1
|
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov 2020; 10:779-782. [PMID: 32276929 DOI: 10.1158/2159-8290.cd-20-0451] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TMPRSS2 is both the most frequently altered gene in primary prostate cancer and a critical factor enabling cellular infection by coronaviruses, including SARS-CoV-2. The modulation of its expression by sex steroids could contribute to the male predominance of severe infections, and given that TMPRSS2 has no known indispensable functions, and inhibitors are available, it is an appealing target for prevention or treatment of respiratory viral infections.
Collapse
|
Review |
5 |
283 |
2
|
Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari N, Gohda J, Semba K, Matsuda Z, Kawaguchi Y, Kawaoka Y, Inoue JI. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses 2020; 12:E629. [PMID: 32532094 PMCID: PMC7354595 DOI: 10.3390/v12060629] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
201 |
3
|
Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules 2020; 25:E2271. [PMID: 32408547 PMCID: PMC7287752 DOI: 10.3390/molecules25102271] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused about 2 million infections and is responsible for more than 100,000 deaths worldwide. To date, there is no specific drug registered to combat the disease it causes, named coronavirus disease 2019 (COVID-19). In the current study, we used an in silico approach to screen natural compounds to find potent inhibitors of the host enzyme transmembrane protease serine 2 (TMPRSS2). This enzyme facilitates viral particle entry into host cells, and its inhibition blocks virus fusion with angiotensin-converting enzyme 2 (ACE2). This, in turn, restricts SARS-CoV-2 pathogenesis. A three-dimensional structure of TMPRSS2 was built using SWISS-MODEL and validated by RAMPAGE. The natural compounds library Natural Product Activity and Species Source (NPASS), containing 30,927 compounds, was screened against the target protein. Two techniques were used in the Molecular Operating Environment (MOE) for this purpose, i.e., a ligand-based pharmacophore approach and a molecular docking-based screening. In total, 2140 compounds with pharmacophoric features were retained using the first approach. Using the second approach, 85 compounds with molecular docking comparable to or greater than that of the standard inhibitor (camostat mesylate) were identified. The top 12 compounds with the most favorable structural features were studied for physicochemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) properties. The low-molecular-weight compound NPC306344 showed significant interaction with the active site residues of TMPRSS2, with a binding energy score of -14.69. Further in vitro and in vivo validation is needed to study and develop an anti-COVID-19 drug based on the structures of the most promising compounds identified in this study.
Collapse
|
research-article |
5 |
132 |
4
|
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020; 46:467-488. [PMID: 32468014 PMCID: PMC7307820 DOI: 10.3892/ijmm.2020.4608] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale. Drug repurposing, also known as drug repositioning, and target based methods are the most used strategies to advance therapeutic solutions into clinical practice. Current in silico, in vitro and in vivo evidence regarding proposed treatments are summarized providing strong support for future research efforts.
Collapse
|
Review |
5 |
99 |
5
|
Abstract
This study was conducted with rats to assess the involvement of leukocytes in a model of CO-mediated brain injury. Myeloperoxidase activity, measured as an index of leukocyte sequestration, was found to be increased 10-fold in brain microvessel segments prepared from rats immediately or 90 min after exposure to CO. Fluorescence and light microscopic examinations revealed leukocytes in microvessels taken from CO-poisoned rats, but not in that from control rats. Studies were then conducted with rats that had been made leukopenic or treated with monoclonal anti-CD-18 F(ab')2 fragments to inhibit leukocyte adherence to the vasculature. Neither of these groups of animals exhibited the biochemical changes observed in the brains of sham-treated rats: conversion of xanthine dehydrogenase (XD) to sulfhydryl-irreversible xanthine oxidase (XO), and lipid peroxidation, at 90 min following CO poisoning. Treatment with a synthetic serine protease inhibitor, gabexate mesylate, also prevented these biochemical changes if administered immediately after CO poisoning, but the agent did not inhibit leukocyte sequestration. Rats depleted of XD and XO by a tungsten diet, and those treated with allopurinol to inhibit XD and XO, also exhibited at least a 10-fold increase in myeloperoxidase activity in microvessels immediately after CO poisoning, but only a 5-fold increase at 90 min. In vitro studies demonstrated that B2 integrin-dependent polymorphonuclear leukocyte adherence was impaired immediately following CO poisoning although the adherence molecules were expressed on the membrane surface. Adherence function normalized by 45 min. The results suggest that leukocytes are responsible for the development of biochemical changes in brain following CO poisoning, and the sequence of events is as follows: leukocyte sequestration in the microvasculature, B2 integrin-dependent adherence, protease-mediated conversion of XD to XO, O2 radical-dependent lipid peroxidation.
