1
|
Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 2004; 64:985-93. [PMID: 14871829 DOI: 10.1158/0008-5472.can-03-1101] [Citation(s) in RCA: 614] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Comparative analysis of cytoplasmic organelles in a variety of tumors relative to normal tissues generally reveals a strong diminution in mitochondrial content and in oxidative phosphorylation capacity. However, little is known about what triggers these modifications and whether or not they are physiologically reversible. We hypothesized that energy substrate availability could play an important role in this phenomenon. The physiological effects of a change in substrate availability were examined on a human cancer cell line (HeLa), focusing specifically on its ability to use glycolysis versus oxidative phosphorylation, and the effect that energy substrate type has on mitochondrial composition, structure, and function. Changes in oxidative phosphorylation were measured in vivo by a variety of techniques, including the use of two novel ratiometric green fluorescent protein biosensors, the expression level of oxidative phosphorylation and some glycolytic enzymes were determined by Western blot, mitochondrial DNA content was measured by real-time PCR, and mitochondrial morphology was monitored by both confocal and electron microscopy. Our data show that the defective mitochondrial system described in cancer cells can be dramatically improved by solely changing substrate availability and that HeLa cells can adapt their mitochondrial network structurally and functionally to derive energy by glutaminolysis only. This could also provide an explanation for the enhancement of oxidative phosphorylation capacity observed after tumor regression or removal. Our work demonstrates that the pleomorphic, highly dynamic structure of the mitochondrion can be remodeled to accommodate a change in oxidative phosphorylation activity. We compared our finding on HeLa cells with those for nontransformed fibroblasts to help distinguish the regulatory pathways.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
614 |
2
|
Herrmann C, Göke R, Richter G, Fehmann HC, Arnold R, Göke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56:117-26. [PMID: 7750665 DOI: 10.1159/000201231] [Citation(s) in RCA: 398] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nutrient-dependent glucagon-like peptide-1 (7-36) amide (GLP-1) release was studied in comparison to the glucose-dependent insulin-releasing polypeptide (GIP) response in 10 healthy volunteers each undergoing various protocols. Plasma samples were saved up to 120 min after challenges by oral, intravenous or intraduodenal administration of nutrients. Basal plasma-GLP-1 concentrations ranged between 0.4 and 1.4 pM, maximal postprandial GLP-1 levels peaked between 10 and 12 pM. Intravenous glucose (25 g i.v.) did not change basal GLP-1 levels. Oral administration of glucose (50 g) induced a biphasic GLP-1 release peaking at 30-60 min and a biphasic GIP release peaking at 5 and 45 min. This increase paralleled the secretion of insulin. Oral galactose (100 g) and amino acids (25 g) also induced a rapid plasma GLP-1 response. After fat (67 g corn oil) a strong and long-lasting (> 120 min) increase of GLP-1 plasma levels occurred. When a mixed liquid meal was given (6 g soybean oil, 5 g casein, 13 g glucose) immunoreactive (IR)-GLP-1 rapidly increased and peaked after 5 min with declining levels after 30 min. In response to an intraduodenal infusion of a small glucose load (5.34 g within 120 min) a rapid, short-lasting GLP-1 response occurred whereas plasma GIP and insulin levels remained unaltered. Luminal perfusion of an isolated vascularly perfused rat ileum with a polydiet induced a rapid rise of portally released IR-GLP-1 which was followed by a sustained release. Glucose evoked sodium-dependently a sharp increase of IR-GLP-1 levels followed by a plateau release. The intraluminal infusion of a mixture of amino acids or fat was without any effect on IR-GLP-1. We hypothesize that in contrast to GIP the GLP-1 release from L cells is triggered by nervous reflexes, by putative humoral factor(s) being released from the upper small intestine in addition to nutrient stimuli acting at the luminal surface of the gut.
Collapse
|
|
30 |
398 |
3
|
Tuck RR, Schmelzer JD, Low PA. Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain 1984; 107 ( Pt 3):935-50. [PMID: 6478183 DOI: 10.1093/brain/107.3.935] [Citation(s) in RCA: 316] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Endoneurial hypoxia has been postulated to be important in the pathogenesis of diabetic peripheral neuropathy and may be due to reduced nerve blood flow. Neither blood flow nor oxygen tension have previously been measured in peripheral nerve in diabetic neuropathy. We have therefore measured both nerve blood flow and endoneurial oxygen tension in the sciatic nerves of 8 rats with streptozotocin-induced diabetes for four months, and in 8 age-matched controls. In 7 of the diabetic animals mean nerve blood flow was 8.7 +/- 1.3 ml X min-1 X 100 g-1 which is significantly less than mean nerve blood flow in the controls (13.08 +/- 0.8 ml X min-1 X 100 g-1; P less than 0.01). In one diabetic animal, nerve blood flow was too low to be accurately measured. The reduction in nerve blood flow in diabetic neuropathy is due to an increase in resistance to flow which may be due to microangiopathy and to blood hyperviscosity. Endoneurial oxygen tension was also significantly reduced in experimental diabetic neuropathy in which 60 per cent of the oxygen measurements were less than 25 mmHg, compared with 19 per cent in the controls. Nerve blood flow was also measured in rats with experimental galactose neuropathy in which there is more marked sugar-alcohol accumulation, endoneurial oedema and elevation of endoneurial fluid pressure than in experimental diabetic neuropathy. The results obtained in this neuropathy suggest that the reduction in nerve blood flow which occurs in experimental diabetic neuropathy is due largely to factors other than sugar-alcohol accumulation in nerve. We postulate that endoneurial hypoxia may produce many of the observed morphological and biochemical changes in experimental diabetic neuropathy.
