1
|
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, Lindeman GJ, Visvader JE. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2006; 9:201-9. [PMID: 17187062 DOI: 10.1038/ncb1530] [Citation(s) in RCA: 655] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/12/2006] [Indexed: 12/16/2022]
Abstract
The transcription factor Gata-3 is a defining marker of the 'luminal' subtypes of breast cancer. To gain insight into the role of Gata-3 in breast epithelial development and oncogenesis, we have explored its normal function within the mammary gland by conditionally deleting Gata-3 at different stages of development. We report that Gata-3 has essential roles in the morphogenesis of the mammary gland in both the embryo and adult. Through the discovery of a novel marker (beta3-integrin) of luminal progenitor cells and their purification, we demonstrate that Gata-3 deficiency leads to an expansion of luminal progenitors and a concomitant block in differentiation. Remarkably, introduction of Gata-3 into a stem cell-enriched population induced maturation along the alveolar luminal lineage. These studies provide evidence for the existence of an epithelial hierarchy within the mammary gland and establish Gata-3 as a critical regulator of luminal differentiation.
Collapse
|
|
19 |
655 |
2
|
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2007; 127:1041-55. [PMID: 17129787 PMCID: PMC2646406 DOI: 10.1016/j.cell.2006.09.048] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/29/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The GATA family of transcription factors plays fundamental roles in cell-fate specification. However, it is unclear if these genes are necessary for the maintenance of cellular differentiation after development. We identified GATA-3 as the most highly enriched transcription factor in the mammary epithelium of pubertal mice. GATA-3 was found in the luminal cells of mammary ducts and the body cells of terminal end buds (TEBs). Upon conditional deletion of GATA-3, mice exhibited severe defects in mammary development due to failure in TEB formation during puberty. After acute GATA-3 loss, adult mice exhibited undifferentiated luminal cell expansion with basement-membrane detachment, which led to caspase-mediated cell death in the long term. Further, FOXA1 was identified as a downstream target of GATA-3 in the mammary gland. This suggests that GATA-3 actively maintains luminal epithelial differentiation in the adult mammary gland, which raises important implications for the pathogenesis of breast cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
524 |
3
|
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008; 13:141-52. [PMID: 18242514 PMCID: PMC2262951 DOI: 10.1016/j.ccr.2008.01.011] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/27/2007] [Accepted: 01/10/2008] [Indexed: 11/25/2022]
Abstract
How breast cancers are able to disseminate and metastasize is poorly understood. Using a hyperplasia transplant system, we show that tumor dissemination and metastasis occur in discrete steps during tumor progression. Bioinformatic analysis revealed that loss of the transcription factor GATA-3 marked progression from adenoma to early carcinoma and onset of tumor dissemination. Restoration of GATA-3 in late carcinomas induced tumor differentiation and suppressed tumor dissemination. Targeted deletion of GATA-3 in early tumors led to apoptosis of differentiated cells, indicating that its loss is not sufficient for malignant conversion. Rather, malignant progression occurred with an expanding GATA-3-negative tumor cell population. These data indicate that GATA-3 regulates tumor differentiation and suppresses tumor dissemination in breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
285 |
4
|
Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW, Di Santo JP. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J Exp Med 2014; 211:199-208. [PMID: 24419270 PMCID: PMC3920560 DOI: 10.1084/jem.20131038] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/24/2013] [Indexed: 12/12/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) include IL-22-producing NKp46(+) cells and IL-17A/IL-22-producing CD4(+) lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt(+) ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt(+) ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.