Collapse
|
|
32 |
94 |
6
|
Mori S, Itoh Y, Shinohata R, Sendo T, Oishi R, Nishibori M. Nafamostat mesilate is an extremely potent inhibitor of human tryptase. J Pharmacol Sci 2003; 92:420-3. [PMID: 12939527 DOI: 10.1254/jphs.92.420] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, nafamostat mesilate was found to be a potent inhibitor of human tryptase. In present study, we performed a kinetic study to determine its K(i) value for tryptase and compared it with that of gabexate mesilate. Nafamostat mesilate inhibited human tryptase in a competitive manner. The apparent K(i) value was estimated to be 95.3 pM, which was 1000 times lower than that of gabexate mesilate (95.1 nM). These results strongly indicated that nafamostat mesilate is an extremely potent inhibitor of tryptase and suggested that some of its beneficial effects in the treatment of clinical status may be due to tryptase inhibition.
Collapse
|
Comparative Study |
22 |
83 |
7
|
Aosasa S, Ono S, Mochizuki H, Tsujimoto H, Ueno C, Matsumoto A. Mechanism of the inhibitory effect of protease inhibitor on tumor necrosis factor alpha production of monocytes. Shock 2001; 15:101-5. [PMID: 11220636 DOI: 10.1097/00024382-200115020-00004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
If the inflammatory response becomes excessive or uncontrolled by some stimuli, inappropriate inflammatory responses occur. Monocytes are extremely important cells for regulating the cytokine network and tumor necrosis factor alpha (TNFalpha) and interleukin- (IL) 10, which are mainly synthesized by monocytes, are representative cytokines that play a central role in the cytokine network. Protease inhibitors such as gabexate mesilate (GM) and ulinastatin (UTI) have been shown to have various beneficial effects by inhibiting the activation of leukocytes, but the mechanism for this has yet to be fully elucidated. In this study we investigated the mechanism of the inhibitory effect of protease inhibitors on the proinflammatory cytokine production of lipopolysaccharide- (LPS) stimulated monocytes. LPS-stimulated monocytes were treated with GM or UTI. The value of TNFalpha and IL-10 in the culture medium of monocytes was measured and each mRNA expression was assayed. The inhibitory effect of protease inhibitors on the activity of intracellular signal transduction pathways such as protein kinase C (PKC) and nuclear factor kappa B (NFkappaB) were also evaluated. GM decreased the TNFalpha production of LPS-stimulated monocytes as shown by the inhibition of mRNA expression and increased the IL-10 production of LPS-stimulated monocytes. GM also suppressed the NFkappaB activity of LPS-stimulated monocytes. UTI decreased the TNFalpha production of LPS-stimulated monocytes, but did not inhibit the TNFalpha mRNA expression. The present study shows that the inhibitory effect of GM on the TNFalpha production of activated human monocytes is mediated by the suppression of NFkappaB activation, while the mechanism of UTI inhibiting TNFalpha production of human monocytes may be due to the inhibition of either the translation or secretion of TNFalpha.
Collapse
|
|
24 |
76 |
8
|
Coote K, Atherton-Watson HC, Sugar R, Young A, MacKenzie-Beevor A, Gosling M, Bhalay G, Bloomfield G, Dunstan A, Bridges RJ, Sabater JR, Abraham WM, Tully D, Pacoma R, Schumacher A, Harris J, Danahay H. Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J Pharmacol Exp Ther 2009; 329:764-74. [PMID: 19190233 DOI: 10.1124/jpet.108.148155] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Inhibition of airway epithelial sodium channel (ENaC) function enhances mucociliary clearance (MCC). ENaC is positively regulated by channel-activating proteases (CAPs), and CAP inhibitors are therefore predicted to be beneficial in diseases associated with impaired MCC. The aims of the present study were to 1) identify low-molecular-weight inhibitors of airway CAPs and 2) to establish whether such CAP inhibitors would translate into a negative regulation of ENaC function in vivo, with a consequent enhancement of MCC. To this end, camostat, a trypsin-like protease inhibitor, provided a potent (IC(50) approximately 50 nM) and prolonged attenuation of ENaC function in human airway epithelial cell models that was reversible upon the addition of excess trypsin. In primary human bronchial epithelial cells, a potency order of placental bikunin > camostat > 4-guanidinobenzoic acid 4-carboxymethyl-phenyl ester > aprotinin >> soybean trypsin inhibitor = alpha1-antitrypsin, was largely consistent with that observed for inhibition of prostasin, a molecular candidate for the airway CAP. In vivo, topical airway administration of camostat induced a potent and prolonged attenuation of ENaC activity in the guinea pig trachea (ED(50) = 3 microg/kg). When administered by aerosol inhalation in conscious sheep, camostat enhanced MCC out to at least 5 h after inhaled dosing. In summary, camostat attenuates ENaC function and enhances MCC, providing an opportunity for this approach toward the negative regulation of ENaC function to be tested therapeutically.