Collapse
|
|
41 |
316 |
4
|
Wei H, Li L, Song Q, Ai H, Chu J, Li W. Behavioural study of the -galactose induced aging model in C57BL/6J mice. Behav Brain Res 2005; 157:245-51. [PMID: 15639175 DOI: 10.1016/j.bbr.2004.07.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 06/30/2004] [Accepted: 07/07/2004] [Indexed: 11/28/2022]
Abstract
Rodent chronically injected with D-galactose (D-gal) has been used as an animal aging model for brain aging or anti-aging pharmacology research. However, the dosage of D-gal used to establish this model in mice has been reported in a wide range. To study the dose-dependent effect of D-gal on rodent behaviour, we investigated the learning and memory ability of C57BL/6J (C57) mice after 8-week subcutaneous injection of D-gal at different doses by Morris water maze (MWM) and object recognition test (ORT). In addition, locomotor activity test (LAT) was also performed to examine the neuromuscular function. In comparison of vehicle (0.9% saline)-treated mice, D-gal-treated mice at dose of high (200 mg/kg per day) and middle (100 mg/kg per day) doses showed significant longer latency to platform and less target quadrant search time and distance in MWM In ORT, D-gal at high and middle doses reduced the discrimination index (DI) of mice more significantly than low dose (50 mg/kg per day), although all three doses of D-gal reduced the DI of mice significantly. Furthermore, D-gal at high and middle doses significantly decreased locomotor activity of the mice in LAT. Throughout three tests, D-gal induced behavioural impairments in C57 mice at high and middle doses tended to be in the same degree. These results indicate that d-gal can induce the behavioural impairment of C57 mice in a dose-dependent manner from 50 to 100 mg/kg, higher dose than 100 mg/kg cannot further deteriorate its behavioural performance.
Collapse
|
|
20 |
250 |
5
|
Zanta MA, Boussif O, Adib A, Behr JP. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 1997; 8:839-44. [PMID: 9404656 DOI: 10.1021/bc970098f] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A hepatocyte-directed vector has been developed; it includes several key features thought to favor in vivo gene delivery to the liver: electrostatically neutral particles which avoid nonspecific binding to other cells, to the extracellular matrix, and to complement proteins; asialoglycoprotein receptor-mediated endocytosis which may address the complexes to the perinuclear region; and polyethylenimine (PEI)-mediated endosome buffering and swelling as an escape mechanism to the cytoplasm. This system is based on a 5% galactose-bearing polyethylenimine (PEI-gal) polymer which is condensed with plasmid DNA to neutrality. Murine (BNL CL.2) and human (HepG2) hepatocyte-derived cell lines were transfected 10(4)-10(5)-fold more efficiently than murine fibroblasts (3T3), whether transfection was assessed globally (luciferase expression from the cell extract) or following histochemical staining (beta-galactosidase). Under these conditions, over 50% of the hepatocytes were selectively transfected in the presence of 10% serum. Transfection was suppressed by removal of the targeting galactose residues, by their replacement with glucose, or by the addition of excess asialofetuin. Thus, results from comparative and competitive experiments indicate the asialoglycoprotein receptor is involved in transfection of hepatocytes with neutral PEI-gal/DNA complexes.
Collapse
|
|
28 |
250 |
6
|
Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, Liu Y, Li C, Li H, Yang P, Liu Y, Hou FF, Zhou L. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 2019; 18:e13004. [PMID: 31318148 PMCID: PMC6718575 DOI: 10.1111/acel.13004] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age-related renal fibrosis are not elucidated. Herein, we found that Wnt/β-catenin signaling and renin-angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β-catenin activity, abolished renal fibrosis in d-galactose (d-gal)-induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria-targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC-8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d-gal triggered the transduction of Wnt/β-catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC-8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β-catenin signaling and the RAS could slow the onset of age-related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction.