Collapse
|
research-article |
11 |
178 |
5
|
Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, Zhao K, Zhu J. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol 2016; 17:169-78. [PMID: 26595886 PMCID: PMC4718889 DOI: 10.1038/ni.3318] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022]
Abstract
The transcription factor GATA-3 is indispensable for the development of all innate lymphoid cells (ILCs) that express the interleukin 7 receptor α-chain (IL-7Rα). However, the function of low GATA-3 expression in committed group 3 ILCs (ILC3 cells) has not been identified. We found that GATA-3 regulated the homeostasis of ILC3 cells by controlling IL-7Rα expression. In addition, GATA-3 served a critical function in the development of the NKp46(+) ILC3 subset by regulating the balance between the transcription factors T-bet and RORγt. Among NKp46(+) ILC3 cells, although GATA-3 positively regulated genes specific to the NKp46(+) ILC3 subset, it negatively regulated genes specific to lymphoid tissue-inducer (LTi) or LTi-like ILC3 cells. Furthermore, GATA-3 was required for IL-22 production in both ILC3 subsets. Thus, despite its low expression, GATA-3 was critical for the homeostasis, development and function of ILC3 subsets.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cluster Analysis
- GATA3 Transcription Factor/deficiency
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Homeostasis
- Immunity, Innate/genetics
- Immunophenotyping
- Interleukins/biosynthesis
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Natural Cytotoxicity Triggering Receptor 1/genetics
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phenotype
- Protein Binding
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- T-Box Domain Proteins/metabolism
- Interleukin-22
Collapse
|
Research Support, N.I.H., Intramural |
9 |
111 |
6
|
Kim PJ, Pai SY, Brigl M, Besra GS, Gumperz J, Ho IC. GATA-3 regulates the development and function of invariant NKT cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:6650-9. [PMID: 17082577 DOI: 10.4049/jimmunol.177.10.6650] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although invariant NKT (iNKT) cells participate in many aspects of immune responses, the molecular mechanisms regulating their development, maturation, and activation are still poorly understood. GATA-3 is a T cell-specific transcription factor that is also expressed in iNKT cells. The critical role of GATA-3 in conventional alphabeta T cells has been well documented, but whether GATA-3 also regulates the development and function of iNKT cells is unknown. In the present study, we report that deficiency of GATA-3 results in cell-intrinsic defects in the thymic development and peripheral maturation of murine iNKT cells. In addition, GATA-3 is also required for survival, activation, and effector functions of this unique population of T cells. Our data also reveal a previously unidentified peripheral maturation step that is GATA-3 dependent.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
99 |
7
|
Kurek D, Garinis GA, van Doorninck JH, van der Wees J, Grosveld FG. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 2006; 134:261-72. [PMID: 17151017 DOI: 10.1242/dev.02721] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor Gata3 is crucially involved in epidermis and hair follicle differentiation. Yet, little is known about how Gata3 co-ordinates stem cell lineage determination in skin, what pathways are involved and how Gata3 differentially regulates distinct cell populations within the hair follicle. Here, we describe a conditional Gata3-/- mouse (K14-Gata3-/-) in which Gata3 is specifically deleted in epidermis and hair follicles. K14-Gata3-/- mice show aberrant postnatal growth and development, delayed hair growth and maintenance, abnormal hair follicle organization and irregular pigmentation. After the first hair cycle, the germinative layer surrounding the dermal papilla was not restored; instead, proliferation was pronounced in basal epidermal cells. Transcriptome analysis of laser-dissected K14-Gata3-/- hair follicles revealed mitosis, epithelial differentiation and the Notch, Wnt and BMP signaling pathways to be significantly overrepresented. Elucidation of these pathways at the RNA and protein levels and physiologic endpoints suggests that Gata3 integrates diverse signaling networks to regulate the balance between hair follicle and epidermal cell fates.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
79 |
8
|