Collapse
|
|
16 |
71 |
9
|
Hahm KB, Kim JH, You BM, Kim YS, Cho SW, Yim H, Ahn BO, Kim WB. Induction of apoptosis with an extract of Artemisia asiatica attenuates the severity of cerulein-induced pancreatitis in rats. Pancreas 1998; 17:153-7. [PMID: 9700946 DOI: 10.1097/00006676-199808000-00007] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The aim of this study was to test the hypothesis that apoptosis can protect against experimental pancreatitis and induction of apoptosis by an extract of Artemisia asiatica (DA-9601) is beneficial in cerulein-induced pancreatis in rats. Pancreatitis was induced in 6-week-old male SPF Sprague-Dawley rats by two intravenous (i.v.) administrations of 40 microg/kg cerulein. To investigate the effects of DA-9601 on the severity of pancreatitis and extent of apoptosis, rats were treated with intragastric DA-9601, 30 mg/kg (D30), 100 mg/kg (D100), or 300 mg/kg (D300), intraperitoneal superoxide dismutase, 10,000 U/kg (SOD), and i.v. gabexate mesilate, 40 mg/kg (Foy), three times (30 min before cerulein injection, 30 and 90 min after cerulein injection). The control group was administered vehicle alone. Ten rats were included in each treatment group and control group. Rats were sacrificed 5 h after cerulein treatment. Serum amylase, histological activity index (HAI), pancreatic lipid peroxide levels, and apoptotic index [in situ hybridization by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL)] were determined. Gel electrophoresis was performed for the presence of DNA fragmentations. The results were as follows. Serum amylase was significantly increased in all cerulein-treated groups compared to normal controls (p < 0.001). The HAI was significantly decreased in only the D300 group compared to the controls (p < 0.05). The apoptotic index of the cerulein-alone group was 3.8 +/- 2.7, but the mean apoptotic indexes of the SOD and Foy groups were 16.4 +/- 4.6 and 13.3 +/- 1.8, respectively, a significant increase (p < 0.01). The apoptotic index was more significantly increased in the DA-9601-treated groups, dose dependently (8.4 +/- 3.4 in D30, 14.8 +/- 4.3 in D100, 24.2 +/- 4.7 in D300). A smearing pattern of DNA electrophoresis was noted in the DA-9601-treated groups. In conclusion, DA-9601, an extract of Artemisia, induced apoptosis of pancreatic acinar cells dose dependently and concomitantly attenuated the severity of pancreatitis.
Collapse
|
|
27 |
67 |
10
|
Gibo J, Ito T, Kawabe K, Hisano T, Inoue M, Fujimori N, Oono T, Arita Y, Nawata H. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. J Transl Med 2005; 85:75-89. [PMID: 15531908 DOI: 10.1038/labinvest.3700203] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Camostat mesilate (CM), an oral protease inhibitor, has been used clinically for the treatment of chronic pancreatitis in Japan. However, the mechanism by which it operates has not been fully understood. Our aim was to evaluate the therapeutic efficacy of CM in the experimental pancreatic fibrosis model induced by dibutyltin dichloride (DBTC), and we also determined the effect of CM on isolated monocytes and panceatic stellate cells (PSCs). In vivo, chronic pancreatitis was induced in male Lewis rats by single administration of 7 mg/kg DBTC and a special diet containing 1 mg/g CM was fed to the DBTC+CM-treated group from day 7, while the DBTC-treated group rats were fed a standard diet. At days 0, 7, 14 and 28, the severity of pancreatitis and fibrosis was examined histologically and enzymologically in both groups. In vitro, monocytes were isolated from the spleen of a Lewis rat, and activated with lipopolysaccharide stimulation. Thereafter, the effect of CM on monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-alpha) production from monocytes was examined. Subsequently, cultured rat PSCs were exposed to CM and tested to see whether their proliferation, MCP-1 production and procollagen alpha1 messenger RNA expression was influenced by CM. In vivo, the oral administration of CM inhibited inflammation, cytokines expression and fibrosis in the pancreas. The in vitro study revealed that CM inhibited both MCP-1 and TNF-alpha production from monocytes, and proliferation and MCP-1 production from PSCs. However, procollagen alpha1 expression in PSCs was not influenced by CM. These results suggest that CM attenuated DBTC-induced rat pancreatic fibrosis via inhibition of monocytes and PSCs activity.
Collapse
|
|
20 |
66 |
11
|
Reeve JR, Green GM, Chew P, Eysselein VE, Keire DA. CCK-58 is the only detectable endocrine form of cholecystokinin in rat. Am J Physiol Gastrointest Liver Physiol 2003; 285:G255-65. [PMID: 12686511 DOI: 10.1152/ajpgi.00523.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCK-58 differs from CCK-8 in patterns of expression of pancreatic secretion of fluid and amylase and gallbladder contraction. These differences have physiological relevance only if CCK-58 release is stimulated by nutrients entering the intestine and if CCK-58 circulates in sizeable amounts. In this study, we report that when radiolabeled CCK-58 is added to rat blood and plasma is formed, there is extensive loss and degradation of the radioactive peptide. Therefore, a new method was developed to minimize loss and degradation of this label. This method recovered >85% of the label with no detectable degradation. Furthermore, the optimized method recovered all unlabeled exogenous cholecystokinin molecular forms in >80% yields. Blood from fasted rats and rats in which cholecystokinin release was stimulated by the trypsin inhibitor camostat contained only CCK-58 (3.5 +/- 0.5 and 17 +/- 1.5 fmol/ml, respectively). Because CCK-58 predominates in the blood, this molecular form should be used in studies on the physiology and pathophysiology of cholecystokinin.
