1
|
Tagami S, Inokuchi Ji JI, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 2002; 277:3085-92. [PMID: 11707432 DOI: 10.1074/jbc.m103705200] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are known as modulators of transmembrane signaling by regulating various receptor functions. We have found that insulin resistance induced by tumor necrosis factor-alpha (TNF-alpha) in 3T3-L1 adipocytes was accompanied by increased GM3 ganglioside expression caused by elevating GM3 synthase activity and its mRNA. We also demonstrated that TNF-alpha simultaneously produced insulin resistance by uncoupling insulin receptor activity toward insulin receptor substrate-1 (IRS-1) and suppressing insulin-sensitive glucose transport. Pharmacological depletion of GM3 in adipocytes by an inhibitor of glucosylceramide synthase prevented the TNF-alpha-induced defect in insulin-dependent tyrosine phosphorylation of IRS-1 and also counteracted the TNF-alpha-induced serine phosphorylation of IRS-1. Moreover, when the adipocytes were incubated with exogenous GM3, suppression of tyrosine phosphorylation of insulin receptor and IRS-1 and glucose uptake in response to insulin stimulation was observed, demonstrating that GM3 itself is able to mimic the effects of TNF on insulin signaling. We used the obese Zucker fa/fa rat and ob/ob mouse, which are known to overproduce TNF-alpha mRNA in adipose tissues, as typical models of insulin resistance. We found that the levels of GM3 synthase mRNA in adipose tissues of these animals were significantly higher than in their lean counterparts. Taken together, the increased synthesis of cellular GM3 by TNF may participate in the pathological conditions of insulin resistance in type 2 diabetes.
Collapse
|
|
23 |
288 |
2
|
Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 1998; 273:9130-8. [PMID: 9535903 DOI: 10.1074/jbc.273.15.9130] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse melanoma B16 cells are characterized by the predominant presence of ganglioside GM3 and adhere to lactosylceramide- or Gg3-coated plates through interaction of GM3 with lactosylceramide or Gg3, whereby not only adhesion but also spreading and enhancement of cell motility occur (Kojima, N., Hakomori, S. (1991) J. Biol. Chem. 266, 17552-17558). We now report that the adhesion process is based essentially on a glycosphingolipid-enriched microdomain (GEM) at the B16 cell surface, since >90% of GM3 present in the original cells is found in GEM, and GEM is also enriched in several signal transducer molecules, e.g. c-Src, Ras, Rho, and focal adhesion kinase (FAK). GEM was isolated as a low density membranous fraction by homogenization of B16 cells in lysis buffer under two different conditions (i.e. buffer containing 1% Triton X-100, or hypertonic sodium carbonate without detergent), followed by sucrose density gradient centrifugation. A close association of GM3 with c-Src, Rho, and FAK was indicated by co-immunoprecipitation of GM3 present in GEM by anti-GM3 monoclonal antibody DH2, followed by Western blotting with antibodies directed to these transducer molecules. The following data indicate that GEM is a structural and functional unit for initiation of GM3-dependent cell adhesion coupled with signal transduction. 1) Tyrosine phosphorylation in FAK was greatly enhanced in B16 cells adhered to Gg3-coated plates but was minimal in cells adhered to GM3-coated, GlcCer-coated, or noncoated plates. 2) GTP loading on Ras and Rho increased significantly when cells were adhered to Gg3-coated plates, compared with GM3-coated, GlcCer-coated, or noncoated plates. Since Ras and Rho are closely associated with GM3 in GEM, cell adhesion/stimulation through GM3 in GEM may induce activation of Ras and Rho through enhanced GTP binding.
Collapse
|
|
27 |
240 |
3
|
Nojiri H, Takaku F, Terui Y, Miura Y, Saito M. Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci U S A 1986; 83:782-6. [PMID: 3456169 PMCID: PMC322949 DOI: 10.1073/pnas.83.3.782] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When human myeloid and monocytoid leukemic cell lines HL-60 and U937, respectively, were treated with an exogenous sialoglycosphingolipid, ganglioside GM3, in serum-free medium, cell growth was markedly inhibited, and their morphological maturation along a monocytic lineage was observed. In addition to a significant increase in phagocytic and nonspecific esterase activities, marked increase of monocyte-specific surface antigens detectable with monoclonal antibodies such as OKM1 and OKM5 was observed in GM3-fed cells. Other sialoglycosphingolipids with the carbohydrate structure belonging to ganglio-series oligosaccharide, ganglioside GM1 and a brain ganglioside mixture, had no effect on the cell differentiation, showing instead stimulatory actions on the growth of these cell lines. We recently demonstrated that the ganglio-series ganglioside GM3 characteristically increased during macrophage-like cell differentiation of these cell lines. The present results indicate that ganglioside molecular species that specifically increase during monocytic cell differentiation of human myeloid and monocytoid leukemic cell lines may play, in turn, an important role in the differentiation-induction of these cell lines along a monocytic cell lineage.