de Guzman Strong C, Wertz PW, Wang C, Yang F, Meltzer PS, Andl T, Millar SE, Ho IC, Pai SY, Segre JA. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. ACTA ACUST UNITED AC 2007; 175:661-70. [PMID: 17116754 PMCID: PMC2064601 DOI: 10.1083/jcb.200605057] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin lies at the interface between the complex physiology of the body and the external environment. This essential epidermal barrier, composed of cornified proteins encased in lipids, prevents both water loss and entry of infectious or toxic substances. We uncover that the transcription factor GATA-3 is required to establish the epidermal barrier and survive in the ex utero environment. Analysis of Gata-3 mutant transcriptional profiles at three critical developmental stages identifies a specific defect in lipid biosynthesis and a delay in differentiation. Genomic analysis identifies highly conserved GATA-3 binding sites bound in vivo by GATA-3 in the first intron of the lipid acyltransferase gene AGPAT5. Skin from both Gata-3-/- and previously characterized barrier-deficient Kruppel-like factor 4-/- newborns up-regulate antimicrobial peptides, effectors of innate immunity. Comparison of these animal models illustrates how impairment of the skin barrier by two genetically distinct mechanisms leads to innate immune responses, as observed in the common human skin disorders psoriasis and atopic dermatitis.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
68 |
9
|
Corn RA, Hunter C, Liou HC, Siebenlist U, Boothby MR. Opposing Roles for RelB and Bcl-3 in Regulation of T-Box Expressed in T Cells, GATA-3, and Th Effector Differentiation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2102-10. [PMID: 16081776 DOI: 10.4049/jimmunol.175.4.2102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+ T cells with a block in the NF-kappaB signaling pathway exhibit decreases in Th1 responses and diminished nuclear levels of multiple transactivating NF-kappaB/Rel/IkappaB proteins. To determine the lineage-intrinsic contributions of these transactivators to Th differentiation, T cells from mice deficient in specific subunits were cultured in exogenous cytokines promoting either Th1 or Th2 differentiation. RelB-deficient cells exhibited dramatic defects in Th1 differentiation and IFN-gamma production, whereas no consistent defect in either Th1 or Th2 responses was observed with c-Rel-deficient cells. In sharp contrast, Bcl-3-null T cells displayed no defect in IFN-gamma production, but their Th2 differentiation and IL-4, IL-5, and IL-13 production were significantly impaired. The absence of RelB led to a dramatic decrease in the expression of T-box expressed in T cells and Stat4. In contrast, Bcl-3-deficient cells exhibited decreased GATA-3, consistent with evidence that Bcl-3 can transactivate a gata3 promoter. These data indicate that Bcl-3 and RelB exert distinct and opposing effects on the expression of subset-determining transcription factors, suggesting that the characteristics of Th cell responses may be regulated by titrating the stoichiometry of transactivating NF-kappaB/Rel/IkappaB complexes in the nuclei of developing helper effector cells.
Collapse
|
|
20 |
67 |
10
|
Chen J, Guan L, Tang L, Liu S, Zhou Y, Chen C, He Z, Xu L. T Helper 9 Cells: A New Player in Immune-Related Diseases. DNA Cell Biol 2019; 38:1040-1047. [PMID: 31414895 PMCID: PMC6791470 DOI: 10.1089/dna.2019.4729] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The helper T cell 9 (Thelper-9, Th9), as a functional subgroup of CD4+T cells, was first discovered in 2008. Th9 cells expressed transcription factor PU.1 and cytokine interleukin-9 (IL-9) characteristically. Recent researches have shown that the differentiation of Th9 cells was coregulated by cytokine transforming growth factor β, IL-4, and various transcription factors. Th9 cells, as a new player, played an important role in various immune-related diseases, including tumors, inflammatory diseases, parasite infection, and other diseases. In this article, we summarize the related research progress and discuss the possible prospect.
Collapse
|
Review |
6 |
33 |
11
|
Hasegawa SL, Moriguchi T, Rao A, Kuroha T, Engel JD, Lim KC. Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev Biol 2006; 301:568-77. [PMID: 17046739 PMCID: PMC1858647 DOI: 10.1016/j.ydbio.2006.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/26/2006] [Accepted: 09/16/2006] [Indexed: 01/19/2023]
Abstract
Human GATA3 haploinsufficiency leads to HDR (hypoparathyroidism, deafness and renal dysplasia) syndrome, demonstrating that the development of a specific subset of organs in which this transcription factor is expressed is exquisitely sensitive to gene dosage. We previously showed that murine GATA-3 is essential for definitive kidney development, and that a large YAC transgene faithfully recapitulated GATA-3 expression in the urogenital system. Here we describe the localization and activity of a kidney enhancer (KE) located 113 kbp 5' to the Gata3 structural gene. When the KE was employed to direct renal system-specific GATA-3 transcription, the extent of cell autonomous kidney rescue in Gata3-deficient mice correlated with graded allelic expression of transgenic GATA-3. These data demonstrate that a single distant, tissue-specific enhancer can direct GATA-3 gene expression to confer all embryonic patterning information that is required for successful execution of metanephrogenesis, and that the dosage of GATA-3 required has a threshold between 50% and 70% of diploid activity.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