Collapse
|
|
22 |
65 |
12
|
Mitsuoka H, Kistler EB, Schmid-Schönbein GW. Protease inhibition in the intestinal lumen: attenuation of systemic inflammation and early indicators of multiple organ failure in shock. Shock 2002; 17:205-9. [PMID: 11900339 DOI: 10.1097/00024382-200203000-00008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our recent evidence suggests that pancreatic digestive enzymes in the lumen of the intestine may play a major role in the production of cardiovascular stimulatory factors during splachnic artery occlusion and reperfusion. These stimulators are detected in plasma, but their origin and mechanism of production has remained uncertain. We examine here in the rat the role of pancreatic enzymes with and without administration of a serine protease inhibitor (FOY) into the lumen of the small intestine during splanchnic artery occlusion (90 min) and reperfusion (120 min). In the presence of pancreatic enzyme inhibition in the lumen of the intestine, there is significantly enhanced survival rate, lower levels of inflammatory mediator production, the femoral artery blood pressure is maintained close to control levels, and there are significantly lower levels of cell activators in plasma. These results support the hypothesis that pancreatic enzymes may escape across the brush border barrier during intestinal ischemia and thereby initiate the production of a powerful set of cytotoxic mediators. Blockade of pancreatic enzymes in the lumen of the intestine may be a tool to interfere with inflammation and early indicators of multiorgan failure.
Collapse
|
|
23 |
47 |
13
|
Murakami K, Okajima K, Uchiba M, Okabe H, Takatsuki K. Gabexate mesilate, a synthetic protease inhibitor, attenuates endotoxin-induced pulmonary vascular injury by inhibiting tumor necrosis factor production by monocytes. Crit Care Med 1996; 24:1047-53. [PMID: 8681572 DOI: 10.1097/00003246-199606000-00027] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE In order to determine whether gabexate mesilate, a synthetic protease inhibitor with anticoagulant properties, is useful for the treatment of adult respiratory distress syndrome, we examined its effect on endotoxin-induced pulmonary vascular injury in rats. DESIGN Prospective, randomized, controlled study. SETTING Research laboratory at a university medical center. SUBJECTS Male Wistar rats (180 to 220 g.) INTERVENTIONS Animals received intravenous infusions of endotoxin (5 mg/kg iv) or saline (control). Pulmonary vascular injury was assessed 6 hrs after administration of endotoxin in terms of the increase in vascular permeability. Rats received gabexate mesilate (10 mg/kg ip), heparin, antithrombin III, an inactive derivative of activated factor X (a selective inhibitor of thrombin generation), or N-[2-[4-(2,2-dimethyl-propionyloxy) phenylsulfonylamino] benzoyl] aminoacetic acid (ONO-5046) (a potent granulocyte elastase inhibitor) 30 mins before endotoxin administration. Leukocytopenia was induced by administration of methotrexate. The effects of the gabexate mesilate on the function of activated neutrophils and the production of tumor necrosis factor -alpha (TNF-alpha) by endotoxin-stimulated monocytes were examined in vitro using neutrophils and monocytes prepared from healthy human volunteers. MEASUREMENTS AND MAIN RESULTS Pulmonary vascular permeability was determined by measuring the vascular leakage of intravenously administered 125I-labeled bovine serum albumin. Intravenous administration of endotoxin significantly increased pulmonary vascular permeability. Gabexate mesilate significantly inhibited pulmonary vascular injury observed 6 hrs after the administration of endotoxin. Pulmonary vascular injury was not attenuated by the administration of heparin, heparin plus antithrombin III, or the inactive derivative of activated factor X, but pulmonary vascular injury was significantly attenuated in animals with methotrexate-induced leukocytopenia and in those animals treated with N-[2-[4-(2,2-dimethyl-propionyloxy) phenylsulfonylamino] benzoyl] aminoacetic acid. Gabexate mesilate in concentrations of 10(-4) to 10(-3) M inhibited the release of granulocyte elastase and leukocyte aggregation stimulated by N-formyl-methionyl-leucyl-phenylalanine and the opsonized zymosan-activated production of superoxide radical by neutrophils in vitro. Gabexate mesilate significantly inhibited the endotoxin-induced increase in the serum concentration of TNF-alpha in vivo and, at a concentration of 10(-8) M, the production of TNF-alpha by endotoxin-stimulated monocytes in vitro. CONCLUSION Our findings suggest that gabexate mesilate attenuated endotoxin-induced pulmonary vascular injury mainly by inhibiting TNF-alpha production by monocytes, which may play a central role in sepsis-related lung injury.