Collapse
|
research-article |
6 |
197 |
7
|
Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 2004; 49:789-98. [PMID: 15308423 DOI: 10.1016/j.archoralbio.2004.04.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2004] [Indexed: 11/20/2022]
Abstract
The pathogenesis of both superficial and systemic candidiasis is closely dictated by properties of the yeast biofilms. Despite extensive investigations on bacterial biofilms, the characteristics of candidal biofilms, and various factors affecting this process remain to be determined. Therefore we examined the effect of human whole saliva and dietary sugars, glucose and galactose on the adhesion and biofilm formation of Candida albicans. Biofilms of C. albicans isolate 192 887 g were developed on polystyrene, flat-bottomed 96-well microtiter plates and monitored using ATP bioluminescence and tetrazolium (XTT) reduction assays as well as the conventional colony forming unit (CFU) evaluation. Our data showed that both the ATP and the XTT assays strongly correlated with the CFU assay (ATP versus CFU: r = 0.994, P = 0.006; XTT versus CFU: r = 0.985, P = 0.015). Compared with a glucose-supplemented (100 mM) medium, galactose containing (500 mM) medium generated consistently lower levels of both candidal adhesion and biofilm formation (all P < 0.05), but a higher pace of biofilm development over time (96 h). Whist the presence of an immobilised saliva coating had little effect on either the candidal adhesion or biofilm formation, the addition of saliva to the incubation medium quantitatively affected biofilm formation especially on day 3 and 4, without any significant effect on yeast adhesion. To conclude, biofilm formation of C. albicans within the oral milieu appears to be modulated to varying extents by dietary and salivary factors and, further investigations are required to elucidate these complex interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
190 |
8
|
Hirschhorn N, Kinzie JL, Sachar DB, Northrup RS, Taylor JO, Ahmad SZ, Phillips RA. Decrease in net stool output in cholera during intestinal perfusion with glucose-containing solutions. N Engl J Med 1968; 279:176-81. [PMID: 4968807 DOI: 10.1056/nejm196807252790402] [Citation(s) in RCA: 183] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
Clinical Trial |
57 |
183 |
9
|
Pluske JR, Thompson MJ, Atwood CS, Bird PH, Williams IH, Hartmann PE. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning. Br J Nutr 1996; 76:409-22. [PMID: 8881713 DOI: 10.1079/bjn19960046] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aims of the present study were (a) to maintain the structure and function of the small intestine of the piglet after weaning, and (b) to compare the capacity in vivo of sucking and weaned piglets to digest oral boluses of lactose and sucrose and absorb their monosaccharide products. Piglets were fed on cows' whole milk ad libitum every 2 h for 5 d after weaning. Physiological doses of lactose plus fructose (treatment LAC+FRU) and sucrose plus galactose (treatment SUC+GAL) were administered on day 27 of lactation and on the fifth day after weaning, after which time piglets were killed. Villus height and crypt depth were maintained (P > 0.05) by feeding cows' milk after weaning. The areas under the curves (AUC) for galactose and glucose, adjusted for live weight and plasma volume, increased (P < 0.05) after weaning. Despite the enhancement of gut function after weaning, the galactose index (GalI:AUC for galactose ingested as lactose divided by the AUC for the same dose of galactose ingested as the monosaccharide) and fructose index (FruI: AUC for fructose ingested as sucrose divided by the AUC for the same dose of fructose ingested as the monosaccharide), which are indices of digestive and absorptive efficiency, both decreased after weaning. This apparent anomaly may be reconciled by increased growth, and hence surface area, of the small intestine between weaning and slaughter such that 'total' digestion and absorption most probably increased despite apparent decreases in GalI and FruI. Positive correlations (P < 0.05) between villus height and GalI are consistent with the maximum activity of lactase occurring more apically along the villus. Significant linear relationships (P < 0.05) were recorded between villus height at the proximal jejunum and adjusted AUC for galactose and glucose following treatment LAC+FRU, and between villus height at the proximal jejunum and adjusted glucose AUC following treatment SUC+GAL. These relationships suggest that maximum digestion and absorption occurs at increasing distances along the crypt:villus axis in the weaned pig.
Collapse
|
Comparative Study |
29 |
179 |
10
|
Abstract
PURPOSE OF REVIEW Galactose - a key source of energy and a crucial structural element in complex molecules - is particularly important for early human development. However, galactose metabolism might be important not only for fetal and neonatal development but also for adulthood, as evidenced by the inherited disorders of galactose metabolism. The purpose of this review is to summarize the current evidence of galactose metabolism in health and disease. RECENT FINDINGS The biological importance of galactose goes beyond its importance as a nutrient and a metabolite. Galactose has been selected by evolutionary pressure to exert also a crucial structural role in macromolecules. Additionally, galactose has recently been reported as beneficial in a number of diseases, particularly in those affecting the brain. SUMMARY Galactose is crucial for human metabolism, with an established role in energy delivery and galactosylation of complex molecules, and evidence for other roles is emerging.
