1
|
Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Lipid rafts reconstituted in model membranes. Biophys J 2001; 80:1417-28. [PMID: 11222302 PMCID: PMC1301333 DOI: 10.1016/s0006-3495(01)76114-0] [Citation(s) in RCA: 1065] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.
Collapse
|
research-article |
24 |
1065 |
2
|
Merritt EA, Sarfaty S, van den Akker F, L'Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 1994; 3:166-75. [PMID: 8003954 PMCID: PMC2142786 DOI: 10.1002/pro.5560030202] [Citation(s) in RCA: 455] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.
Collapse
|
research-article |
31 |
455 |
3
|
Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K, Taguchi K, Miyatake T, Furukawa K, Kobata T, Yamada M. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci U S A 2004; 101:11404-9. [PMID: 15277677 PMCID: PMC509213 DOI: 10.1073/pnas.0402391101] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular mimicry between microbial and self-components is postulated as the mechanism that accounts for the antigen and tissue specificity of immune responses in postinfectious autoimmune diseases. Little direct evidence exists, and research in this area has focused principally on T cell-mediated, antipeptide responses, rather than on humoral responses to carbohydrate structures. Guillain-Barré syndrome, the most frequent cause of acute neuromuscular paralysis, occurs 1-2 wk after various infections, in particular, Campylobacter jejuni enteritis. Carbohydrate mimicry [Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-] between the bacterial lipooligosaccharide and human GM1 ganglioside is seen as having relevance to the pathogenesis of Guillain-Barré syndrome, and conclusive evidence is reported here. On sensitization with C. jejuni lipooligosaccharide, rabbits developed anti-GM1 IgG antibody and flaccid limb weakness. Paralyzed rabbits had pathological changes in their peripheral nerves identical with those present in Guillain-Barré syndrome. Immunization of mice with the lipooligosaccharide generated a mAb that reacted with GM1 and bound to human peripheral nerves. The mAb and anti-GM1 IgG from patients with Guillain-Barré syndrome did not induce paralysis but blocked muscle action potentials in a muscle-spinal cord coculture, indicating that anti-GM1 antibody can cause muscle weakness. These findings show that carbohydrate mimicry is an important cause of autoimmune neuropathy.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
355 |
4
|
Yuki N, Taki T, Inagaki F, Kasama T, Takahashi M, Saito K, Handa S, Miyatake T. A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J Exp Med 1993; 178:1771-5. [PMID: 8228822 PMCID: PMC2191246 DOI: 10.1084/jem.178.5.1771] [Citation(s) in RCA: 330] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is a strong association between Guillain-Barré syndrome (GBS) and Penner's serotype 19 (PEN 19) of Campylobacter jejuni. Sera from patients with GBS after C. jejuni infection have autoantibodies to GM1 ganglioside in the acute phase of the illness. Our previous work has suggested that GBS results from an immune response to cross-reactive antigen between lipopolysaccharide (LPS) of the Gram-negative bacterium and membrane components of peripheral nerves. To clarify the pathogenesis of GBS, we have investigated whether GM1-oligosaccharide structure is present in the LPS of C. jejuni (PEN 19) that was isolated from a GBS patient. After extraction of the LPS, the LPS showing the binding activity of cholera toxin, that specifically recognizes the GM1-oligosaccharide was purified by a silica bead column chromatography. Gas-liquid chromatography-mass spectrometric analysis has shown that the purified LPS contained Gal, GalNAc, and NeuAc, which are sugar components of GM1 ganglioside. 1H NMR methods [Carr-Purcell-Meiboom-Gill (CPMG), total correlation spectroscopy (TOCSY), and nuclear Overhauser effect spectroscopy (NOESY)] have revealed that the oligosaccharide structure [Gal beta 1-3 GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta] protrude from the LPS core. This terminal structure [Gal beta 1-3GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta] is identical to the terminal tetrasaccharide of the GM1 ganglioside. This is the first study to demonstrate the existence of molecular mimicry between nerve tissue and the infectious agent that elicits GBS.