Collapse
|
research-article |
39 |
153 |
4
|
Bremer EG, Hakomori S. GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun 1982; 106:711-8. [PMID: 6288031 DOI: 10.1016/0006-291x(82)91769-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
43 |
138 |
5
|
Scorrano L, Petronilli V, Di Lisa F, Bernardi P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 1999; 274:22581-5. [PMID: 10428836 DOI: 10.1074/jbc.274.32.22581] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the effects of GD3 ganglioside on mitochondrial function in isolated mitochondria and intact cells. In isolated mitochondria, GD3 ganglioside induces complex changes of respiration that depend on the substrate being oxidized. However, these effects are secondary to opening of the cyclosporin A-sensitive permeability transition pore and to the ensuing swelling and cytochrome c depletion rather than to an interaction with the respiratory chain complexes. By using a novel in situ assay based on the fluorescence changes of mitochondrially entrapped calcein (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734), we unequivocally show that GD3 ganglioside also induces the mitochondrial permeability transition in intact cells and that this event precedes apoptosis. The mitochondrial effects of GD3 ganglioside are selective, in that they cannot be mimicked by either GD1a or GM3 gangliosides, and they are fully sensitive to cyclosporin A, which inhibits both the mitochondrial permeability transition in situ and the onset of apoptosis induced by GD3 ganglioside. These results provide compelling evidence that opening of the permeability transition pore is causally related to apoptosis.
Collapse
|
Comparative Study |
26 |
131 |
6
|
Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S. GM3 Ganglioside Inhibits CD9-Facilitated Haptotactic Cell Motility: Coexpression of GM3 and CD9 Is Essential in the Downregulation of Tumor Cell Motility and Malignancy†. Biochemistry 2001; 40:6414-21. [PMID: 11371204 DOI: 10.1021/bi0101998] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cooperative inhibitory effect of GM3, together with CD9, on haptotactic cell motility was demonstrated by a few lines of study as described below. (i) Haptotactic motility of colorectal carcinoma cell lines SW480, SW620, and HRT18, which express CD9 at a high level, is inhibited by exogenous GM3, but not by GM1. (ii) Motility of gastric cancer cell line MKN74, which expresses CD9 at a low level, was not affected by exogenous GM3. Its motility became susceptible to and inhibited by exogenous GM3, but not GM1, when the CD9 level of MKN74 cells was converted to a high level by transfection with CD9 cDNA. Findings i and ii suggest that haptotactic tumor cell motility is cooperatively inhibited by coexpression of CD9 and GM3. (iii) This possibility was further demonstrated using cell line ldlD 14, and its derivative expressing CD9 through transfection of its gene (termed ldlD/CD9). Both of these cell lines are defective in UDP-Gal 4-epimerase and cannot synthesize GM3 unless cultured in the presence of galactose (Gal(+)), whereas GM3 synthesis does not occur when cells are cultured in the absence of Gal (Gal(-)). Haptotactic motility of parental ldlD cells is low, and shows no difference in the presence and absence of Gal. In contrast, the motility of ldlD/CD9 cells is very high in Gal(-) whereby endogenous GM3 synthesis does not occur, and is very reduced in Gal(+) whereby endogenous GM3 synthesis occurs. (iv) Photoactivatable (3)H-labeled GM3 added to HRT18 cells, followed by UV irradiation, causes cross-linking of GM3 to CD9, as evidenced by (3)H labeling of CD9, which is immunoprecipitated with anti-CD9 antibody. These findings suggest that CD9 is a target molecule interacting with GM3, and that CD9 and GM3 cooperatively downregulate tumor cell motility.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/physiology
- CHO Cells
- Cell Migration Inhibition
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/radiation effects
- Chemotaxis/drug effects
- Chemotaxis/radiation effects
- Clone Cells
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Cricetinae
- Cross-Linking Reagents/metabolism
- Culture Media, Conditioned
- G(M3) Ganglioside/biosynthesis
- G(M3) Ganglioside/metabolism
- G(M3) Ganglioside/pharmacology
- G(M3) Ganglioside/physiology
