1
|
|
Review |
38 |
4702 |
2
|
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92:573-85. [PMID: 9491897 DOI: 10.1016/s0092-8674(00)80949-6] [Citation(s) in RCA: 3941] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a central role in the integrated control of feeding and energy homeostasis. We have identified two novel neuropeptides, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors. These peptides, termed orexin-A and -B, have no significant structural similarities to known families of regulatory peptides. prepro-orexin mRNA and immunoreactive orexin-A are localized in neurons within and around the lateral and posterior hypothalamus in the adult rat brain. When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior.
Collapse
|
|
27 |
3941 |
3
|
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70:401-10. [PMID: 1643658 DOI: 10.1016/0092-8674(92)90164-8] [Citation(s) in RCA: 2926] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.
Collapse
|
|
33 |
2926 |
4
|
Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63:1256-72. [PMID: 12761335 DOI: 10.1124/mol.63.6.1256] [Citation(s) in RCA: 2056] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.
Collapse
MESH Headings
- Chromosome Mapping
- GTP-Binding Proteins/classification
- GTP-Binding Proteins/genetics
- Genome, Human
- Humans
- Membrane Glycoproteins
- Membrane Proteins/classification
- Membrane Proteins/genetics
- Phylogeny
- Platelet Glycoprotein GPIb-IX Complex
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/classification
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Glutamate/classification
- Receptors, Glutamate/genetics
- Rhodopsin/classification
- Rhodopsin/genetics
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
Collapse
|
|
22 |
2056 |
5
|
Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8:1224-34. [PMID: 7926726 DOI: 10.1101/gad.8.10.1224] [Citation(s) in RCA: 1722] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previously, we have isolated and characterized an enhancer from the 5'-flanking region of the adipocyte P2 (aP2) gene that directs high-level adipocyte-specific gene expression in both cultured cells and transgenic mice. The key regulator of this enhancer is a cell type-restricted nuclear factor termed ARF6. Target sequences for ARF6 in the aP2 enhancer exhibit homology to a direct repeat of hormone response elements (HREs) spaced by one nucleotide; this motif (DR-1) has been demonstrated previously to be the preferred binding site for heterodimers of the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). We have cloned a novel member of the peroxisome proliferator-activated receptor family designated mPPAR gamma 2, and we demonstrate that a heterodimeric complex of mPPAR gamma 2 and RXR alpha constitute a functional ARF6 complex. Expression of mPPAR gamma 2 is induced very early during the differentiation of several cultured adipocyte cell lines and is strikingly adipose-specific in vivo. mPPAR gamma 2 and RXR alpha form heterodimers on ARF6-binding sites in vitro, and antiserum to RXR alpha specifically inhibits ARF6 activity in adipocyte nuclear extracts. Moreover, forced expression of mPPAR gamma 2 and RXR alpha activates the adipocyte-specific aP2 enhancer in cultured fibroblasts, and this activation is potentiated by peroxisome proliferators, fatty acids, and 9-cis retinoic acid. These results identify mPPAR gamma 2 as the first adipocyte-specific transcription factor and suggest mechanisms whereby fatty acids, peroxisome proliferators, 9-cis retinoic acid, and other lipids may regulate adipocyte gene expression and differentiation.
Collapse
|
|
31 |
1722 |
6
|
Saraste M, Sibbald PR, Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990; 15:430-4. [PMID: 2126155 DOI: 10.1016/0968-0004(90)90281-f] [Citation(s) in RCA: 1537] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many ATP- and GTP-binding proteins have a phosphate-binding loop (P-loop), the primary structure of which typically consists of a glycine-rich sequence followed by a conserved lysine and a serine or threonine. The three-dimensional structures of several ATP- and GTP-binding proteins containing P-loops have now been solved. In this review current knowledge of P-loops is discussed with the additional aim of illustrating the fascinating relationship between protein sequence, structure and function.
Collapse
|
Review |
35 |
1537 |
7
|
Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. THE PLANT CELL 2002; 14 Suppl:S15-45. [PMID: 12045268 PMCID: PMC151246 DOI: 10.1105/tpc.010441] [Citation(s) in RCA: 1377] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Accepted: 03/04/2002] [Indexed: 05/08/2023]
|
Review |
23 |
1377 |
8
|
Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996; 135:913-24. [PMID: 8922376 PMCID: PMC2133374 DOI: 10.1083/jcb.135.4.913] [Citation(s) in RCA: 1080] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11-positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome.