Collapse
|
Review |
10 |
140 |
11
|
Charlwood J, Clayton P, Keir G, Mian N, Winchester B. Defective galactosylation of serum transferrin in galactosemia. Glycobiology 1998; 8:351-7. [PMID: 9499382 DOI: 10.1093/glycob/8.4.351] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The glycosylation of serum transferrin from galactosemic patients with a deficiency of galactose-1-phosphate uridyl transferase (EC 2. 7.7 12) is abnormal but becomes normal after treatment with a galactose-free diet. To understand the structural and biochemical basis of the abnormal glycosylation, transferrin was purified from the serum of untreated and treated galactosemic patients and normal controls and the N-linked glycans analyzed by HPLC. The glycans from normal transferrin consisted predominantly (86%) of the disialylated biantennary complex type. The glycans from untreated galactosemic patients were more heterogeneous and contained four major truncated glycans in addition to a smaller amount (13%) of the disialylated biantennary complex type. The truncated glycans were deficient in galactose and sialic acid and their structures were consistent with a decrease in galactosyltransferase activity in hepatocytes, the probable cells of origin of the transferrin. This is postulated to be due to direct inhibition of the galactosyltransferase activity by the accumulated galactose-1-phosphate or to an effect on the formation of UDP-galactose, the donor substrate in the reaction. After treatment the proportion of the truncated glycans decreased and the proportion of the disialylated biantennary complex type increased, returning almost but never completely to normal, even after prolonged treatment in some cases. There was no clear relationship between the length of treatment and the normalization of glycosylation and the level of galactose-1-phosphate in red blood cells, the usual parameter for monitoring the treatment of galactosemics. It is suggested that the persistence of abnormally glycosylated proteins may contribute to the long-term complications in galactosemia.
Collapse
|
|
27 |
100 |
12
|
Mulhern ML, Madson CJ, Danford A, Ikesugi K, Kador PF, Shinohara T. The Unfolded Protein Response in Lens Epithelial Cells from Galactosemic Rat Lenses. ACTA ACUST UNITED AC 2006; 47:3951-9. [PMID: 16936110 DOI: 10.1167/iovs.06-0193] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Diabetic complications are associated with hypoglycemia and hyperglycemia. The purpose of this study was to investigate the effect of both glucose deprivation and hyperglycemia on the induction of endoplasmic reticulum (ER) stress and the subsequent activation of the unfolded protein response (UPR) that results in apoptosis in in vitro cultured lens epithelial cells (LECs) and in vivo cataract formation in galactose-fed rats. METHODS Lenses from rats fed a standard diet containing 50% galactose with or without an aldose reductase inhibitor (ARI) were investigated. Transformed human LECs were cultured in standard 10% FCS-DMEM containing various concentrations of sugar. UPR-specific proteins from both the rat lenses and lens cultures were quantified by protein blot analysis. Cell death was evaluated with TUNEL staining and ethidium homodimer-1 (EthD) dyes. Reactive oxygen species (ROS) were quantified with H2-DCF, and free glutathione (GSH) levels were measured with a commercial GSH quantification kit. RESULTS Increased apoptosis of the LECs was observed in the lenses of rats fed the galactose diet for 5 to 9 days, and nuclear cataracts subsequently developed in these lenses after 13 to 15 days. Protein blot analysis of the LECs from these galactose-fed rats showed higher levels of the UPR-specific proteins Bip/GRP78, ATF4, and CHOP. These LECs also demonstrated activation of the UPR-specific procaspase-12 and the increased presence of ROS, whereas GSH was reduced. Because these results indicate that the UPR is activated in LECs along with the production of ROS and apoptosis during cataract formation in the galactose-fed rats, subsequent studies were conducted to determine the role of nonenzymatic glycation, osmotic stress, and oxidative stress on these biochemical processes. In vitro cultures of human LECs showed that the UPR was induced by osmotic and oxidative stress, but not by glycation. In addition, the UPR and apoptosis in LECs was induced by glucose deprivation. The ARI blocked the induction of the UPR, cell death, and cataract formation. CONCLUSIONS The UPR that is induced by abnormally high or low concentrations of sugar is linked to the production of ROS, increased apoptosis in LECs, and cataract formation. The inhibition of the UPR induction by ARI suggests that osmotic stress may be the primary inducer of the UPR. Modulation of the UPR pathways may offer novel methods for the development of therapeutic tools to delay cataracts.