28 |
12
|
van Looij MAJ, Meijers-Heijboer H, Beetz R, Thakker RV, Christie PT, Feenstra LW, van Zanten BGA. Characteristics of Hearing Loss in HDR (Hypoparathyroidism, Sensorineural Deafness, Renal Dysplasia) Syndrome. Audiol Neurootol 2006; 11:373-9. [PMID: 16988501 DOI: 10.1159/000095899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 06/16/2006] [Indexed: 11/19/2022] Open
Abstract
Haploinsufficiency of the zinc finger transcription factor GATA3 causes the triad of hypoparathyroidism, deafness and renal dysplasia, known by its acronym HDR syndrome. The purpose of the current study was to describe in detail the auditory phenotype in human HDR patients and compare these to audiometrical and histological data previously described in a mouse model of this disease. Pure tone audiometry, speech audiometry, speech in noise, auditory brainstem responses and transiently evoked otoacoustic emissions were measured in 2 patients affected by HDR syndrome. Both patients were affected by a moderate-to-severe sensorineural hearing loss. Speech reception thresholds were shifted and speech recognition in noise was disturbed. No otoacoustic emissions could be generated in either patient. Auditory brainstem response interpeak intervals were normal. The human and murine audiological phenotypes seem to correspond well. Hearing loss in HDR syndrome is moderate to severe, seems to be slightly worse at the higher end of the frequency spectrum and may be progressive with age. The absence of otoacoustic emissions and the loss of frequency selectivity suggest an important role for outer hair cells in causing the hearing loss.
Collapse
|
|
19 |
27 |
13
|
|
News |
18 |
12 |
14
|
Zhu YF, Hu JZ, Zhao PN, Liu LX, Li Y. All-transretinoic acid regulates Th1/Th2 balance in CD4+ T cells when GATA-3 is deficient. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2013; 26:774-777. [PMID: 24099613 DOI: 10.3967/0895-3988.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
The essential effect of vitamin A on immune function occurs through various mechanisms including direct effect on Th1-Th2 balance modulation. However, it is unclear whether or not vitamin A can regulate Th1-Th2 balance under a strong Th1-polarizing condition. Therefore, the purpose of our study was to examine the effect of vitamin A metabolite all-trans retinoic acid (ATRA) on Th1-Th2 differentiation in CD4+ T cells under GATA-3 deficiency, which can induce Th1-polarizing condition. In the present study, GATA-3 deficiency T cells were induced by siRNA and checked by real-time quantitative PCR and western blot. GATA-3 deficiency CD4+ T cells and normal CD4+ T were treated for 48 h with or without ATRA. The expression of Th1 and Th2 cytokines were detected by qPCR and ELISA. The results would contribute to clarify the knowledge of the role of vitamin A in regulating Th1-Th2 balance under some special conditions, and help to explain the mechanism of immune regulatory function of vitamin A.
Collapse
|
Letter |
12 |
5 |
15
|
Yao D, Zhang X, Wei H, Tian Z. Antisense-induced blockade of GATA-3 expression could inhibit Th2 excursion of tumor cells in vitro and in vivo. Cell Mol Immunol 2005; 2:189-96. [PMID: 16212886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Previous studies have shown that tumor cells predominantly express Th2 type cytokines and transcription factors. GATA-3, as a Th2-specific transcription factor, plays a central role in positive-regulating Th2 development. So whether the expression of GATA-3 in tumor cells has any effect on tumor development is a question of interest. In the present study, we inhibited the expression of GATA-3 in tumor cells through antisense RNA blockade technique, and observed its effects on tumor in vitro and in vivo. Our results showed that antisense GATA-3 treatment could inhibit the expression of TNF-alpha and Th2 cytokines in tumor cells, and antisense-induced blockade of GATA-3 could also depress tumor growth in tumor-bearing mice. We suggest that the ratio of T-bet/GATA-3 can be evaluated as a more important marker of the status of Th1/Th2 type. And our results might provide some evidence about the molecular regulatory mechanisms in tumor cell development.
Collapse
|
|
20 |
|
16
|
Mochizuki T, Fujita K, Yamada H, Ogata T. [HDR syndrome (GATA3 haploinsufficiency syndrome)]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 2006; Suppl 2:74-6. [PMID: 16817354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
Review |
19 |
|