Collapse
|
research-article |
29 |
1080 |
9
|
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. THE PLANT CELL 2003; 15:809-34. [PMID: 12671079 PMCID: PMC152331 DOI: 10.1105/tpc.009308] [Citation(s) in RCA: 1046] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 02/13/2003] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome contains approximately 200 genes that encode proteins with similarity to the nucleotide binding site and other domains characteristic of plant resistance proteins. Through a reiterative process of sequence analysis and reannotation, we identified 149 NBS-LRR-encoding genes in the Arabidopsis (ecotype Columbia) genomic sequence. Fifty-six of these genes were corrected from earlier annotations. At least 12 are predicted to be pseudogenes. As described previously, two distinct groups of sequences were identified: those that encoded an N-terminal domain with Toll/Interleukin-1 Receptor homology (TIR-NBS-LRR, or TNL), and those that encoded an N-terminal coiled-coil motif (CC-NBS-LRR, or CNL). The encoded proteins are distinct from the 58 predicted adapter proteins in the previously described TIR-X, TIR-NBS, and CC-NBS groups. Classification based on protein domains, intron positions, sequence conservation, and genome distribution defined four subgroups of CNL proteins, eight subgroups of TNL proteins, and a pair of divergent NL proteins that lack a defined N-terminal motif. CNL proteins generally were encoded in single exons, although two subclasses were identified that contained introns in unique positions. TNL proteins were encoded in modular exons, with conserved intron positions separating distinct protein domains. Conserved motifs were identified in the LRRs of both CNL and TNL proteins. In contrast to CNL proteins, TNL proteins contained large and variable C-terminal domains. The extant distribution and diversity of the NBS-LRR sequences has been generated by extensive duplication and ectopic rearrangements that involved segmental duplications as well as microscale events. The observed diversity of these NBS-LRR proteins indicates the variety of recognition molecules available in an individual genotype to detect diverse biotic challenges.
Collapse
|
research-article |
22 |
1046 |
10
|
|
Review |
30 |
997 |
11
|
Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991; 325:1688-95. [PMID: 1944469 DOI: 10.1056/nejm199112123252403] [Citation(s) in RCA: 991] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The McCune-Albright syndrome is a sporadic disease characterized by polyostotic fibrous dysplasia, café au lait spots, sexual precocity, and hyperfunction of multiple endocrine glands. These manifestations may be explained by a somatic mutation in affected tissues that results in activation of the signal-transduction pathway generating cyclic AMP (cAMP). We analyzed DNA from tissues of patients with the McCune-Albright syndrome for the presence of activating mutations of the gene for the alpha subunit of the G protein (Gs alpha) that stimulates cAMP formation. METHODS Genomic DNA fragments encompassing regions (exons 8 and 9) previously found to contain activating missense mutations of the Gs alpha gene (gsp mutations) in sporadically occurring pituitary tumors were amplified in tissues from four patients with the McCune-Albright syndrome by the polymerase chain reaction. The amplified DNA was analyzed for mutations by denaturing gradient gel electrophoresis and allele-specific oligonucleotide hybridization. RESULTS We detected one of two activating mutations within exon 8 of the Gs alpha gene in tissues from all four patients, including affected endocrine organs (gonads, adrenal glands, thyroid, and pituitary) and tissues not classically involved in the McCune-Albright syndrome. In two of the patients, histidine was substituted for arginine at position 201 of Gs alpha, and in the other two patients cysteine was substituted for the same arginine residue. In each patient the proportion of cells affected varied from tissue to tissue. In two endocrine organs, the highest proportion of mutant alleles was found in regions of abnormal cell proliferation. CONCLUSIONS Mutations within exon 8 of the Gs alpha gene that result in increased activity of the Gs protein and increased cAMP formation are present in various tissues of patients with the McCune-Albright syndrome. Somatic mutation of this gene early in embryogenesis could result in the mosaic population of normal and mutant-bearing tissues that may underlie the clinical manifestations of this disease.
