MRIcron), made freely available to the scientific community.
Collapse
|
|
18 |
1114 |
15
|
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 2004; 115:2292-307. [PMID: 15351371 DOI: 10.1016/j.clinph.2004.04.029] [Citation(s) in RCA: 1113] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The main obstacle in interpreting EEG/MEG data in terms of brain connectivity is the fact that because of volume conduction, the activity of a single brain source can be observed in many channels. Here, we present an approach which is insensitive to false connectivity arising from volume conduction. METHODS We show that the (complex) coherency of non-interacting sources is necessarily real and, hence, the imaginary part of coherency provides an excellent candidate to study brain interactions. Although the usual magnitude and phase of coherency contain the same information as the real and imaginary parts, we argue that the Cartesian representation is far superior for studying brain interactions. The method is demonstrated for EEG measurements of voluntary finger movement. RESULTS We found: (a) from 5 s before to movement onset a relatively weak interaction around 20 Hz between left and right motor areas where the contralateral side leads the ipsilateral side; and (b) approximately 2-4 s after movement, a stronger interaction also at 20 Hz in the opposite direction. CONCLUSIONS It is possible to reliably detect brain interaction during movement from EEG data. SIGNIFICANCE The method allows unambiguous detection of brain interaction from rhythmic EEG/MEG data.
Collapse
|
Journal Article |
21 |
1113 |
16
|
Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998; 7:119-32. [PMID: 9558644 DOI: 10.1006/nimg.1997.0315] [Citation(s) in RCA: 1112] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A previous report of correlations in low-frequency resting-state fluctuations between right and left hemisphere motor cortices in rapidly sampled single-slice echoplanar data is confirmed using a whole-body echoplanar MRI scanner at 1.5 T. These correlations are extended to lower sampling rate multislice echoplanar acquisitions and other right/left hemisphere-symmetric functional cortices. The specificity of the correlations in the lower sampling-rate acquisitions is lower due to cardiac and respiratory-cycle effects which are aliased into the pass-band of the low-pass filter. Data are combined for three normal right-handed male subjects. Correlations to left hemisphere motor cortex, visual cortex, and amygdala are measured in long resting-state scans.
Collapse
|
Clinical Trial |
27 |
1112 |
17
|
Thut G, Nietzel A, Brandt SA, Pascual-Leone A. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 2006; 26:9494-502. [PMID: 16971533 PMCID: PMC6674607 DOI: 10.1523/jneurosci.0875-06.2006] [Citation(s) in RCA: 1099] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Covertly directing visual attention toward a spatial location in the absence of visual stimulation enhances future visual processing at the attended position. The neuronal correlates of these attention shifts involve modulation of neuronal "baseline" activity in early visual areas, presumably through top-down control from higher-order attentional systems. We used electroencephalography to study the largely unknown relationship between these neuronal modulations and behavioral outcome in an attention orienting paradigm. Covert visuospatial attention shifts to either a left or right peripheral position in the absence of visual stimulation resulted in differential modulations of oscillatory alpha-band (8-14 Hz) activity over left versus right posterior sites. These changes were driven by varying degrees of alpha-decreases being maximal contralateral to the attended position. When expressed as a lateralization index, these alpha-changes differed significantly between attention conditions, with negative values (alpha_right < alpha_left) indexing leftward and more positive values (alpha_left < or = alpha_right) indexing rightward attention. Moreover, this index appeared deterministic for processing of forthcoming visual targets. Collapsed over trials, there was an advantage for left target processing in accordance with an overall negative bias in alpha-index values. Across trials, left targets were detected most rapidly when preceded by negative index values. Detection of right targets was fastest in trials with most positive values. Our data indicate that collateral modulations of posterior alpha-activity, the momentary bias of visuospatial attention, and imminent visual processing are linked. They suggest that the momentary direction of attention, predicting spatial biases in imminent visual processing, can be estimated from a lateralization index of posterior alpha-activity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
1099 |
18
|
Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature 1998; 393:467-70. [PMID: 9624001 DOI: 10.1038/30976] [Citation(s) in RCA: 1087] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
If subjects are shown an angry face as a target visual stimulus for less than forty milliseconds and are then immediately shown an expressionless mask, these subjects report seeing the mask but not the target. However, an aversively conditioned masked target can elicit an emotional response from subjects without being consciously perceived. Here we study the mechanism of this unconsciously mediated emotional learning. We measured neural activity in volunteer subjects who were presented with two angry faces, one of which, through previous classical conditioning, was associated with a burst of white noise. In half of the trials, the subjects' awareness of the angry faces was prevented by backward masking with a neutral face. A significant neural response was elicited in the right, but not left, amygdala to masked presentations of the conditioned angry face. Unmasked presentations of the same face produced enhanced neural activity in the left, but not right, amygdala. Our results indicate that, first, the human amygdala can discriminate between stimuli solely on the basis of their acquired behavioural significance, and second, this response is lateralized according to the subjects' level of awareness of the stimuli.