Collapse
|
research-article |
32 |
330 |
5
|
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 2003; 22:4346-55. [PMID: 12941687 PMCID: PMC202381 DOI: 10.1093/emboj/cdg439] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyoma virus (Py) and simian virus 40 (SV40) travel from the plasma membrane to the endoplasmic reticulum (ER) from where they enter the cytosol and then the nucleus to initiate infection. Here we demonstrate that specific gangliosides can serve as plasma membrane receptors for these viruses, GD1a and GT1b for Py and GM1 for SV40. Binding and flotation assays were used to show that addition of these gangliosides to phospholipid vesicles allowed specific binding of the respective viruses. The crystal structure of polyoma VP1 with a sialic acid-containing oligosaccharide was used to derive a model of how the two terminal sugars (sialic acid-alpha2,3-galactose) in one branch of GD1a and GT1b are recognized by the virus. A rat cell line deficient in ganglioside synthesis is poorly infectible by polyoma and SV40, but addition of the appropriate gangliosides greatly facilitates virus uptake, transport to the ER and infection. Lipid binding sites for polyoma are shown to be present in rough ER membranes, suggesting that the virus travel with the ganglioside(s) from the plasma membranes to the ER.
Collapse
|
research-article |
22 |
323 |
6
|
Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 1997; 272:6324-31. [PMID: 9045652 DOI: 10.1074/jbc.272.10.6324] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cells infected with prions contain both prion protein isoforms cellular prion protein (PrPC) and scrapie prion protein (PrPSc). PrPSc is formed posttranslationally through the pathological refolding of PrPC. In scrapie-infected ScN2a cells, the metabolism of both PrP isoforms involves cholesterol-dependent pathways. We show here that both PrPC and PrPSc are attached to Triton X-100-insoluble, low-density complexes or "rafts." These complexes are sensitive to saponin and thus probably contain cholesterol. This finding suggests that the transformation PrPC --> PrPSc occurs within rafts. It also reveals the existence of rafts in late compartments of the endocytic pathway, where most PrPSc resides. When Triton X-100 lysates of cells were incubated at 37 degrees C prior to density analysis, PrPC was still found in buoyant complexes, although it now failed to sediment at high speed. This property was shared by another glycophosphatidyl inositol protein, Thy-1, and also by the raft resident GM1. In one ScN2a clone and in the brain of a Syrian hamster with scrapie, Triton X-100 extraction at 37 degrees C permitted resolution of PrPC and PrPSc into two distinct peaks of different densities. This suggests that there are two populations of PrP-containing rafts and may permit isolation of PrPC-specific rafts from those containing PrPSc. Our findings reinforce the contention that rafts are involved in various aspects of PrP metabolism and in the "life cycle" of prions.
Collapse
|
|
28 |
316 |
7
|
Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 2002; 41:7385-90. [PMID: 12044171 DOI: 10.1021/bi0255874] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
GM1 ganglioside-bound amyloid beta-protein (GM1-Abeta), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) plaques, has been suggested to accelerate amyloid fibril formation by acting as a seed. We have previously found using dye-labeled Abeta that Abeta recognizes a GM1 cluster, the formation of which is facilitated by cholesterol [Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2001) J. Biol. Chem. 276, 24985-24990]. In this study, we investigated the ganglioside species-specificity in its potency to induce a conformational change of Abeta, by which ganglioside-bound Abeta acts as a seed for Abeta fibrillogenesis, using a major ganglioside occurring in brains (GM1, GD1a, GD1b, and GT1b) in raft-like membranes composed of cholesterol and sphingomyelin. Abeta recognized ganglioside clusters, the density of which increased with the number of sialic acid residues. Interestingly, however, mixing of gangliosides inhibited cluster formation. In contrast, the affinities of the protein for the clusters were similar irrespective of lipid composition and of the order of 10(6) M(-)(1) at 37 degrees C. Abeta underwent a conformational transition from an alpha-helix-rich structure to a beta-sheet-rich structure with the increase in protein density on the membrane. Ganglioside-bound Abeta proteins exhibited seeding abilities for amyloid formation. GM1-Abeta exhibited the strongest seeding potential, especially under beta-sheet-forming conditions. This study suggested that lipid composition including gangliosides and cholesterol strictly controls amyloid formation.