Collapse
|
Case Reports |
34 |
991 |
12
|
Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340:692-6. [PMID: 2549426 DOI: 10.1038/340692a0] [Citation(s) in RCA: 984] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A subset of growth hormone-secreting human pituitary tumours carries somatic mutations that inhibit GTPase activity of a G protein alpha chain, alpha(s). The resulting activation of adenylyl cyclase bypasses the cells' normal requirement for trophic hormone. Amino acids substituted in the putative gsp oncogene identify a domain of G protein alpha-chains required for intrinsic ability to hydrolyse GTP. This domain may serve as a built-in counter-part of the separate GTPase-activating proteins required for GTP hydrolysis by small GTP-binding proteins such as p21ras.
Collapse
|
|
36 |
984 |
13
|
Abstract
G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling, or desensitization. This review focuses on the regulation of GRK activity by a variety of allosteric and other factors: agonist-stimulated GPCRs, beta gamma subunits of heterotrimeric GTP-binding proteins, phospholipid cofactors, the calcium-binding proteins calmodulin and recoverin, posttranslational isoprenylation and palmitoylation, autophosphorylation, and protein kinase C-mediated GRK phosphorylation. Studies employing recombinant, purified proteins, cell culture, and transgenic animal models attest to the general importance of GRKs in regulating a vast array of GPCRs both in vitro and in vivo.
Collapse
|
Review |
27 |
953 |
14
|
Simonsen A, Lippé R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394:494-8. [PMID: 9697774 DOI: 10.1038/28879] [Citation(s) in RCA: 909] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
GTPases and lipid kinases regulate membrane traffic along the endocytic pathway by mechanisms that are not completely understood. Fusion between early endosomes requires phosphatidylinositol-3-OH kinase (PI(3)K) activity as well as the small GTPase Rab5. Excess Rab5-GTP complex restores endosome fusion when PI(3)K is inhibited. Here we identify the early-endosomal autoantigen EEA1 which binds the PI(3)K product phosphatidylinositol-3-phosphate, as a new Rab5 effector that is required for endosome fusion. The association of EEA1 with the endosomal membrane requires Rab5-GTP and PI(3)K activity, and excess Rab5-GTP stabilizes the membrane association of EEA1 even when PI(3)K is inhibited. The identification of EEA1 as a direct Rab5 effector provides a molecular link between PI(3)K and Rab5, and its restricted distribution to early endosomes indicates that EEA1 may confer directionality to Rab5-dependent endocytic transport.
Collapse
|
|
27 |
909 |
15
|
Abstract
The small GTP-binding protein rab5 was previously localized on early endosomes and on the cytoplasmic face of the plasma membrane. Using a cell-free assay, we have now tested whether rab5 is involved in controlling an early endocytic fusion event. Fusion could be inhibited by cytosol containing the overexpressed mutant rab5lle133, which does not bind GTP on blots, and by antibodies against rab5, but not against rab2 or rab7. In contrast, fusion was stimulated with cytosol containing overexpressed wild-type rab5. Cytosols containing high levels of rab2 or mutant rab5 with the 9 carboxy-terminal amino acids deleted, which bind GTP on blots, had no effects. Finally, the inhibition mediated by anti-rab5 antibodies could be overcome by complementing the assay with the cytosol containing wild-type rab5, but not with the same cytosol depleted of rab5, nor with cytosol containing the rab5 mutants or rab2. These in vitro findings strongly suggest that rab5 is involved in the process of early endosome fusion.
Collapse
|
|
34 |
902 |
16
|
Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990; 87:1663-7. [PMID: 1689846 PMCID: PMC53542 DOI: 10.1073/pnas.87.5.1663] [Citation(s) in RCA: 901] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The heterogeneity of neural gene expression and the spatially limited expression of many low-abundance messenger RNAs in the brain has made cloning and analysis of such messages difficult. To generate amounts of nucleic acids sufficient for use in standard cloning strategies, we have devised a method for producing amplified heterogeneous populations of RNA from limited quantities of cDNA. Whole cerebellar RNA was primed with a synthetic oligonucleotide containing the T7 RNA polymerase promoter sequence 5' to a polythymidylate region. After second-strand cDNA synthesis, T7 RNA polymerase was used to generate amplified antisense RNA (aRNA). Up to 80-fold molar amplification has been achieved from nanogram quantities of cDNA. The amplified material is similar in size distribution to the parent cDNA and shows sequence heterogeneity as assessed by Southern and Northern blot analysis. Specific messages for moderate-abundance mRNAs for actin and guanine nucleotide-binding protein (G-protein) alpha subunits have been detected in the amplified material. By using in situ transcription to generate cDNA, sequences for cyclophilin have been detected in aRNA derived from single cerebellar tissue sections. cDNA derived from a single cerebellar Purkinje cell also has been amplified and yields material that hybridizes to cognate whole RNA and mRNA but not to Escherichia coli RNA.