- Galactose/metabolism
- Humans
- Membrane Glycoproteins
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Stomach Neoplasms/prevention & control
- Tetraspanin 29
- Transfection
- Tritium/metabolism
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/radiation effects
- Ultraviolet Rays
Collapse
|
|
24 |
118 |
7
|
Inokuchi J, Momosaki K, Shimeno H, Nagamatsu A, Radin NS. Effects of D-threo-PDMP, an inhibitor of glucosylceramide synthetase, on expression of cell surface glycolipid antigen and binding to adhesive proteins by B16 melanoma cells. J Cell Physiol 1989; 141:573-83. [PMID: 2531751 DOI: 10.1002/jcp.1041410316] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Incubating B16 melanoma cells with an inhibitor of glucosylceramide (GlcCer) synthetase, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP), led to a considerable decrease in the levels of GlcCer and lactosylceramide (LacCer). The content of ganglioside GM3 was little affected, but the ability to bind a monoclonal antibody against the ganglioside (M2590) was greatly reduced, suggesting that the reduction in the simple glycolipids led to encryption of the membrane antigen. This interpretation is supported by the observation that permeabilization of the treated cells with Triton X-100 restored immunological reactivity. Specificity of the PDMP effect was shown by its lack of effect on the reactivity of two other surface antigens to anti-melanoma monoclonal antibodies M562 and M622, and of the major histocompatibility antigens to anti-H-2KbDb monoclonal antibody. The ability of the treated cells to attach to laminin or type IV collagen was lost but that to fibronectin was not. The effects of the enzyme inhibitor were counteracted by including GlcCer in the culture medium. This indicates that the lipid was absorbed by the cells and utilized like endogenously-formed GlcCer. Cells preattached to laminin or collagen could be induced to round up by addition of inhibitor. In contrast, L-threo-PDMP (which does not block the synthesis of GlcCer) had no effect on the immunologic reactivity of GM3 or the adhesion properties of the cells. However, it did produce considerable accumulation of LacCer. These data suggest that the simple glycolipid, GlcCer, is an essential factor for antigenic expression of the more complex glycolipids on cell surfaces and that there is a close association and interaction between glycolipids and adhesive receptors on the cell surface.
Collapse
|
|
36 |
80 |
8
|
Yamada KM, Critchley DR, Fishman PH, Moss J. Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells. Exp Cell Res 1983; 143:295-302. [PMID: 6832218 DOI: 10.1016/0014-4827(83)90054-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The major cell-surface glycoprotein fibronectin mediates a variety of cellular adhesive interactions that have been reported to be competitively inhibited by gangliosides. These effects suggest a possible function of gangliosides as receptors for fibronectin. To test this hypothesis more directly, we examined the interaction of endogenous fibronectin with a ganglioside-deficient cell line, NCTC 2071. These cells, which grow in serum-free medium, synthesized fibronectin. The fibronectin did not bind to these cells, but instead bound diffusely to the culture substratum. When the cells were cultured in medium containing ganglioside, the fibronectin became bound to the cell surface in fibrillar strands. The order of effectiveness of purified gangliosides was GT1b greater than GD1a greater than GM1 greater than GM2 greater than GM3. The effect with mixed gangliosides was accompanied by a restoration of cellular capacity to bind and to respond to cholera toxin. Treatment of the cells with several phospholipids did not alter fibronectin binding. Our results support the hypothesis that gangliosides can help mediate the binding of fibronectin to fibroblasts.
Collapse
|
|
42 |
79 |
9
|
Mirkin BL, Clark SH, Zhang C. Inhibition of human neuroblastoma cell proliferation and EGF receptor phosphorylation by gangliosides GM1, GM3, GD1A and GT1B. Cell Prolif 2002; 35:105-15. [PMID: 11952645 PMCID: PMC6496818 DOI: 10.1046/j.1365-2184.2002.00228.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 08/20/2001] [Indexed: 11/20/2022] Open
Abstract
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.