Collapse
|
Comparative Study |
23 |
288 |
8
|
Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci U S A 2001; 98:10642-7. [PMID: 11535814 PMCID: PMC58519 DOI: 10.1073/pnas.191168698] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2001] [Indexed: 12/31/2022] Open
Abstract
As shown earlier, raft-like domains resembling those thought to be present in natural cell membranes can be formed in supported planar lipid monolayers. These liquid-ordered domains coexist with a liquid-disordered phase and form in monolayers prepared both from synthetic lipid mixtures and lipid extracts of the brush border membrane of mouse kidney cells. The domains are detergent-resistant and are highly enriched in the glycosphingolipid GM1. In this work, the properties of these raft-like domains are further explored and compared with properties thought to be central to raft function in plasma membranes. First, it is shown that domain formation and disruption critically depends on the cholesterol density and can be controlled reversibly by treating the monolayers with the cholesterol-sequestering reagent methyl-beta-cyclodextrin. Second, the glycosylphosphatidylinositol-anchored cell-surface protein Thy-1 significantly partitions into the raft-like domains. The extent of this partitioning is reduced when the monolayers contain GM1, indicating that different molecules can compete for domain occupation. Third, the partitioning of a saturated phospholipid analog into the raft phase is dramatically increased (15% to 65%) after cross-linking with antibodies, whereas the distribution of a doubly unsaturated phospholipid analog is not significantly affected by cross-linking (approximately 10%). This result demonstrates that cross-linking, a process known to be important for certain cell-signaling processes, can selectively translocate molecules to liquid-ordered domains.
Collapse
|
research-article |
24 |
263 |
9
|
Yuan C, Furlong J, Burgos P, Johnston LJ. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J 2002; 82:2526-35. [PMID: 11964241 PMCID: PMC1302043 DOI: 10.1016/s0006-3495(02)75596-3] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Atomic force microscopy has been used to study the distribution of ganglioside GM1 in model membranes composed of ternary lipid mixtures that mimic the composition of lipid rafts. The results demonstrate that addition of 1% GM1 to 1:1:1 sphingomyelin/dioleoylphosphatidylcholine/cholesterol monolayers leads to the formation of small ganglioside-rich microdomains (40-100 nm in size) that are localized preferentially in the more ordered sphingomyelin/cholesterol-rich phase. With 5% GM1 some GM1 microdomains are also detected in the dioleoylphosphatidylcholine-rich phase. A similar preferential localization of GM1 in the ordered phase is observed for bilayers with the same ternary lipid mixture in the upper leaflet. The small GM1-rich domains observed in these experiments are similar to the sizes for lipid rafts in natural membranes but considerably smaller than the ordered bilayer domains that have been shown to be enriched in GM1 in recent fluorescence microscopy studies of lipid bilayers. The combined data from a number of studies of model membranes indicate that lateral organization occurs on a variety of length scales and mimics many of the properties of natural membranes.
Collapse
|
research-article |
23 |
245 |
10
|
Martinez Z, Zhu M, Han S, Fink AL. GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 2007; 46:1868-77. [PMID: 17253773 DOI: 10.1021/bi061749a] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aggregation of alpha-synuclein is believed to be a key step in the etiology of Parkinson's disease. Alpha-synuclein is found in the cytosol and is associated with membranes in the presynaptic region of neurons and has recently been reported to be associated with lipid rafts and caveolae. We examined the interactions between several brain sphingolipids and alpha-synuclein and found that alpha-synuclein specifically binds to ganglioside GM1-containing small unilamellar vesicles (SUVs). This results in the induction of substantial alpha-helical structure and inhibition or elimination of alpha-synuclein fibril formation, depending on the amount of GM1 present. SUVs containing total brain gangliosides, gangliosides GM2 or GM3, or asialo-GM1 had weak inhibitory effects on alpha-synuclein fibrillation and induced some alpha-helical structure, while all other sphingolipids studied showed negligible interaction with alpha-synuclein. alpha-Synuclein binding to GM1-containing SUVs was accompanied by formation of oligomers of alpha-synuclein. The familial mutant A53T alpha-synuclein interacted with GM1-containing SUVs in an analogous manner to wild type, whereas the A30P mutant showed minimal interaction. This is the first detailed report showing a direct association between GM1 and alpha-synuclein, which is attributed to specific interaction between helical alpha-synuclein and both the sialic acid and carbohydrate moieties of GM1. The recruitment of alpha-synuclein by GM1 to caveolae and lipid raft regions in membranes could explain alpha-synuclein's localization to presynaptic membranes and raises the possibility that perturbation of GM1/raft association could induce changes in alpha-synuclein that contribute to the pathogenesis of PD.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
202 |
11
|
Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K. A seed for Alzheimer amyloid in the brain. J Neurosci 2004; 24:4894-902. [PMID: 15152051 PMCID: PMC6729458 DOI: 10.1523/jneurosci.0861-04.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fundamental question about the early pathogenesis of Alzheimer's disease (AD) concerns how toxic aggregates of amyloid beta protein (Abeta) are formed from its nontoxic soluble form. We hypothesized previously that GM1 ganglioside-bound Abeta (GAbeta) is involved in the process. We now examined this possibility using a novel monoclonal antibody raised against GAbeta purified from an AD brain. Here, we report that GAbeta has a conformation distinct from that of soluble Abeta and initiates Abeta aggregation by acting as a seed. Furthermore, GAbeta generation in the brain was validated by both immunohistochemical and immunoprecipitation studies. These results imply a mechanism underlying the onset of AD and suggest that an endogenous seed can be a target of therapeutic strategy.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
201 |
12
|
Radhakrishnan A, Anderson TG, McConnell HM. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci U S A 2000; 97:12422-7. [PMID: 11050164 PMCID: PMC18778 DOI: 10.1073/pnas.220418097] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epifluorescence microscopy studies of mixtures of phospholipids and cholesterol at the air-water interface often exhibit coexisting liquid phases. The properties of these liquids point to the formation of "condensed complexes" between cholesterol and certain phospholipids, such as sphingomyelin. It is found that monolayers that form complexes can incorporate a low concentration of a ganglioside G(M1). This glycolipid is visualized by using a fluorescently labeled B subunit of cholera toxin. Three coexisting liquid phases are found by using this probe together with a fluorescent phospholipid probe. The three liquid phases are identified as a phospholipid-rich phase, a cholesterol-rich phase, and a condensed complex-rich phase. The cholera toxin B labeled ganglioside G(M1) is found exclusively in the condensed complex-rich phase. Condensed complexes are likely present in animal cell membranes, where they should facilitate the formation of specialized domains such as rafts. Condensed complexes also have a major effect in determining the chemical activity of cholesterol. It is suggested that this chemical activity plays an essential role in the regulation of cholesterol biosynthesis. Gradients in the chemical activity of cholesterol should likewise govern the rates and direction of intracellular intermembrane cholesterol transport.
Collapse
|
research-article |
25 |
183 |
13
|
Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 1998; 141:917-27. [PMID: 9585411 PMCID: PMC2132772 DOI: 10.1083/jcb.141.4.917] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Revised: 04/01/1998] [Indexed: 02/07/2023] Open
Abstract
In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951-962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd approximately 5 nM), only CT elicited a cAMP-dependent Cl- secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.
Collapse
|
research-article |
27 |
173 |
14
|
Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. IMMUNOLOGY TODAY 1999; 20:95-101. [PMID: 10098329 DOI: 10.1016/s0167-5699(98)01397-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholera toxin and its close relative, Escherichia coli heat-labile enterotoxin, are potent immunogens and mucosal adjuvants. The recent findings that their B subunits can promote tolerance highlights the complexity of their interactions with the immune system. Here, Neil Williams and colleagues review the mechanisms by which these molecules modulate leukocyte populations and seek to explain the paradox.
Collapse
|
Review |
26 |
166 |
15
|
Sixma TK, Pronk SE, Kalk KH, van Zanten BA, Berghuis AM, Hol WG. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 1992; 355:561-4. [PMID: 1741035 DOI: 10.1038/355561a0] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recognition of the oligosaccharide portion of ganglioside GM1 in membranes of target cells by the heat-labile enterotoxin from Escherichia coli is the crucial first step in its pathogenesis, as it is for the closely related cholera toxin. These toxins have five B subunits, which are essential for GM1 binding, and a single A subunit, which needs to be nicked by proteolysis and reduced, yielding an A1-'enzyme' and an A2-'linker' peptide. A1 is translocated across the membrane of intestinal epithelial cells, possibly after endocytosis, upon which it ADP-ribosylates the G protein Gs alpha. The mechanism of binding and translocation of these toxins has been extensively investigated, but how the protein is orientated on binding is still not clear. Knowing the precise arrangement of the ganglioside binding sites of the toxins will be useful for designing drugs against the diarrhoeal diseases caused by organisms secreting these toxins and in the development of oral vaccines against them. We present here the three-dimensional structure of the E. coli heat-labile enterotoxin complexed with lactose. This reveals the location of the binding site of the terminal galactose of GM1, which is consistent with toxin binding to the target cell with its A1 fragment pointing away from the membrane. A small helix is identified at the carboxy terminus of A2 which emerges through the central pore of the B subunits and probably comes into contact with the membrane upon binding, whereas the A1 subunit is flexible with respect to the B pentamer.