Collapse
|
|
19 |
99 |
13
|
Sagara K, Kim SW. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J Control Release 2002; 79:271-81. [PMID: 11853937 DOI: 10.1016/s0168-3659(01)00555-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A synthesis method of conjugating polyethylenimine (PEI) derivatives with terminally galactose-grafted poly(ethylene glycol) (PEG) was developed by using a bifunctional PEG derivative containing both an alpha-vinyl sulfone (VS) and an omega-N-hydroxysuccinimidyl (NHS) ester groups (VS-PEG-NHS). VS-PEG-NHS is commonly used as a crosslinker to modify proteins with ligands by first coupling amine groups to the NHS ester, followed by coupling sulfhydryl groups to the VS ester, because the reaction of VS groups with amine groups of proteins is suppressed below pH 8. However, the 1H-NMR determination of the conjugated products of branched PEI (M(w)=25 kDa) with VS-PEG-NHS at pH 6.0-8.0 indicated that the VS groups were completely bound to the amine groups of PEI as well as the NHS groups. At pH 7.0, all VS groups reacted with the primary, secondary, or tertiary amine groups of PEI in 2 h. Such different reaction behaviors would be due to a higher density of amine groups of PEI as compared with those of proteins. In contrast, the reactions with a small molecular monoamine, such as p-aminophenyl beta-D-galactopyranoside, showed that the NHS groups selectively coupled with the amine groups, and the VS groups remained completely intact. The NHS groups of VS-PEG-NHS were selectively conjugated to amine groups of p-aminophenyl beta-D-galactopyranoside (VS-PEG-Gal). Then, the VS groups of Gal-PEG unit were completely conjugated with the primary, secondary, or tertiary amine groups of PEI. Thus, the use of only two reaction steps could conveniently carry out the conjugation of terminally galactose-grafted PEG to 1 and 5 mol.% of amine functions in PEI. The gel retardation assay of the complexes between Gal-PEG-PEI and plasmid DNA indicated that these polymeric gene carriers possess the potent ability to condense plasmid DNA electrostatically as well as PEI. The transfection efficiency with 1% Gal-PEG-PEI in human hepatocyte-derived cell lines (HepG2), a model of parenchymal cells in liver (hepatocytes), was superior to that of PEI at their corresponding optimal ratios of polymer to plasmid DNA. In HepG2 cells, luciferase activity with 1% Gal-PEG-PEI at an N/P ratio of 20 was 2.1-fold greater than that of PEI at an N/P ratio of 5. In mouse fibroblasts (NIH3T3) that have no ASGP receptors, the transfection efficiency with 1% Gal-PEG-PEI drastically decreased to 1/40 of that with PEI. These data indicate that a new synthesis method can produce polyethylenimine derivatives with terminally galactose-grafted poly(ethylene glycol) for specific gene targeting to the liver.
Collapse
|
|
23 |
98 |
14
|
Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 2008; 151:288-92. [PMID: 18514139 DOI: 10.1016/j.trsl.2008.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/30/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is associated with circulating permeability activity (Palb) and recurs after transplantation in about 30% of patients. The FS permeability factor (FSPF) consists of anionic low-molecular-weight protein(s) that might be excluded by the anionic filtration barrier. We postulated that FSPF may interact with sugars of the glycocalyx, and we tested its affinity for sugars using column chromatography. FSPF showed high affinity for galactose; Palb activity was absent from unbound material and present in eluate after dialysis to remove galactose. In parallel studies, Palb activity of serum was lost after adding galactose > or = 10(-12) M. To determine whether galactose also abolishes plasma Palb activity in vivo, a patient with posttransplant FSGS was given galactose and serum samples were collected. Intravenous infusion of galactose decreased Palb from 0.88 before infusion to undetectable levels postinfusion and at 48 hours. Oral galactose diminished Palb activity; Palb reached a nadir after 2 weeks and remained low for at least 4 weeks after galactose was discontinued. We conclude that FSPF has high affinity for galactose based on chromatography. Additionally, galactose inactivates FSPF and may lead to its clearance from plasma. The interaction between FSPF and glomeruli may depend on FSPF binding to galactose, and the FSPF-galactose complex may be susceptible to uptake by galactose-binding proteins and to catabolism. We propose testing galactose as a novel nontoxic therapy for nephrotic syndrome in FSGS to determine whether galactose slows progression and whether pretransplant therapy decreases rates of recurrence and graft loss.
Collapse
|
|
17 |
98 |
15
|
Jeong YI, Seo SJ, Park IK, Lee HC, Kang IC, Akaike T, Cho CS. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005; 296:151-61. [PMID: 15885467 DOI: 10.1016/j.ijpharm.2005.02.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 02/24/2005] [Accepted: 02/27/2005] [Indexed: 11/27/2022]
Abstract