Collapse
|
research-article |
23 |
72 |
10
|
Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 2006; 400:315-25. [PMID: 16859490 PMCID: PMC1652826 DOI: 10.1042/bj20060259] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/19/2006] [Accepted: 07/24/2006] [Indexed: 12/22/2022]
Abstract
Four-transmembrane-domain proteins of the tetraspanin superfamily are the organizers of specific microdomains at the membrane [TERMs (tetraspanin-enriched microdomains)] that incorporate various transmembrane receptors and modulate their activities. The structural aspects of the organization of TERM are poorly understood. In the present study, we investigated the role of gangliosides in the assembly and stability of TERM. We demonstrated that inhibition of the glycosphingolipid biosynthetic pathway with specific inhibitors of glucosylceramide synthase [NB-DGJ (N-butyldeoxygalactonojirimycin) and PPMP (D-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol.HCl)] resulted in specific weakening of the interactions involving tetraspanin CD82. Furthermore, ectopic expression of the plasma-membrane-bound sialidase Neu3 in mammary epithelial cells also affected stability of the complexes containing CD82: its association with tetraspanin CD151 was decreased, but the association with EGFR [EGF (epidermal growth factor) receptor] was enhanced. The destabilization of the CD82-containing complexes upon ganglioside depletion correlated with the re-distribution of the proteins within plasma membrane. Importantly, depletion of gangliosides affected EGF-induced signalling only in the presence of CD82. Taken together, our results provide strong evidence that gangliosides play an important role in supporting the integrity of CD82-enriched microdomains. Furthermore, these results demonstrate that the association between different tetraspanins in TERM is controlled by distinct mechanisms and identify Neu3 as a first physiological regulator of the integrity of these microdomains.
Collapse
Key Words
- cd82
- epidermal growth factor receptor (egfr)
- gd1a ganglioside
- microdomain
- neu3 sialidase
- tetraspanin
- ct, cholera toxin b subunit
- drm, detergent-resistant membranes
- egf, epidermal growth factor
- egfr, egf receptor
- fcs, foetal calf serum
- gem, glycosphingolipid-enriched microdomain
- ha, haemagglutinin
- mab, monoclonal antibody
- mβcd, methyl-β-cyclodextrin
- nb-dgj, n-butyldeoxygalactonojirimycin
- ppmp, d-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol·hcl
- sna, sambucus nigra (elderberry) agglutinin
- term, tetraspanin-enriched microdomain
Collapse
|
research-article |
19 |
68 |
11
|
Igarashi Y, Nojiri H, Hanai N, Hakomori S. Gangliosides that modulate membrane protein function. Methods Enzymol 1989; 179:521-41. [PMID: 2560130 DOI: 10.1016/0076-6879(89)79152-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
36 |
55 |
12
|
Meuillet EJ, Mania-Farnell B, George D, Inokuchi JI, Bremer EG. Modulation of EGF receptor activity by changes in the GM3 content in a human epidermoid carcinoma cell line, A431. Exp Cell Res 2000; 256:74-82. [PMID: 10739654 DOI: 10.1006/excr.1999.4509] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gangliosides have been described as modulators of growth factor receptors. For example, GM3 addition in cell culture medium inhibits epidermal growth factor (EGF)-stimulated receptor autophosphorylation. Furthermore, depletion of ganglioside by sialidase gene transfection appeared to increase EGF receptor (EGFR) autophosphorylation. These data suggested that changes in GM3 content may result in different responses to EGF. In this study, the ceramide analog d-threo-1-phenyl-2-decannoylamino-3-morpholino-1-propanol ([D]-PDMP), which inhibits UDP-glucose-ceramide glucosyltransferase, and addition of GM3 to the culture medium were used to study the effects of GM3 on the EGFR. Addition of 10 microM [D]-PDMP to A431 cells resulted in significant GM3 depletion. Additionally, EGFR autophosphorylation was increased after EGF stimulation. When exogenous GM3 was added in combination with [D]-PDMP, the enhanced EGFR autophosphorylation was returned to control levels. [D]-PDMP also increased EGF-induced cell proliferation, consistent with its effect on autophosphorylation. Once again, the addition of GM3 in combination with [D]-PDMP reversed these effects. These results indicate that growth factor receptor functions can be modulated by the level of ganglioside expression in cell lines. Addition of GM3 inhibits EGFR activity and decrease of GM3 levels using [D]-PDMP treatment enhances EGFR activity. Modulation of growth factor receptor function may provide an explanation for how transformation-dependent ganglioside changes contribute to the transformed phenotype.
Collapse
|
|
25 |
52 |
13
|
Rolsma MD, Gelberg HB, Kuhlenschmidt MS. Assay for evaluation of rotavirus-cell interactions: identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. J Virol 1994; 68:258-68. [PMID: 8254737 PMCID: PMC236285 DOI: 10.1128/jvi.68.1.258-268.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A virus-host cell-binding assay was developed and used to investigate specific binding between group A porcine rotavirus and MA-104 cells or porcine enterocytes. A variety of glycoconjugates and cellular components were screened for their ability to block rotavirus binding to cells. During these experiments a crude ganglioside mixture was observed to specifically block rotavirus binding. On the basis of these results, enterocytes were harvested from susceptible piglets and a polar lipid fraction was isolated by solvent extraction and partitioning. Throughout subsequent purification of this fraction by Sephadex partition, ion-exchange, silicic acid, and thin-layer chromatography, blocking activity behaved as a monosialoganglioside (GMX) that displayed a thin-layer chromatographic mobility between those of GM2 and GM3. The blocking activity of GMX was inhibited by treatment with neuraminidase and ceramide glycanase but not by treatment with protease or heat (100 degrees C). Further purification of GMX by high-pressure liquid chromatography resulted in the resolution of two monosialogangliosides, GMX and a band which comigrated with GM1 on thin-layer chromatography. These data suggest that a cell surface monosialoganglioside or family of monosialogangliosides may function as an in vivo relevant receptor for group A porcine rotavirus and that sialic acid is a required epitope for virus-binding activity.