Collapse
|
|
29 |
40 |
14
|
Keck T, Balcom JH, Antoniu BA, Lewandrowski K, Warshaw AL, Fernández-del Castillo CF. Regional effects of nafamostat, a novel potent protease and complement inhibitor, on severe necrotizing pancreatitis. Surgery 2001; 130:175-81. [PMID: 11490346 DOI: 10.1067/msy.2001.115827] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND We evaluated the effect of the novel protease inhibitor nafamostat on rat necrotizing pancreatitis through different routes of administration. METHODS Three hours after the induction of severe pancreatitis, the rats received intravenous gabexate or intravenous or local mesenteric intra-arterial nafamostat. At 9 hours, ascites and bronchoalveolar lavage fluid were collected for the evaluation of capillary leakage (Evans blue extravasation). Pancreas and lung were excised for histologic features, myeloperoxidase, and trypsinogen activation peptide. Twenty-four hour survival was evaluated. RESULTS Only the intravenous infusion of nafamostat significantly reduced myeloperoxidase (11.7 +/- 2.3 vs 18.3 +/- 1.8 mU/mg; P <.05) and capillary leakage in lungs (Evans blue dye, 1.6 +/- 0.3 vs 2.6 +/- 0.3; P <.05). Only intra-arterial infusion of nafamostat significantly diminished capillary peritoneal leakage (Evans blue dye, 3.6 +/- 0.9 vs 9.4 +/- 0.4; P <.01). Typsinogen activation peptide levels were significantly reduced in all groups, but only intra-arterial infusion did so to baseline. Histologic inflammation in the pancreas was most significantly reduced after intra-arterial infusion (0.92 +/- 0.08 vs 2.91 +/- 0.06; P <.05). No form of protease inhibition reduced mortality rates. CONCLUSIONS The effects of protease inhibition depend on the route of administration. Nafamostat has maximal effects on the pancreas and peritoneal capillary leakage when delivered by way of local intra-arterial infusion, and shows a greater reduction of lung leukocyte infiltration and capillary leakage by the intravenous route. Nafamostat is more effective than gabexate.
Collapse
|
Comparative Study |
24 |
39 |
15
|
Yuksel M, Okajima K, Uchiba M, Okabe H. Gabexate mesilate, a synthetic protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappaB and activator protein-1 in human monocytes. J Pharmacol Exp Ther 2003; 305:298-305. [PMID: 12649382 DOI: 10.1124/jpet.102.041988] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gabexate mesilate, a synthetic protease inhibitor, was shown to be effective in treating patients with sepsis-associated disseminated intravascular coagulation in which tumor necrosis factor-alpha (TNF-alpha) plays a critical role. We demonstrated that gabexate mesilate reduced lipopolysaccharide (LPS)-induced tissue injury by inhibiting TNF-alpha production in rats. In the present study, we analyzed the mechanism(s) by which gabexate mesilate inhibits LPS-induced TNF-alpha production in human monocytes in vitro. Gabexate mesilate inhibited the production of TNF-alpha in monocytes stimulated with LPS. Gabexate mesilate inhibited both the binding of nuclear factor-kappaB (NF-kappaB) to target sites and the degradation of inhibitory kappaBalpha. Gabexate mesilate also inhibited both the binding of activator protein-1 (AP-1) to target sites and the activation of mitogen-activated protein kinase pathways. These observations strongly suggest that gabexate mesilate inhibited LPS-induced TNF-alpha production in human monocytes by inhibiting activation of both NF-kappaB and AP-1. Inhibition of TNF-alpha production by gabexate mesilate might explain at least partly its therapeutic effects in animals given LPS and those in patients with sepsis.