Poly(gamma-benzyl L-glutamate) (PBLG)/poly(ethylene glycol) (PEG) diblock copolymer endcapped with galactose moiety (abbreviated as GEG) was synthesized and characterized for study of liver-specific targeting. From dynamic light scattering measurement, particle sizes of copolymeric nanoparticles were decreased with an increase of PEG in the copolymer. The morphology of GEG-3 nanoparticles observed by transmission electron micrograph was observed as almost spherical shapes and ranged about 50-300 nm. From the structural characterization using 1H nuclear magnetic resonance, both characteristic peaks of PBLG and PEG were visible in CDCl3 but the characteristic peaks of PBLG were invisible in D2O, indicating that GEG block copolymers are found to the core-shell type nanoparticles in water with PBLG innercore and PEG outershell, exposing that galactose moiety of GEG block copolymers are outerwards oriented on the nanoparticle surfaces. By galactose-specific aggregation test of particles using beta-galactose specific lectin, and flow cytometry measurement, specific interaction between asialoglycoprotein receptors (ASGPR) of HepG2, human hepatoma cell line, and galactose moieties of the GEG nanoparticles was confirmed. From cell cytotoxicity test, HepG2 cells with ASGPR are more sensitive to paclitaxel (TX)-loaded nanoparticles than free TX whereas, P388 cells, murine leukemia cell line, and SK-Hep 01, human hepatoma cell line, without ASGPR is less sensitive to TX-loaded nanoparticles than free TX, suggesting that specific interaction between HepG2 cells and galactose moiety of the nanoparticles occurred.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
97 |
16
|
Hughes J, Ryan S, Lambert D, Geoghegan O, Clark A, Rogers Y, Hendroff U, Monavari A, Twomey E, Treacy EP. Outcomes of siblings with classical galactosemia. J Pediatr 2009; 154:721-6. [PMID: 19181333 DOI: 10.1016/j.jpeds.2008.11.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/12/2008] [Accepted: 11/21/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine the long-term outcome of dietary intervention in siblings from 14 Irish families with classical galactosemia (McKusick 230400), an autosomal recessive disorder of carbohydrate metabolism and galactose-1-phosphate uridyltransferase (GALT) deficiency. STUDY DESIGN Outcomes in siblings on dietary galactose restriction were studied to evaluate whether birth order (ie, time of commencement of diet) and compliance with lactose-restricted diet (galactose intake > or < 20 mg /day), assessed by dietary recall and biochemical monitoring of galactose-1-phosphate [Gal-1-P] and galactitol values, affected outcomes. The outcome variables assessed were IQ, speech, and language assessment scores, neurologic examination results, and magnetic resonance imaging (MRI) of the brain. RESULTS There was a high incidence of complications in the overall group, particularly speech and language delay (77%) and low IQ (71%). There was no significant difference in outcome between earlier-treated and later-treated siblings or any correlation with mean Gal-1-P or galactitol values. In most cases, cerebral white matter disease was evident on MRI scanning, with evidence of progressive cerebellar degeneration seen in 2 highly compliant families. CONCLUSION The subjects with a higher galactose intake did not exhibit an increased incidence of complications; conversely, those who were very compliant with dietary restrictions did not have more favorable outcomes.
Collapse
|
|
16 |
95 |
17
|
Adam TCM, Westerterp-Plantenga MS. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 2005; 93:845-51. [PMID: 16022753 DOI: 10.1079/bjn20041335] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was conducted to assess whether glucagon-like peptide-1 (GLP-1) release and appetite after a breakfast with or without an additional galactose/guar gum stimulation is different in normal-weight compared with overweight/obese subjects. Twenty-eight overweight/obese (BMI 30.3 (sd 2.7) kg/m2; age 44.3 (sd 9.7) years) and thirty normal-weight subjects (BMI 22.8 (sd 1.4), age 31.5 (sd12.8) years) participated in a crossover study. Fasting and postprandial plasma GLP-1, insulin, glucose and free fatty acid concentrations were measured in response to either a galactose (50 g)/guar gum (2.5 g) load (836 kJ) and a standard breakfast (1.9 MJ; GG), or water (250 ml) and the standard breakfast (W) every 30 min relative to the ingestion for 120 min. Appetite was assessed using 100 mm visual analogue scales. GLP-1 concentrations were significantly increased after GG at 30 and 60 min compared with W in both groups. Plasma GLP-1 concentrations in the W condition were higher in normal-weight than overweight/obese subjects (P=0.03). No difference was observed in the GG condition between groups. Satiety was increased in normal-weight compared with overweight/obese subjects in the GG condition at 30 (P=0.02) and 60 (P=0.04) min. We conclude that after a standard breakfast with water, GLP-1 release was lower in the overweight/obese than the normal-weight subjects. However, postprandial GLP-1 release in overweight/obese subjects was no different from that of normal-weight subjects when galactose/guar gum was added to the breakfast. The latter was not mirrored by subjective feelings of satiety. Disturbed perception of the physiological feedback of a satiety hormone rather than disturbed feedback itself might contribute to obesity.
Collapse
|
Randomized Controlled Trial |
20 |
91 |
18
|
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R840-53. [PMID: 23926132 PMCID: PMC3798804 DOI: 10.1152/ajpregu.00297.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/03/2013] [Indexed: 01/06/2023]
Abstract
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Collapse
|
Comparative Study |
12 |
70 |
19
|
Bro C, Regenberg B, Lagniel G, Labarre J, Montero-Lomelí M, Nielsen J. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J Biol Chem 2003; 278:32141-9. [PMID: 12791685 DOI: 10.1074/jbc.m304478200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation, and nucleotide metabolism were down-regulated at the transcriptional level, whereas genes responsive to different stresses as well as genes from energy reserve metabolism and monosaccharide metabolism were up-regulated. Compared with the proteomic data, 26% of the down-regulated and 48% of the up-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas a change from respiro-fermentative to respiratory growth could not be predicted from the expression analyses.