Collapse
|
research-article |
31 |
51 |
14
|
Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG, Kim CH. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology 2006; 16:573-83. [PMID: 16574813 DOI: 10.1093/glycob/cwj105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The simple ganglioside GM3 has been shown to have anti-proliferative effects in several in vitro and in vivo cancer models. Although the exogenous ganglioside GM3 has an inhibitory effect on cancer cell proliferation, the exact mechanism by which it prevents cell proliferation remains unclear. Previous studies showed that MDM2 is an oncoprotein that controls tumorigenesis through both p53-dependent and p53-independent mechanisms, and tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a dual-specificity phosphatase that antagonizes phosphatidylinositol 3-kinase (PI-3K)/AKT signaling, is capable of blocking MDM2 nuclear translocation and destabilizing the MDM2 protein. Results from our current study show that GM3 treatment dramatically increases cyclin-dependent kinase (CDK) inhibitor (CKI) p21(WAF1) expression through the accumulation of p53 protein by the PTEN-mediated inhibition of the PI-3K/AKT/MDM2 survival signaling in HCT116 colon cancer cells. Moreover, the data herein clearly show that ganglioside GM3 induces p53-dependent transcriptional activity of p21(WAF1), as evidenced by the p21(WAF1) promoter-driven luciferase reporter plasmid (full-length p21(WAF1) promoter and a construct lacking the p53-binding sites). Additionally, ganglioside GM3 enhances expression of CKI p27(kip1) through the PTEN-mediated inhibition of the PI-3K/AKT signaling. Furthermore, the down-regulation of the cyclin E and CDK2 was clearly observed in GM3-treated HCT116 cells, but the down-regulation of cyclin D1 and CDK4 was not. On the contrary, suppression of PTEN levels by RNA interference restores the enhanced expression of p53-dependent p21(WAF1) and p53-independent p27(kip1) through inactivating the effect of PTEN on PI-3K/AKT signaling modulated by ganglioside GM3. These results suggest that ganglioside GM3-stimulated PTEN expression modulates cell cycle regulatory proteins, thus inhibiting cell growth. We conclude that ganglioside GM3 represents a modulator of cancer cell proliferation and may have potential for use in colorectal cancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
47 |
15
|
Nakatsuji Y, Miller RH. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol 2001; 168:290-9. [PMID: 11259117 DOI: 10.1006/exnr.2000.7602] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of cell proliferation and cell survival is critical during development of the vertebrate central nervous system (CNS). Much of the cell death seen during early stages of CNS development occurs through apoptosis; however, the factors that induce this early apoptosis are not clearly understood. Gangliosides, sialylated glycosphingolipids, are expressed in the CNS and have been proposed to regulate cell growth and differentiation. Here we show that the simple ganglioside GM3 selectively inhibits the proliferation of and induces apoptosis of actively dividing astrocyte precursors and other neural progenitors. The inhibition of astrocyte precursor proliferation by GM3 appears to be mediated in part by the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1). During neonatal development there is extensive cell proliferation and little apoptosis in the ventricular and subventricular zones of the CNS. This proliferation was dramatically inhibited and the degree of apoptosis dramatically increased following intraventricular administration of GM3. These data suggest that GM3, a simple ganglioside, may regulate cell proliferation and death in the CNS and as such may have potential for brain tumor therapy.