Collapse
|
|
27 |
1087 |
19
|
Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. Finding the self? An event-related fMRI study. J Cogn Neurosci 2002; 14:785-94. [PMID: 12167262 DOI: 10.1162/08989290260138672] [Citation(s) in RCA: 1083] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Researchers have long debated whether knowledge about the self is unique in terms of its functional anatomic representation within the human brain. In the context of memory function, knowledge about the self is typically remembered better than other types of semantic information. But why does this memorial effect emerge? Extending previous research on this topic (see Craik et al., 1999), the present study used event-related functional magnetic resonance imaging to investigate potential neural substrates of self-referential processing. Participants were imaged while making judgments about trait adjectives under three experimental conditions (self-relevance, other-relevance, or case judgment). Relevance judgments, when compared to case judgments, were accompanied by activation of the left inferior frontal cortex and the anterior cingulate. A separate region of the medial prefrontal cortex was selectively engaged during self-referential processing. Collectively, these findings suggest that self-referential processing is functionally dissociable from other forms of semantic processing within the human brain.
Collapse
|
|
23 |
1083 |
20
|
Hauk O, Johnsrude I, Pulvermüller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 2005; 41:301-7. [PMID: 14741110 DOI: 10.1016/s0896-6273(03)00838-9] [Citation(s) in RCA: 1068] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since the early days of research into language and the brain, word meaning was assumed to be processed in specific brain regions, which most modern neuroscientists localize to the left temporal lobe. Here we use event-related fMRI to show that action words referring to face, arm, or leg actions (e.g., to lick, pick, or kick), when presented in a passive reading task, differentially activated areas along the motor strip that either were directly adjacent to or overlapped with areas activated by actual movement of the tongue, fingers, or feet. These results demonstrate that the referential meaning of action words has a correlate in the somatotopic activation of motor and premotor cortex. This rules out a unified "meaning center" in the human brain and supports a dynamic view according to which words are processed by distributed neuronal assemblies with cortical topographies that reflect word semantics.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
1068 |
21
|
|
Review |
22 |
1036 |
22
|
Abstract
Emotional events often attain a privileged status in memory. Cognitive neuroscientists have begun to elucidate the psychological and neural mechanisms underlying emotional retention advantages in the human brain. The amygdala is a brain structure that directly mediates aspects of emotional learning and facilitates memory operations in other regions, including the hippocampus and prefrontal cortex. Emotion-memory interactions occur at various stages of information processing, from the initial encoding and consolidation of memory traces to their long-term retrieval. Recent advances are revealing new insights into the reactivation of latent emotional associations and the recollection of personal episodes from the remote past.
Collapse
|
Review |
19 |
985 |
23
|
Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H. Handedness and hemispheric language dominance in healthy humans. Brain 2000; 123 Pt 12:2512-8. [PMID: 11099452 DOI: 10.1093/brain/123.12.2512] [Citation(s) in RCA: 981] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In most people the left hemisphere of the brain is dominant for language. Because of the increased incidence of atypical right-hemispheric language in left-handed neurological patients, a systematic association between handedness and dominance has long been suspected. To clarify the relationship between handedness and language dominance in healthy subjects, we measured lateralization directly by functional transcranial Doppler sonography in 326 healthy individuals using a word-generation task. The incidence of right-hemisphere language dominance was found to increase linearly with the degree of left-handedness, from 4% in strong right-handers (handedness = 100) to 15% in ambidextrous individuals and 27% in strong left-handers (handedness = -100). The relationship could be approximated by the formula: f1.gif" BORDER="0">. These results clearly demonstrate that the relationship between handedness and language dominance is not an artefact of cerebral pathology but a natural phenomenon.
Collapse
|
Clinical Trial |
25 |
981 |
24
|
Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, Alexander AL, Davidson RJ. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci 2005; 8:519-26. [PMID: 15750588 PMCID: PMC4337787 DOI: 10.1038/nn1421] [Citation(s) in RCA: 963] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/16/2005] [Indexed: 11/09/2022]
Abstract
Diminished gaze fixation is one of the core features of autism and has been proposed to be associated with abnormalities in the neural circuitry of affect. We tested this hypothesis in two separate studies using eye tracking while measuring functional brain activity during facial discrimination tasks in individuals with autism and in typically developing individuals. Activation in the fusiform gyrus and amygdala was strongly and positively correlated with the time spent fixating the eyes in the autistic group in both studies, suggesting that diminished gaze fixation may account for the fusiform hypoactivation to faces commonly reported in autism. In addition, variation in eye fixation within autistic individuals was strongly and positively associated with amygdala activation across both studies, suggesting a heightened emotional response associated with gaze fixation in autism.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
963 |
25
|
Abstract
Plasticity is an intrinsic property of the human brain and represents evolution's invention to enable the nervous system to escape the restrictions of its own genome and thus adapt to environmental pressures, physiologic changes, and experiences. Dynamic shifts in the strength of preexisting connections across distributed neural networks, changes in task-related cortico-cortical and cortico-subcortical coherence and modifications of the mapping between behavior and neural activity take place in response to changes in afferent input or efferent demand. Such rapid, ongoing changes may be followed by the establishment of new connections through dendritic growth and arborization. However, they harbor the danger that the evolving pattern of neural activation may in itself lead to abnormal behavior. Plasticity is the mechanism for development and learning, as much as a cause of pathology. The challenge we face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.
Collapse
|
|
20 |
958 |