Collapse
|
|
22 |
70 |
20
|
Zhang XQ, Wang XL, Zhang PC, Liu ZL, Zhuo RX, Mao HQ, Leong KW. Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. J Control Release 2005; 102:749-63. [PMID: 15681095 DOI: 10.1016/j.jconrel.2004.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 10/20/2004] [Indexed: 01/11/2023]
Abstract
Galactosylated polyphosphoramidates (Gal-PPAs) with different ligand substitution degrees (6.5%, 12.5% and 21.8%, respectively) were synthesized and evaluated as hepatocyte-targeted gene carriers. The in vitro cytotoxicity of Gal-PPA decreased significantly with an increase in galactose substitution degree. The affinity of Gal-PPA/DNA nanoparticles to galactose-recognizing lectin increased with galactose substitution degree. However, decreased transfection efficiency was observed for these galactosylated PPAs in HepG2 cells. Based on the results of gel retardation and polyanion competition assays, we hypothesized that the reduced transfection efficiency of Gal-PPA/DNA nanoparticles was due to their decreased DNA-binding capacity and decreased particle stability. We therefore prepared nanoparticles by precondensing DNA with PPA at a charge ratio of 0.5, yielding nanoparticles with negative surface charge, followed by coating with Gal-PPA, resulting in a Gal-PPA/ DNA/PPA ternary complex. Such a ternary nanoparticle formulation led to significant size reduction in comparison with binary nanoparticles, particularly at low N/P ratios (2 to 5). In HepG2 cells and primary rat hepatocytes, and at low N/P ratios (2 to 5), transfection efficiency mediated by ternary nanoparticles prepared with 6.5% Gal-PPA was 6-7200 times higher than PPA-DPA/DNA nanoparticles. Transgene expression increased slightly at higher N/P ratios in HepG2 cells and reached a plateau at N/P ratios between 5 and 10 for primary rat hepatocytes. Such an enhancement effect was not observed in HeLa cells that lack of asialoglycoprotein receptor (ASGPR). Nevertheless, transfection efficiency of ternary particles decreased dramatically, presumably due to the decreased DNA binding capacity and particle stability, as PPA galactosylation degree increased. This highlights the importance of optimizing ligand conjugation degree for PPA gene carrier.
Collapse
|
|
20 |
69 |
21
|
Roy S, Sato T, Paryani G, Kao R. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes 2003; 52:1229-34. [PMID: 12716757 DOI: 10.2337/diabetes.52.5.1229] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Overexpression of extracellular matrix (ECM) components is closely associated with the development of vascular basement membrane (BM) thickening, a histological hallmark of diabetic microangiopathy. To determine whether BM thickening of retinal capillaries could be prevented by down regulating synthesis of fibronectin, an ECM component, we used antisense oligos targeted against translation initiation site of the fibronectin transcript in galactose-fed rat, an animal model of diabetic retinopathy. After 2 months of galactose-feeding, intravitreal administration of 3 micro mol/l antisense fibronectin oligos was initiated at monthly intervals for 3 months. The antisense strategy significantly reduced fibronectin mRNA and protein level in the retinas of treated eyes compared with untreated eyes of galactose-fed rats (130 +/- 16 vs. 179 +/- 18% of control, P < 0.01, and 144 +/- 28 vs. 204 +/- 22% of control, respectively, r = 0.9) and resulted in partial reduction of retinal capillary BM width (123 +/- 16 vs. 201 +/- 12 nm, P < 0.03). In eyes treated with antisense fibronectin oligos, approximately 35% reduction in both pericyte loss and acellular retinal capillaries was observed (P < 0.04 and P < 0.03, respectively). Glycohemoglobin level was consistently elevated in the treated (6.9 +/- 0.6%) and untreated (6.5 +/- 0.7%) galactose-fed rats compared with control rats (4.5 +/- 0.8%). Overall, these results indicate that downregulation of fibronectin synthesis reduces BM thickening in retinal capillaries with beneficial effect to retinal lesions. The antisense fibronectin oligos may provide a useful approach for reducing vascular lesions in diabetic retinopathy. The thickened vascular BM may be a potential therapeutic target for preventing retinal lesions in diabetic retinopathy.
Collapse
|
Comparative Study |
22 |
68 |
22
|
Xian YF, Lin ZX, Zhao M, Mao QQ, Ip SP, Che CT. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. PLANTA MEDICA 2011; 77:1977-1983. [PMID: 21858756 DOI: 10.1055/s-0031-1280125] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stem with hooks of Uncaria rhynchophylla is a component herb of many traditional formulae for the treatment of neurodegenerative diseases. However, scientific evidence of the efficacy of Uncaria rhynchophylla in the treatment of Alzheimer's disease (AD) in animal models is lacking. Thus, in the present study, we investigated whether the 70 % aqueous ethanol extract of Uncaria rhynchophylla (EUR) could protect against D-galactose (D-gal)-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (50 mg/kg) and orally administered EUR (100, 200, or 400 mg/kg) daily for 8 weeks. The effect of EUR on D-gal-induced cognitive deficits was evaluated by measuring behavioral and neurochemical parameters of AD and the antioxidant status of brain tissue. The results showed that EUR (200 or 400 mg/kg) significantly increased exploratory behavior (assessed by an open-field test) and improved spatial learning and memory function (assessed by the Morris water maze test) in D-gal-treated mice. In addition, EUR (200 or 400 mg/kg) significantly increased the levels of acetylcholine and glutathione and decreased the activity of acetylcholinesterase and the level of malondialdehyde in the brains of D-gal-treated mice. These results indicate that EUR ameliorates cognitive deficits induced by D-gal in mice, and that this action may be mediated, at least in part, by the inhibition of acetylcholinesterase activity and the enhancement of the antioxidant status of brain tissue.