Collapse
|
research-article |
35 |
901 |
17
|
Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McArdle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Satsangi J, Mansfield JC, Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 2007; 39:830-2. [PMID: 17554261 PMCID: PMC2628541 DOI: 10.1038/ng2061] [Citation(s) in RCA: 883] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023]
Abstract
A genome-wide association scan in individuals with Crohn's disease by the Wellcome Trust Case Control Consortium detected strong association at four novel loci. We tested 37 SNPs from these and other loci for association in an independent case-control sample. We obtained replication for the autophagy-inducing IRGM gene on chromosome 5q33.1 (replication P = 6.6 x 10(-4), combined P = 2.1 x 10(-10)) and for nine other loci, including NKX2-3, PTPN2 and gene deserts on chromosomes 1q and 5p13.
Collapse
|
research-article |
18 |
883 |
18
|
Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87:1037-47. [PMID: 8978608 DOI: 10.1016/s0092-8674(00)81798-5] [Citation(s) in RCA: 857] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe the phenotype of gene-targeted mice lacking the putative chemokine receptor BLR1. In normal mice, this receptor is expressed on mature B cells and a subpopulation of T helper cells. Blr1 mutant mice lack inguinal lymph nodes and possess no or only a few phenotypically abnormal Peyer's patches. The migration of lymphocytes into splenic follicles is severely impaired, resulting in morphologically altered primary lymphoid follicles. Furthermore, activated B cells fail to migrate from the T cell-rich zone into B cell follicles of the spleen, and despite high numbers of germinal center founder cells, no functional germinal centers develop in this organ. Our results identify the putative chemokine receptor BLR1 as the first G protein-coupled receptor involved in B cell migration and localization of these cells within specific anatomic compartments.
Collapse
|
|
29 |
857 |
19
|
Luo L, Liao YJ, Jan LY, Jan YN. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 1994; 8:1787-802. [PMID: 7958857 DOI: 10.1101/gad.8.15.1787] [Citation(s) in RCA: 819] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The small GTPases of the Rac/Rho/Cdc42 subfamily are implicated in actin cytoskeleton-membrane interaction in mammalian cells and budding yeast. The in vivo functions of these GTPases in multicellular organisms are not known. We have cloned Drosophila homologs of rac and CDC42, Drac1, and Dcdc42. They share 70% amino acid sequence identity with each other, and both are highly expressed in the nervous system and mesoderm during neuronal and muscle differentiation, respectively. We expressed putative constitutively active and dominant-negative Drac1 proteins in these tissues. When expressed in neurons, Drac1 mutant proteins cause axon outgrowth defects in peripheral neurons without affecting dendrites. When expressed in muscle precursors, they cause complete failure of, or abnormality in, myoblast fusion. Expressions of analogous mutant Dcdc42 proteins cause qualitatively distinct morphological defects, suggesting that similar GTPases in the same subfamily have unique roles in morphogenesis.
Collapse
|
|
31 |
819 |
20
|
Stenmark H, Parton RG, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 1994; 13:1287-96. [PMID: 8137813 PMCID: PMC394944 DOI: 10.1002/j.1460-2075.1994.tb06381.x] [Citation(s) in RCA: 801] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Small GTPases of the rab family control distinct steps of intracellular transport. The function of their GTPase activity is not completely understood. To investigate the role of the nucleotide state of rab5 in the early endocytic pathway, the effects of two mutants with opposing biochemical properties were tested. The Q79L mutant of rab5, analogous with the activating Q61L mutant of p21-ras, was found to have a strongly decreased intrinsic GTPase activity and was, unlike wild-type rab5, found mainly in the GTP-bound form in vivo. Expression of this protein in BHK and HeLa cells led to a dramatic change in cell morphology, with the appearance of unusually large early endocytic structures, considerably larger than those formed upon overexpression of wild-type rab5. An increased rate of transferrin internalization was observed in these cells, whereas recycling was inhibited. Cytosol containing rab5 Q79L stimulated homotypic early endosome fusion in vitro, even though it contained only a small amount of the isoprenylated protein. A different mutant, rab5 S34N, was found, like the inhibitory p21-ras S17N mutant, to have a preferential affinity for GDP. Overexpression of rab5 S34N induced the accumulation of very small endocytic profile and inhibited transferrin endocytosis. This protein inhibited fusion between early endosomes in vitro. The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein.