Collapse
|
|
24 |
42 |
16
|
Bennaceur K, Popa I, Portoukalian J, Berthier-Vergnes O, Péguet-Navarro J. Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int Immunol 2006; 18:879-86. [PMID: 16675488 DOI: 10.1093/intimm/dxl024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gangliosides are ubiquitous, membrane-associated, glycosphingolipids, the composition and production of which is altered in many tumour cells. They have been shown to inhibit the in vitro generation and differentiation of dendritic cells (DCs) from progenitors, but their effect on human tissue-residing DCs is yet to be investigated. In the present study, we analysed the effect of GM3 and GD3 gangliosides purified from human melanoma tumours on the phenotypic and functional maturation of human epidermal Langerhans cells (LCs), the first immune barrier against the tumour cells. We showed that both gangliosides impaired spontaneous LC maturation induced by a short in vitro culture, as assessed by significant down-regulation of co-stimulation (CD40, CD54, CD80, CD86) and maturation markers (CD83, CCR7), which correlated to an impaired ability of the cells to mount allogeneic T cell proliferation. Furthermore, the ganglioside-treated cells displayed less ability to migrate towards CCL19/macrophage inflammatory protein 3 beta, the chemokine that specifically binds CCR7 and mediates LC migration to lymph nodes. Lastly, we showed that both GM3 and GD3 gangliosides enhance LC spontaneous apoptosis. Globally, these in vitro results might explain, at least in part, the altered number and distribution of LCs in melanoma-bearing patients. They underscore a new mechanism for gangliosides to impede the host immune response by inducing LC dysfunction in the tumour microenvironment.
Collapse
|
Journal Article |
19 |
42 |
17
|
Tringali C, Lupo B, Cirillo F, Papini N, Anastasia L, Lamorte G, Colombi P, Bresciani R, Monti E, Tettamanti G, Venerando B. Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death Differ 2009; 16:164-74. [PMID: 18820643 DOI: 10.1038/cdd.2008.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 11/09/2022] Open
Abstract
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.
Collapse
MESH Headings
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- G(M3) Ganglioside/metabolism
- G(M3) Ganglioside/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Megakaryocytes/enzymology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/biosynthesis
- Neuraminidase/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
|
Retracted Publication |
16 |
41 |
18
|
Paller AS, Arnsmeier SL, Alvarez-Franco M, Bremer EG. Ganglioside GM3 inhibits the proliferation of cultured keratinocytes. J Invest Dermatol 1993; 100:841-5. [PMID: 8496625 DOI: 10.1111/1523-1747.ep12476755] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ganglioside GM3 is the predominant ganglioside of keratinocyte membranes. It has been proposed in other cell types that GM3 may participate in the regulation of cell proliferation. To examine the role of GM3 in keratinocyte proliferation, purified GM3 was added to cultured keratinocytes from normal foreskin, from lesional skin of patients with psoriasis and ichthyosis, and to cutaneous squamous carcinoma cell lines. Supplemental GM3 inhibited the growth of all cultured keratinocytes in a dose-dependent manner at concentrations of 10-100 microM. Keratinocytes from patients with psoriasis and ichthyosis were most sensitive to the inhibitory effects of GM3, and confluent undifferentiated keratinocytes were least sensitive. No change in differentiation was noted after addition of GM3. GD3, 9-0-acetyl-GD3, and GD1b also inhibited keratinocyte proliferation. Gangliosides GM1 and GD1a and sialic acid had little effect. Addition of 50 microM 3H-GM3 to cultured keratinocytes resulted in 1.7 times the amount of cellular GM3. These data suggest that hematoside (GM3) and "b" pathway gangliosides (GD3, GD1b), generated by the preferential activation of sialyltransferase II versus N-acetylgalactosaminyltransferase, may be involved in control of keratinocyte growth but not of differentiation.
Collapse
|
|
32 |
39 |
19
|
Yin XG, Lu J, Wang J, Zhang RY, Wang XF, Liao CM, Liu XP, Liu Z, Guo J. Synthesis and Evaluation of Liposomal Anti-GM3 Cancer Vaccine Candidates Covalently and Noncovalently Adjuvanted by αGalCer. J Med Chem 2021; 64:1951-1965. [PMID: 33539088 DOI: 10.1021/acs.jmedchem.0c01186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GM3, a typical tumor-associated carbohydrate antigen, is considered as an important target for cancer vaccine development, but its low immunogenicity limits its application. αGalCer, an iNKT cell agonist, has been employed as an adjuvant via a unique immune mode. Herein, we prepared and investigated two types of antitumor vaccine candidates: (a) self-adjuvanting vaccine GM3-αGalCer by conjugating GM3 with αGalCer and (b) noncovalent vaccine GM3-lipid/αGalCer, in which GM3 is linked with lipid anchor and coassembled with αGalCer. This demonstrated that βGalCer is an exceptionally optimized lipid anchor, which enables the noncovalent vaccine candidate GM3-βGalCer/αGalCer to evoke a comparable antibody level to GM3-αGalCer. However, the antibodies induced by GM3-αGalCer are better at recognition B16F10 cancer cells and more effectively activate the complement system. Our study highlights the importance of vaccine constructs utilizing covalent or noncovalent assembly between αGalCer with carbohydrate antigens and choosing an appropriate lipid anchor for use in noncovalent vaccine formulation.