Collapse
|
|
33 |
161 |
16
|
Turnbull WB, Precious BL, Homans SW. Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetry. J Am Chem Soc 2004; 126:1047-54. [PMID: 14746472 DOI: 10.1021/ja0378207] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex of cholera toxin and ganglioside GM1 is one of the highest affinity protein-carbohydrate interactions known. Herein, the GM1 pentasaccharide is dissected into smaller fragments to determine the contribution of each of the key monosaccharide residues to the overall binding affinity. Displacement isothermal titration calorimetry (ITC) has allowed the measurement of all of the key thermodynamic parameters for even the lowest affinity fragment ligands. Analysis of the standard free energy changes using Jencks' concept of intrinsic free energies reveals that the terminal galactose and sialic acid residues contribute 54% and 44% of the intrinsic binding energy, respectively, despite the latter ligand having little appreciable affinity for the toxin. This analysis also provides an estimate of 25.8 kJ mol(-1) for the loss of independent translational and rotational degrees of freedom on complexation and presents evidence for an alternative binding mode for ganglioside GM2. The high affinity and selectivity of the GM1-cholera toxin interaction originates principally from the conformational preorganization of the branched pentasaccharide rather than through the effect of cooperativity, which is also reinvestigated by ITC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
158 |
17
|
Matsuzaki K, Horikiri C. Interactions of amyloid beta-peptide (1-40) with ganglioside-containing membranes. Biochemistry 1999; 38:4137-42. [PMID: 10194329 DOI: 10.1021/bi982345o] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between amyloid beta-peptides (Abeta) and neuronal membranes have been postulated to play an important role in the neuropathology of Alzheimer's disease. To gain insight into the molecular details of this association, we investigated the interactions of Abeta (1-40) with ganglioside-containing membranes by circular dichroism (CD) and Fourier transform infrared-polarized attenuated total reflection (FTIR-PATR) spectroscopy. The CD study revealed that at physiological ionic strength Abeta (1-40) specifically binds to ganglioside-containing membranes inducing a two-state, unordered --> beta-sheet transition above a threshold intramembrane ganglioside concentration, which depends on the host lipid bilayers used. Furthermore, differences in the number and position of sialic acid residues of the carbohydrate backbone significantly affected the conformational transition of the peptide. FTIR-PATR spectroscopy experiments demonstrated that Abeta (1-40) forms an antiparallel beta-sheet, the plane of which lies parallel to the membrane surface, inducing dehydration of lipid interfacial groups and perturbation of acyl chain orientation. These results suggest that Abeta (1-40) imposes negative curvature strain on ganglioside-containing lipid bilayers, disturbing the structure and function of the membranes.
Collapse
|
|
26 |
158 |
18
|
Choo-Smith LP, Surewicz WK. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett 1997; 402:95-8. [PMID: 9037173 DOI: 10.1016/s0014-5793(96)01504-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction between Alzheimer amyloid peptide A beta(1-40) and membrane lipids was studied by circular dichroism spectroscopy under the conditions of physiologically relevant ionic strength and neutral pH. The peptide binds to the membranes containing ganglioside GM1 and upon binding undergoes a conformational transition from random coil to an ordered structure rich in beta-sheet. This interaction appears to be ganglioside-specific as no changes in A beta(1-40) conformation were found in the presence of various phospholipids or sphingomyelin. The isolated oligosaccharide moiety of the ganglioside was ineffective in inducing alterations in the secondary structure of A beta(1-40). No interaction was observed between ganglioside GM1 and the N-terminal peptide fragment A beta(1-28). Binding to the ganglioside is likely to modulate the neurotoxic and/or amyloidogenic properties of A beta(1-40).