Collapse
|
|
31 |
801 |
21
|
Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998; 273:24266-71. [PMID: 9727051 DOI: 10.1074/jbc.273.37.24266] [Citation(s) in RCA: 793] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanism by which 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors increase endothelial nitric oxide synthase (eNOS) expression is unknown. To determine whether changes in isoprenoid synthesis affects eNOS expression, human endothelial cells were treated with the HMG-CoA reductase inhibitor, mevastatin (1-10 microM), in the presence of L-mevalonate (200 microM), geranylgeranylpyrophosphate (GGPP, 1-10 microM), farnesylpyrophosphate (FPP, 5-10 microM), or low density lipoprotein (LDL, 1 mg/ml). Mevastatin increased eNOS mRNA and protein levels by 305 +/- 15% and 180 +/- 11%, respectively. Co-treatment with L-mevalonate or GGPP, but not FPP or LDL, reversed mevastatin's effects. Because Rho GTPases undergo geranylgeranyl modification, we investigated whether Rho regulates eNOS expression. Immunoblot analyses and [35S]GTPgammaS-binding assays revealed that mevastatin inhibited Rho membrane translocation and GTP binding activity by 60 +/- 5% and 78 +/- 6%, both of which were reversed by co-treatment with GGPP but not FPP. Furthermore, inhibition of Rho by Clostridium botulinum C3 transferase (50 microg/ml) or by overexpression of a dominant-negative N19RhoA mutant increased eNOS expression. In contrast, activation of Rho by Escherichia coli cytotoxic necrotizing factor-1 (200 ng/ml) decreased eNOS expression. These findings indicate that Rho negatively regulates eNOS expression and that HMG-CoA reductase inhibitors up-regulate eNOS expression by blocking Rho geranylgeranylation, which is necessary for its membrane-associated activity.
Collapse
|
|
27 |
793 |
22
|
Kozma R, Ahmed S, Best A, Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 1995; 15:1942-52. [PMID: 7891688 PMCID: PMC230420 DOI: 10.1128/mcb.15.4.1942] [Citation(s) in RCA: 791] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Ras-related protein Cdc42 plays a role in yeast cell budding and polarity. Two related proteins, Rac1 and RhoA, promote formation in mammalian cells of membrane ruffles and stress fibers, respectively, which contain actin microfilaments. We now show that microinjection of the related human Cdc42Hs into Swiss 3T3 fibroblasts induced the formation of peripheral actin microspikes, determined by staining with phalloidin. A proportion of these microspikes was found to be components of filopodia, as analyzed by time-lapse phase-contrast microscopy. The formation of filopodia was also found to be promoted by Cdc42Hs microinjection. This was followed by activation of Rac1-mediated membrane ruffling. Treatment with bradykinin also promoted formation of microspikes and filopodia as well as subsequent effects similar to that seen upon Cdc42Hs microinjection. These effects of bradykinin were specifically inhibited by prior microinjection of dominant negative Cdc42HsT17N, suggesting that bradykinin acts by activating cellular Cdc42Hs. Since filopodia have been ascribed an important sensory function in fibroblasts and are required for guidance of neuronal growth cones, these results indicate that Cdc42Hs plays an important role in determining mammalian cell morphology.