Collapse
|
|
4 |
39 |
20
|
Cannella MS, Roisen FJ, Ogawa T, Sugimoto M, Ledeen RW. Comparison of epi-GM3 with GM3 and GM1 as stimulators of neurite outgrowth. Brain Res 1988; 467:137-43. [PMID: 3359325 DOI: 10.1016/0165-3806(88)90075-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A variety of naturally occurring ganglioside structures were previously shown to be effective agents for inducing neurite outgrowth of primary neurons and neuroblastoma lines. We report here the results of similar experiments with a synthetic epimer of GM3 (epi-GM3) possessing a neuraminidase-resistant beta-ketosidic linkage. This substance was found to enhance neuritogenesis toward two transformed cell lines (neuro-2A, PC-12) and one primary neuronal tissue (dorsal root ganglia). The results indicate that the stereochemistry of the ketoside linkage is not critical and that metabolism of exogenous ganglioside by the treated cells is not involved directly in the neuritogenic phenomenon.
Collapse
|
|
37 |
38 |
21
|
Garofalo T, Sorice M, Misasi R, Cinque B, Giammatteo M, Pontieri GM, Cifone MG, Pavan A. A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. Involvement of serine phosphorylation and protein kinase c delta translocation. J Biol Chem 1998; 273:35153-60. [PMID: 9857052 DOI: 10.1074/jbc.273.52.35153] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report the molecular mechanism(s) involved in the rapid and selective endocytosis of cell surface glycoprotein CD4 induced by exogenous monosialoganglioside GM3 in human peripheral blood lymphocytes have been investigated. Inhibition of the GM3-induced CD4 down-modulation was observed in the presence of specific protein kinase C (PKC) inhibitors. Scanning confocal microscopy revealed the translocation and clustering on the cell surface of PKC isozymes delta and theta (more evidently than alpha and beta) after GM3 treatment, suggesting the involvement of these isozymes in the ganglioside-induced CD4 down-modulation. Exogenous GM3 induced phosphorylation of CD4 molecule, which then dissociated from p56(lck), as early as after 5 min. Moreover, addition of GM3 resulted in a rapid (1 min) cytosolic phospholipase A2 activation with consequent arachidonic acid release, whereas no phosphatidylinositol-phospholipase C activity was observed. Both PKC translocation and CD4 down-modulation were blocked by the trifluoromethylketone analog of arachidonic acid, a selective inhibitor of cytosolic phospholipase A2 and by mitogen-activated protein kinase inhibitor PD98059. Taken together, these findings strongly suggest that GM3 may trigger a novel mechanism of modulation of the CD4 surface expression through the activation of enzyme(s) involved in the regulation of cellular functions.
Collapse
|
|
27 |
36 |
22
|
Noll EN, Lin J, Nakatsuji Y, Miller RH, Black PM. GM3 as a novel growth regulator for human gliomas. Exp Neurol 2001; 168:300-9. [PMID: 11259118 DOI: 10.1006/exnr.2000.7603] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simple ganglioside GM3 inhibits proliferation and induces apoptosis in proliferating immature rodent CNS cells. To determine whether GM3 influenced the expansion of human neural tumors the effects of GM3 treatment on primary human brain tumors were assayed. Here we demonstrate that GM3 treatment dramatically reduces cell numbers in primary cultures of high-grade human glioblastoma multiforme (GBM) tumors and the rat 9L cell gliosarcoma cell line. By contrast, GM3 treatment had little effect on cell number in cultures of normal human brain. A single injection of GM3 3 days after intracranial implantation of 9L tumor cells in a murine xenograft model system resulted in a significant increase in the symptom-free survival period of host animals. The effects of GM3 were not restricted to GBMs and 9L cells. Cultures of high-grade ependymomas, mixed gliomas, astrocytomas, oligodendrogliomas, and gangliogliomas were all susceptible to GM3 treatment. These results suggest that GM3 may have considerable value as a selectively toxic chemotherapeutic agent for human high-grade gliomas.