Collapse
|
|
22 |
35 |
16
|
Gurda GT, Guo L, Lee SH, Molkentin JD, Williams JA. Cholecystokinin activates pancreatic calcineurin-NFAT signaling in vitro and in vivo. Mol Biol Cell 2008; 19:198-206. [PMID: 17978097 PMCID: PMC2174201 DOI: 10.1091/mbc.e07-05-0430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/11/2007] [Accepted: 10/23/2007] [Indexed: 01/13/2023] Open
Abstract
Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5-1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
35 |
17
|
Yoon WH, Jung YJ, Kim TD, Li G, Park BJ, Kim JY, Lee YC, Kim JM, Park JI, Park HD, No ZS, Lim K, Hwang BD, Kim YS. Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix metalloproteinases and angiogenesis. Clin Cancer Res 2005; 10:4517-26. [PMID: 15240544 DOI: 10.1158/1078-0432.ccr-04-0084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gabexate mesilate (GM), a synthetic protease inhibitor, has an antiproteinase activity on various types of plasma serine proteases. However, its role on matrix metalloproteinases (MMPs) has not been identified. In this study, we investigated the effect of GM on MMPs and on the invasion and metastasis of human colon cancer cell lines and neoangiogenesis. The activities of MMPs secreted from these cells were significantly reduced by GM but unaffected by the serine protease inhibitor aprotinin. GM directly inhibited purified progelatinase A derived from T98G human glioblastoma cells. In vitro, GM significantly reduced the invasive ability of colon cancer cells but not cellular motility, whereas aprotinin affected neither. Liver metastatic ability and tumorigenic potential in nude mice were remarkably reduced on treatment with GM. Immunohistochemical analysis of GM-treated tumors in mice showed a marked increase in apoptosis and a significant reduction in tumor angiogenesis. Human umbilical vein endothelial cell proliferation, tube formation, and neoangiogenesis in the rabbit cornea and Matrigel implanted in mice were significantly inhibited by GM. These results suggest that GM is a novel inhibitor of MMPs and that it may inhibit the invasion and metastasis of human colon cancer cells by blocking MMPs and neoangiogenesis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
34 |
18
|
Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K. Gabexate mesilate, a synthetic protease inhibitor, prevents compression-induced spinal cord injury by inhibiting activation of leukocytes in rats. Crit Care Med 1997; 25:874-9. [PMID: 9187610 DOI: 10.1097/00003246-199705000-00026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Gabexate mesilate is a synthetic protease inhibitor capable of inhibiting both coagulation and cytokine production by monocytes. To investigate whether gabexate mesilate is useful for the prevention of posttraumatic spinal cord injury, we examined its effect on compression trauma-induced spinal cord injury in rats. DESIGN Prospective, randomized, blinded, controlled study. SETTING Research laboratory at a university medical center. SUBJECTS Male Wistar rats weighing 300 to 350 g. INTERVENTIONS Spinal cord injury was induced by applying a 20-g weight extradurally to the spinal cord at the level of the 12th thoracic vertebra for 20 mins. Spinal cord injury was evaluated by assessing the motor function of the rats 24 hrs posttrauma. The accumulation of leukocytes and histologic changes in the injured spinal cord tissue also were examined. Rats received gabexate mesilate (10 or 20 mg/kg i.p.) 30 mins before or after the compressive trauma. The effects of heparin or an inactive derivative of activated factor X (a selective inhibitor of thrombin generation) on compressive trauma-induced spinal cord injury also were examined. Leukocytopenia was induced by the administration of nitrogen mustard. MEASUREMENTS AND MAIN RESULTS The motor disturbances observed following traumatic spinal cord compression, evaluated by Tarlov's score, and the accumulation of leukocytes in the injured tissue, evaluated by measuring tissue myeloperoxidase activity, were markedly reduced by leukocyte depletion induced by nitrogen mustard and by pre- or posttreatment of animals with gabexate mesilate. Neither heparin nor the inactive derivative of activated factor X prevented the motor disturbances and the accumulation of leukocytes. Histologic examination demonstrated that intramedullary hemorrhages observed 24 hrs after trauma at the 12th thoracic vertebra were significantly attenuated by nitrogen mustard-induced leukocytopenia and the administration of gabexate mesilate. CONCLUSIONS The compression trauma-induced spinal cord injury demonstrated by this model was mainly mediated by leukocytes. Gabexate mesilate prevented spinal cord injury not by inhibiting coagulation, but by inhibiting the activation of leukocytes.
Collapse
|
|
28 |
34 |
19
|
Sendo T, Sumimura T, Itoh Y, Goromaru T, Aki K, Yano T, Oike M, Ito Y, Mori S, Nishibori M, Oishi R. Involvement of proteinase-activated receptor-2 in mast cell tryptase-induced barrier dysfunction in bovine aortic endothelial cells. Cell Signal 2003; 15:773-81. [PMID: 12781870 DOI: 10.1016/s0898-6568(03)00014-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report here a direct modulation by mast cell tryptase of endothelial barrier function through activation of proteinase-activated receptor-2 (PAR-2). In cultured bovine aortic endothelial cells (BAECs), tryptase, trypsin and PAR-2 activating peptide impaired the barrier function as determined by the permeability of protein-conjugated Evans blue. The tryptase-induced barrier dysfunction was completely blocked by U73122, and partially reversed by xestospongin C, calphostin C or Y27632. The intracellular Ca(2+) was elevated by tryptase. It was notable that ioxaglate, a contrast material that degranulates mast cells, markedly increased the permeability when applied to BAECs in combination with mast cells, an action that was blocked by nafamostat, a potent tryptase inhibitor. Immunofluorescence analysis showed that actin stress fibre formation and disruption of VE-cadherin were observed after exposure to tryptase or ioxaglate in combination with mast cells. Therefore, it is suggested that mast cell tryptase impairs endothelial barrier function through activation of endothelial PAR-2 in a manner dependent on the phospholipase C activity.