Collapse
|
research-article |
30 |
791 |
23
|
Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993; 364:717-21. [PMID: 8355785 DOI: 10.1038/364717a0] [Citation(s) in RCA: 752] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lissencephaly (agyria-pachygyria) is a human brain malformation manifested by a smooth cerebral surface and abnormal neuronal migration. Identification of the gene(s) involved in this disorder would facilitate molecular dissection of normal events in brain development. Type 1 lissencephaly occurs either as an isolated abnormality or in association with dysmorphic facial appearance in patients with Miller-Dieker syndrome. About 15% of patients with isolated lissencephaly and more than 90% of patients with Miller-Dieker syndrome have microdeletions in a critical 350-kilobase region in chromosome 17p13.3 (ref. 6). These deletions are hemizygous, so haplo-insufficiency for a gene in this interval is implicated. Here we report the cloning of a gene (LIS-1, lissencephaly-1) in 17p13.3 that is deleted in Miller-Dieker patients. Non-overlapping deletions involving either the 5' or 3' end of the gene were found in two patients, identifying LIS-1 as the disease gene. The deduced amino-acid sequence shows significant homology to beta-subunits of heterotrimeric G proteins, suggesting that it could possibly be involved in a signal transduction pathway crucial for cerebral development.
Collapse
|
|
32 |
752 |
24
|
Abstract
BACKGROUND AND PURPOSE Oxygen free radicals or oxidants have been proposed to be involved in acute central nervous system injury that is produced by cerebral ischemia and reperfusion. Because of the transient nature of oxygen radicals and the technical difficulties inherent in accurately measuring their levels in the brain, experimental strategies have been focused on the use of pharmacological agents and antioxidants to seek a correlation between the exogenously supplied specific radical scavengers (ie, superoxide dismutase and catalase) and the subsequent protection of cerebral tissues from ischemic injury. However, this strategy entails problems (hemodynamic, pharmacokinetic, toxicity, blood-brain barrier permeability, etc) that may cloud the data interpretation. This mini-review will focus on the oxidant mechanisms in cerebral ischemic brain injury by using transgenic and knockout mice as an alternative approach. METHODS Transgenic and knockout mutants that either overexpress or are deficient in antioxidant enzyme/protein levels have been successfully produced. The availability of these genetically modified animals has made it possible to investigate the role of certain oxidants in ischemic brain cell damage in molecular fashion. RESULTS It has been shown that an increased level of CuZn-superoxide dismutase and antiapoptotic protein Bcl-2 in the brains of transgenic mice protects neurons from ischemic/reperfusion injury, whereas a deficiency in CuZn-superoxide dismutase or mitochondrial Mn-superoxide dismutase exacerbates ischemic brain damage. Target disruption of neuronal nitric oxide synthase in mice also provides neuronal protection against permanent and transient focal cerebral ischemia. CONCLUSIONS I conclude that molecular genetic approaches in modifying antioxidant levels in the brain offer a unique tool for understanding the role of oxidants in ischemic brain damage.
Collapse
|
Review |
29 |
751 |
25
|
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 1999; 13:270-83. [PMID: 9990852 PMCID: PMC316433 DOI: 10.1101/gad.13.3.270] [Citation(s) in RCA: 749] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ubiquitin-mediated proteolysis has a central role in controlling the intracellular levels of several important regulatory molecules such as cyclins, CKIs, p53, and IkappaBalpha. Many diverse proinflammatory signals lead to the specific phosphorylation and subsequent ubiquitin-mediated destruction of the NF-kappaB inhibitor protein IkappaBalpha. Substrate specificity in ubiquitination reactions is, in large part, mediated by the specific association of the E3-ubiquitin ligases with their substrates. One class of E3 ligases is defined by the recently described SCF complexes, the archetype of which was first described in budding yeast and contains Skp1, Cdc53, and the F-box protein Cdc4. These complexes recognize their substrates through modular F-box proteins in a phosphorylation-dependent manner. Here we describe a biochemical dissection of a novel mammalian SCF complex, SCFbeta-TRCP, that specifically recognizes a 19-amino-acid destruction motif in IkappaBalpha (residues 21-41) in a phosphorylation-dependent manner. This SCF complex also recognizes a conserved destruction motif in beta-catenin, a protein with levels also regulated by phosphorylation-dependent ubiquitination. Endogenous IkappaBalpha-ubiquitin ligase activity cofractionates with SCFbeta-TRCP. Furthermore, recombinant SCFbeta-TRCP assembled in mammalian cells contains phospho-IkappaBalpha-specific ubiquitin ligase activity. Our results suggest that an SCFbeta-TRCP complex functions in multiple transcriptional programs by activating the NF-kappaB pathway and inhibiting the beta-catenin pathway.
Collapse
|
research-article |
26 |
749 |