Collapse
|
|
24 |
35 |
23
|
Wang XQ, Sun P, Paller AS. Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Biol Chem 2003; 278:25591-9. [PMID: 12724312 DOI: 10.1074/jbc.m302211200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides GM3 and GT1b both inhibit epithelial cell adhesion and migration on fibronectin. GT1b binds to integrin alpha5beta1 and blocks the integrin-fibronectin interaction; GM3 does not interact with integrin, and its effect is poorly understood. We evaluated the effects of endogenous modulation of GM3 expression on epithelial cell motility on several matrices and the mechanism of these effects. Endogenous accumulation of GM3 decreased cell migration on fibronectin, types I, IV, and VII collagen matrices; depletion of GM3 dramatically increased cell migration, regardless of matrix. GM3 overexpression and depletion in vitro correlated inversely with the expression and activity of matrix metalloproteinase-9; consistently, the cell migration stimulated by GM3 depletion is reversed by inhibition of matrix metalloproteinase-9 activity. Accumulation and depletion of GM3 in epithelial cells grown on fibronectin also correlated inversely with epidermal growth factor receptor and mitogen activated protein kinase phosphorylation and with Jun expression. Ganglioside depletion facilitated the co-immunoprecipitation of matrix metal-loproteinase-9 and integrin alpha5beta1, while endogenous accumulation of GM3, but not GT1b, blocked the co-immunoprecipitation. These data suggest modulation of epidermal growth factor receptor signaling and dissociation of integrin/matrix metalloproteinase-9 as mechanisms for the GM3-induced effects on matrix metalloproteinase-9 function.
Collapse
|
|
22 |
35 |
24
|
Meivar-Levy I, Sabanay H, Bershadsky AD, Futerman AH. The role of sphingolipids in the maintenance of fibroblast morphology. The inhibition of protrusional activity, cell spreading, and cytokinesis induced by fumonisin B1 can be reversed by ganglioside GM3. J Biol Chem 1997; 272:1558-64. [PMID: 8999828 DOI: 10.1074/jbc.272.3.1558] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies demonstrated that inhibition of sphingolipid synthesis by the mycotoxin fumonisin B1 (FB1) disrupts axonal growth in cultured hippocampal neurons (Harel, R., and Futerman, A. H. (1993) J. Biol. Chem. 268, 14476-14481) by affecting the formation or stabilization of axonal branches (Schwarz, A., Rapaport, E., Hirschberg, K., and Futerman, A.H. (1995) J. Biol. Chem. 270, 10990-10998). We now demonstrate that long term incubation with FB1 affects fibroblast morphology and proliferation. Incubation of Swiss 3T3 cells with FB1 resulted in a decrease in synthesis of ganglioside GM3, the major glycosphingolipid in 3T3 fibroblasts and of sphingomyelin. The projected cell area of FB1-treated cells was approximately 45% less than control cells. FB1 had no affect on the organization of microtubules or intermediate filaments, but fewer actin-rich stress fibers were observed, and there was a loss of actin-rich lamellipodia at the leading edge. Three other processes involving the actin cytoskeleton, cytokinesis, microvilli formation, and the formation of long processes induced by protein kinase inhibitors, were all disrupted by FB1. All the effects of FB1 on cell morphology could be reversed by addition of ganglioside GM3 even in the presence of FB1, whereas the bioactive intermediates, sphinganine, sphingosine, and ceramide, were without effect. Finally, FB1 blocked cell proliferation and DNA synthesis in a reversible manner, although ganglioside GM3 could not reverse the effects of FB1 on cell proliferation. Together, these data suggest that ongoing sphingolipid synthesis is required for the assembly of both new membrane and of the underlying cytoskeleton.
Collapse
|
|
28 |
35 |
25
|
Fujimoto Y, Izumoto S, Suzuki T, Kinoshita M, Kagawa N, Wada K, Hashimoto N, Maruno M, Nakatsuji Y, Yoshimine T. Ganglioside GM3 inhibits proliferation and invasion of glioma. J Neurooncol 2005; 71:99-106. [PMID: 15690123 DOI: 10.1007/s11060-004-9602-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
GM3, the simplest ganglioside, modulates cell adhesion, proliferation and differentiation in the central nervous system and exogenously added GM3 regulates cell-cell and cell-extracellular matrix adhesion and induces apoptosis. To assess the anti-tumor action of exogenous GM3, we examined its effect on the proliferation and invasion of glioma cells. Its inhibitory effect on cell proliferation was demonstrated in vitro by 3-(4,5-dimethyl-2-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay and in vitro in rats with meningeal gliomatosis whose survival was significantly prolonged by the intrathecal injection of GM3. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay revealed that GM3 induced glioma cell apoptosis in vitro and in vitro. In rat brain slice cultures, GM3 suppressed the invasion of glioma cells; this effect manifested earlier than the inhibition of cell proliferation and before apoptosis induction. Our results suggest exogenous GM3 as a potential therapeutic agent in patients with glioma requiring adjuvant therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
33 |