Collapse
|
|
22 |
32 |
20
|
Tashiro M, Samuelson LC, Liddle RA, Williams JA. Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G784-90. [PMID: 14684381 DOI: 10.1152/ajpgi.00446.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCK acts on pancreatic acinar cells to increase intracellular Ca(2+) leading to secretion of digestive enzymes and, in the long term, pancreatic growth. Calcineurin (CN) is a serine/threonine-specific protein phosphatase activated by Ca(2+) and calmodulin that recently has been shown to participate in the growth regulation of cardiac and skeletal myocytes. We therefore tested the effect of two different CN inhibitors, cyclosporine A (CsA) and FK506, on mouse pancreatic growth induced by oral administration of the synthetic protease inhibitor camostat, a known stimulator of endogenous CCK release. Mice were fed a powdered diet with or without 0.1% camostat. Pancreatic wet weight, protein, and DNA were increased in response to camostat in a time-dependent manner over 10 days in ICR mice but not in CCK-deficient mice. Both CsA (15 mg/kg) and FK506 (3 mg/kg) given twice daily blocked the increase in pancreatic wet weight and protein and DNA content induced by camostat. The increase in plasma CCK induced by camostat was not blocked by CsA or FK506. Camostat feeding also increased the relative amount of CN protein, whereas levels of MAPKs, ERKs, and p38 were not altered. In summary, 1) CCK released by chronic camostat feeding induces pancreatic growth in mice; 2) this growth is blocked by treatment with both CsA and FK506, indicating a role for CN; 3) CCK stimulation also increases CN protein. In conclusion, activation and possibly upregulation of CN may participate in regulation of pancreatic growth by CCK in mice.
Collapse
|
|
21 |
29 |
21
|
Nishijima J, Hiraoka N, Murata A, Oka Y, Kitagawa K, Tanaka N, Toda H, Mori T. Protease inhibitors (gebexate mesylate and ulinastatin) stimulate intracellular chemiluminescence in human neutrophils. J Leukoc Biol 1992; 52:262-8. [PMID: 1326018 DOI: 10.1002/jlb.52.3.262] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effect of protease inhibitors on the intracellular production of free radicals was investigated by measuring chemiluminescence (CL) elicited from phagocytosed luminol-bound microspheres (Lumispheres) in human neutrophils stimulated with formylmethionyl-leucyl-phenylalanine (fMLP), interleukin-8 (IL-8), phorbol 12-myristate 13-acetate, or diacylglycerol. Both gabexate mesylate (Foy) and ulinastatin (Miraclid), urinary trypsin inhibitor, increased intracellular CL in a dose dependent manner. Compared to control buffer without protease inhibitor, gabexate mesylate (322 micrograms/ml) caused about a 10-fold increase in intracellular CL in stimulated neutrophils, and ulinastatin (3100 U/ml) a twofold increase in neutrophils stimulated with fMLP or IL-8. When the protease inhibitors were added to the cell suspension after the phagocytosis of lumispheres, CL responses rapidly increased again to the level which was observed when both protease inhibitors and neutrophil stimulants were incubated simultaneously. In contrast, extracellular release of oxygen metabolites from stimulated neutrophils, assayed by a conventional measurement of luminol-dependent CL, was reduced by the protease inhibitors in a dose dependent fashion. When luminol-unbound microspheres were incubated with neutrophils stimulated by fMLP in luminol solution, extracellular CL was almost completely inhibited by gabexate mesylate. These results indicate that the protease inhibitors enhance the generation of intracellular CL and suppress the extracellular release of free radicals.
Collapse
|
|
33 |
28 |
22
|
Erba F, Fiorucci L, Pascarella S, Menegatti E, Ascenzi P, Ascoli F. Selective inhibition of human mast cell tryptase by gabexate mesylate, an antiproteinase drug. Biochem Pharmacol 2001; 61:271-6. [PMID: 11172730 DOI: 10.1016/s0006-2952(00)00550-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gabexate mesylate is a non-antigenic synthetic inhibitor of trypsin-like serine proteinases that is therapeutically used in the treatment of pancreatitis and disseminated intravascular coagulation and as a regional anticoagulant for hemodialysis. Considering the structural similarity between gabexate mesylate and arginine-based inhibitors of trypsin-like serine proteinases, the effect of gabexate mesylate on human and bovine mast cell tryptase action was investigated. Values of the inhibition constant (K(i)) for gabexate mesylate binding to human and bovine tryptase were 3.4 x 10(-9) M and 1.8 x 10(-7) M (at pH 7.4 and 37.0 degrees ), respectively. Furthermore, gabexate mesylate inhibited the fibrinogenolytic activity of human tryptase. On the basis of the available x-ray crystal structure of human tryptase, the possible binding mode of gabexate mesylate to human and bovine tryptase was analyzed. Human tryptase inhibition by gabexate mesylate may account for the reported prevention of inflammation, erosion, and ulceration of skin and mucosae.