Collapse
|
Comparative Study |
28 |
147 |
19
|
Hwang J, Tamm LK, Ramalingam TS, Betzig E, Edidin M. Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy. Science 1995; 270:610-4. [PMID: 7570018 DOI: 10.1126/science.270.5236.610] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Near-field scanning optical microscopy of phospholipid monolayers doped with fluorescent lipid analogs reveals previously undescribed features in various phases, including a concentration gradient at the liquid-expanded/liquid-condensed domain boundary and weblike structures in the solid-condensed phase. Presumably, the web structures are grain boundaries between crystalline solid lipid. These structures are strongly modulated by the addition of low concentrations of cholesterol and ganglioside GM1 in the monolayer.
Collapse
|
|
30 |
131 |
20
|
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014; 124:712-24. [PMID: 24463447 DOI: 10.1172/jci69571] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
123 |
21
|
Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJR, Gabius HJ. Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 2003; 22:6277-88. [PMID: 13679866 DOI: 10.1038/sj.onc.1206631] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extracellular functions of galectin-7 (p53-induced gene 1) are largely unknown. On the surface of neuroblastoma cells (SK-N-MC), the increased GM1 density, a result of upregulated ganglioside sialidase activity, is a key factor for the switch from proliferation to differentiation. We show by solid-phase and cell assays that the sugar chain of this ganglioside is a ligand for galectin-7. In serum-supplemented proliferation assays, galectin-7 reduced neuroblastoma cell growth without the appearance of features characteristic for classical apoptosis. The presence of galectin-3 blocked this effect, which mechanistically resembles that of galectin-1. By virtue of carbohydrate binding, galectin-7 thus exerts neuroblastoma growth control similar to galectin-1 despite their structural differences. In addition to p53-linked proapoptotic activity intracellularly, galectin-7, acting as a lectin on the cell surface, appears to be capable of reducing cancer cell proliferation in susceptible systems.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
22 |
119 |
22
|
Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, Miyagi T, Preti A, Prinetti A, Prioni S, Sonnino S, Tettamanti G, Venerando B, Monti E. The Plasma Membrane-associated Sialidase MmNEU3 Modifies the Ganglioside Pattern of Adjacent Cells Supporting Its Involvement in Cell-to-Cell Interactions. J Biol Chem 2004; 279:16989-95. [PMID: 14970224 DOI: 10.1074/jbc.m400881200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe herein the enzyme behavior of MmNEU3, the plasma membrane-associated sialidase from mouse (Mus musculus). MmNEU3 is localized at the plasma membrane as demonstrated directly by confocal microscopy analysis. In addition, administration of the radiolabeled ganglioside GD1a to MmNEU3-transfected cells, under conditions that prevent lysosomal activity, led to its hydrolysis into ganglioside GM1, further indicating the plasma membrane topology of MmNEU3. Metabolic labeling with [1-(3)H]sphingosine allowed the characterization of the ganglioside patterns of COS-7 cells. MmNEU3 expression in COS-7 cells led to an extensive modification of the cell ganglioside pattern, i.e. GM3 and GD1a content was decreased to about one-third compared with mock-transfected cells. At the same time, a 35% increase in ganglioside GM1 content was observed. Mixed culture of MmNEU3-transfected cells with [1-(3)H]sphingosine-labeled cells demonstrates that the enzyme present at the cell surface is able to recognize gangliosides exposed on the membrane of nearby cells. Under these experimental conditions, the extent of ganglioside pattern changes was a function of MmNEU3 transient expression. Overall, the variations in GM3, GD1a, and GM1 content were very similar to those observed in the case of [1-(3)H]sphingosine-labeled MmNEU3-transfected cells, indicating that the enzyme mainly exerted its activity toward ganglioside substrates present at the surface of neighboring cells. These results indicate that the plasma membrane-associated sialidase MmNEU3 is able to hydrolyze ganglioside substrates in intact living cells at a neutral pH, mainly through cell-to-cell interactions.