Collapse
|
|
24 |
28 |
23
|
Chen HM, Hwang TL, Chen MF. The effect of gabexate mesilate on pancreatic and hepatic microcirculation in acute experimental pancreatitis in rats. J Surg Res 1996; 66:147-53. [PMID: 9024827 DOI: 10.1006/jsre.1996.0387] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microcirculatory derangements are important early features in many organs during the process of acute pancreatitis. However, dynamic evaluation of these factors has been difficult. Antiprotease has long been used for the treatment of acute pancreatitis, although its effects and mechanism have not been fully elucidated. The involvement of proteases and microcirculatory derangement early in the course of acute pancreatitis are the main concern of this study. A severe acute pancreatitis model in male Sprague-Dawley rats (225-275 g) was established by adding caerulein (15 microg/kg/ hr) in intravenous infusion fluid and intraductal injection of 0.1 ml glycodeoxycholic acid (5 mM). Gabexate mesilate [GM; ethyl-4-(6-guanidinohexanoyloxy)benzoate methanesulfonate], a synthetic antiprotease, was infused intravenously in doses of 0.01, 0.1, 1, and 10 mg as a therapeutic intervention in this model. Pathology hematocrit, serum amylase level, and glutamic-oxaloacetic transaminase (GOT) levels were used to confirm the severity of disease and effect of therapy. In vivo microscopic technique was used as a investigating tool in this study of microcirculatory derangement in pancreas and liver, 8 hr after induction of acute pancreatitis. GM can significantly improve pathologic criteria and changes of serum amylase levels in the range of 1-10 mg/kg/hr. The severity of changes of hematocrit and GOT was significantly lessened with GM in the range of 0.1-10 mg/kg/hr. This agent also could improve the microcirculatory environment in pancreas and liver after induction of acute pancreatitis according to the parameters, such as flow velocity and rolling leukocyte phenomenon, in the range of 1-10 mg/kg/hr. According to our observation, severity of hyperpermeability had not changed with the treatment of GM. These results indicated the beneficial effects of GM on pancreatic and hepatic microcirculation early in the course of acute pancreatitis. The beneficial effects were noted in serum parameters and hematocrit. The importance of protease activation and remote organ dysfunction is emphasized in the course of acute pancreatitis from this study.
Collapse
|
|
29 |
25 |
24
|
Ishikura H, Nishimura S, Matsunami M, Tsujiuchi T, Ishiki T, Sekiguchi F, Naruse M, Nakatani T, Kamanaka Y, Kawabata A. The proteinase inhibitor camostat mesilate suppresses pancreatic pain in rodents. Life Sci 2007; 80:1999-2004. [PMID: 17433371 DOI: 10.1016/j.lfs.2007.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/20/2007] [Accepted: 02/28/2007] [Indexed: 02/01/2023]
Abstract
Camostat mesilate, an orally available proteinase inhibitor, is clinically used for treatment of pancreatitis. Given recent evidence that pancreatic proteinases including trypsin and/or proteinase-activated receptor-2 (PAR2) might be involved in pancreatic pain, we examined if camostat mesilate could suppress spinal Fos expression, a marker for neuronal activation, following specific application of trypsin to the pancreas, and pancreatitis-related referred allodynia. Trypsin, administered into the pancreatic duct, caused delayed expression of Fos proteins in the superficial layer of the bilateral T8 and T9 spinal dorsal horns in rats. The trypsin-induced spinal Fos expression was completely abolished by oral pre-administration of camostat mesilate at 300 mg/kg. After hourly repeated (6 times in total) administration of caerulein, mice showed typical symptoms of pancreatitis, accompanied by mechanical allodynia in the upper abdomen (i.e., referred hyperalgesia/allodynia), as assessed by use of von Frey filaments. Camostat mesilate at 100-300 mg/kg, given orally twice before the 1st and 4th doses of caerulein, abolished the pancreatitis-related abdominal allodynia, while it partially prevented the inflammatory signs. The same doses of camostat mesilate, when administered once after the final dose of caerulein, also revealed significant anti-allodynic effect. These data suggest that camostat mesilate prevents and/or depresses pancreatitis-induced pain and/or referred hyperalgesia/allodynia, in which proteinases including trypsin would play a critical role.
Collapse
|
|
18 |
23 |
25
|
Federico R, Angelini R, Ercolini L, Venturini G, Mattevi A, Ascenzi P. Competitive inhibition of swine kidney copper amine oxidase by drugs: amiloride, clonidine, and gabexate mesylate. Biochem Biophys Res Commun 1997; 240:150-2. [PMID: 9367901 DOI: 10.1006/bbrc.1997.7630] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Competitive inhibition of swine kidney copper amine oxidase by diuretic, antihypertensive, and anticoagulant drugs, amiloride, clonidine, and gabexate mesylate, respectively, is reported. The affinity of these compounds for swine kidney copper amine oxidase is similar to that observed for inhibitor binding to nitric oxide synthase and trypsin-like serine proteinases. This finding suggests that amiloride, clonidine, and gabexate mesylate should be administrated under careful control, since enzyme cross-inhibition may occur also in vivo.
Collapse
|
|
28 |
22 |