Collapse
|
|
21 |
118 |
23
|
Siebert HC, André S, Lu SY, Frank M, Kaltner H, van Kuik JA, Korchagina EY, Bovin N, Tajkhorshid E, Kaptein R, Vliegenthart JFG, von der Lieth CW, Jiménez-Barbero J, Kopitz J, Gabius HJ. Unique Conformer Selection of Human Growth-Regulatory Lectin Galectin-1 for Ganglioside GM1 versus Bacterial Toxins,. Biochemistry 2003; 42:14762-73. [PMID: 14674750 DOI: 10.1021/bi035477c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endogenous lectins induce effects on cell growth by binding to antennae of natural glycoconjugates. These complex carbohydrates often present more than one potential lectin-binding site in a single chain. Using the growth-regulatory interaction of the pentasaccharide of ganglioside GM(1) with homodimeric galectin-1 on neuroblastoma cell surfaces as a model, we present a suitable strategy for addressing this issue. The approach combines NMR spectroscopic and computational methods and does not require isotope-labeled glycans. It involves conformational analysis of the two building blocks of the GM(1) glycan, i.e., the disaccharide Galbeta1-3GalNAc and the trisaccharide Neu5Acalpha2-3Galbeta1-4Glc. Their bound-state conformations were determined by transferred nuclear Overhauser enhancement spectroscopy. Next, measurements on the lectin-pentasaccharide complex revealed differential conformer selection regarding the sialylgalactose linkage in the tri- versus pentasaccharide (Phi and Psi value of -70 degrees and 15 degrees vs 70 degrees and 15 degrees, respectively). To proceed in the structural analysis, the characteristic experimentally detected spatial vicinity of a galactose unit and Trp68 in the galectin's binding site offered a means, exploiting saturation transfer from protein to carbohydrate protons. Indeed, we detected two signals unambiguously assigned to the terminal Gal and the GalNAc residues. Computational docking and interaction energy analyses of the entire set of ligands supported and added to experimental results. The finding that the ganglioside's carbohydrate chain is subject to differential conformer selection at the sialylgalactose linkage by galectin-1 and GM(1)-binding cholera toxin (Phi and Psi values of -172 degrees and -26 degrees, respectively) is relevant for toxin-directed drug design. In principle, our methodology can be applied in studies aimed at blocking galectin functionality in malignancy and beyond glycosciences.
Collapse
|
|
22 |
111 |
24
|
Yuan C, Johnston LJ. Distribution of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine/cholesterol monolayers: a model for lipid rafts. Biophys J 2000; 79:2768-81. [PMID: 11053150 PMCID: PMC1301158 DOI: 10.1016/s0006-3495(00)76516-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.
Collapse
|
research-article |
25 |
111 |
25
|
Shaikh SR, Dumaual AC, Castillo A, LoCascio D, Siddiqui RA, Stillwell W, Wassall SR. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Biophys J 2005; 87:1752-66. [PMID: 15345554 PMCID: PMC1304580 DOI: 10.1529/biophysj.104.044552] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously suggested that the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) may in part function by enhancing membrane lipid phase separation into lipid rafts. Here we further tested for differences in the molecular interactions of an oleic (OA) versus DHA-containing phospholipid with sphingomyelin (SM) and cholesterol (CHOL) utilizing (2)H NMR spectroscopy, differential scanning calorimetry, atomic force microscopy, and detergent extractions in model bilayer membranes. (2)H NMR and DSC (differential scanning calorimetry) established the phase behavior of the OA-containing 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31))/SM (1:1) and the DHA-containing 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31))/SM (1:1) in the absence and presence of equimolar CHOL. CHOL was observed to affect the OA-containing phosphatidylethanolamine (PE) more than the DHA-containing PE, as exemplified by >2 x greater increase in order measured for the perdeuterated palmitic chain in 16:0-18:1PE-d(31)/SM (1:1) compared to 16:0-22:6PE-d(31)/SM (1:1) bilayers in the liquid crystalline phase. Atomic force microscopy (AFM) experiments showed less lateral phase separation between 16:0-18:1PE-rich and SM/CHOL-rich raft domains in 16:0-18:1PE/SM/CHOL (1:1:1) bilayers than was observed when 16:0-22:6PE replaced 16:0-18:1PE. Differences in the molecular interaction of 16:0-18:1PE and 16:0-22:6PE with SM/CHOL were also found using biochemical detergent extractions. In the presence of equimolar SM/CHOL, 16:0-18:1PE showed decreased solubilization in comparison to 16:0-22:6PE, indicating greater phase separation with the DHA-PE. Detergent experiments were also conducted with cardiomyocytes fed radiolabeled OA or DHA. Although both OA and DHA were found to be largely detergent solubilized, the amount of OA that was found to be associated with raft-rich detergent-resistant membranes exceeded DHA by almost a factor of 2. We conclude that the OA-PE phase separates from rafts far less than DHA-PE, which may have implications for cellular signaling.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
110 |