Collapse
|
|
14 |
66 |
23
|
Wada K, Arima H, Tsutsumi T, Hirayama F, Uekama K. Enhancing effects of galactosylated dendrimer/alpha-cyclodextrin conjugates on gene transfer efficiency. Biol Pharm Bull 2005; 28:500-5. [PMID: 15744077 DOI: 10.1248/bpb.28.500] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To improve in vitro gene transfer efficiency and/or achieve cell-specific gene delivery of polyamidoamine (PAMAM) starburst dendrimer (generation 2, G2) conjugate with alpha-cyclodextrin (alpha-CDE conjugate (G2)), we prepared alpha-CDE conjugate bearing galactose (Gal-alpha-CDE conjugates) with the various degrees of substitution of the galactose moiety (DSG) as a novel non-viral vector. The agarose gel electrophoretic studies revealed that Gal-alpha-CDE conjugates formed complexes with plasmid DNA (pDNA) and protected the degradation of pDNA by DNase I, but these effects impaired as the DSG value increased. Dendrimer and alpha-CDE conjugate exerted pDNA condensation through the complexation, but Gal-alpha-CDE conjugates did not. Gal-alpha-CDE conjugate (DSG 4) was found to have much higher gene transfer activity than dendrimer, alpha-CDE conjugate and Gal-alpha-CDE conjugates (DSG 8, 15) in HepG2, NIH3T3 and A549 cells, which are independent of the expression of the asialoglycoprotein receptor. Transfection activity of Gal-alpha-CDE conjugate (DSG 4) was insensitive to the existence of competitors (asialofetuin and galactose) and serum. In addition, no cytotoxicity after transfection of the complex of pDNA with Gal-alpha-CDE conjugate (DSG 4) was observed. These results suggest the potential use of Gal-alpha-CDE conjugate (DSG 4) as a non-viral vector in various cells.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
60 |
24
|
Jumbo-Lucioni PP, Garber K, Kiel J, Baric I, Berry GT, Bosch A, Burlina A, Chiesa A, Pico MLC, Estrada SC, Henderson H, Leslie N, Longo N, Morris AAM, Ramirez-Farias C, Schweitzer-Krantz S, Silao CLT, Vela-Amieva M, Waisbren S, Fridovich-Keil JL. Diversity of approaches to classic galactosemia around the world: a comparison of diagnosis, intervention, and outcomes. J Inherit Metab Dis 2012; 35:1037-49. [PMID: 22450714 PMCID: PMC3774053 DOI: 10.1007/s10545-012-9477-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 11/30/2022]
Abstract
Without intervention, classic galactosemia is a potentially fatal disorder in infancy. With the benefit of early diagnosis and dietary restriction of galactose, the acute sequelae of classic galactosemia can be prevented or reversed. However, despite early and lifelong dietary treatment, many galactosemic patients go on to experience serious long-term complications including cognitive disability, speech problems, neurological and/or movement disorders and, in girls and women, ovarian dysfunction. Further, there remains uncertainty surrounding what constitutes a 'best practice' for treating this disorder. To explore the extent and implications of this uncertainty, we conducted a small but global survey of healthcare providers who follow patients with classic galactosemia, seeking to compare established protocols for diagnosis, intervention, and follow-up, as well as the outcomes and outcome frequencies seen in the patient populations cared for by these providers. We received 13 survey responses representing five continents and 11 countries. Respondents underscored disparities in approaches to diagnosis, management and follow-up care. Notably, we saw no clear relationship between differing approaches to care and long-term outcomes in the populations studied. Negative outcomes occurred in the majority of cases regardless of when treatment was initiated, how tightly galactose intake was restricted, or how closely patients were monitored. We document here what is, to our knowledge, the first global comparison of healthcare approaches to classic galactosemia. These data reinforce the idea that there is currently no one best practice for treating patients with classic galactosemia, and underscore the need for more extensive and statistically powerful comparative studies to reveal potential positive or negative impacts of differing approaches.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
59 |
25
|
Xiao F, Li XG, Zhang XY, Hou JD, Lin LF, Gao Q, Luo HM. Combined administration of D-galactose and aluminium induces Alzheimer-like lesions in brain. Neurosci Bull 2011; 27:143-55. [PMID: 21614097 PMCID: PMC5560362 DOI: 10.1007/s12264-011-1028-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 03/28/2011] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE It has been reported that D-galactose (D-gal) can model subacute aging, and aluminum (Al) acts as a neurotoxin, but combined effects of them have not been reported. The present work aimed to reveal the effect of combined administration of D-gal and Al in mice and compare the effect of D-gal treatment with that of Al treatment. METHODS Al was intragastrically administered and D-gal was subcutaneously injected into Kunming mice for 10 consecutive weeks. Learning and memory, cholinergic systems, as well as protein levels of amyloid β (Aβ) and hyperphosphorylated tau were determined using Morri water maze test, biochemical assays and immunohistochemical staining, respectively. RESULTS The mice with combined treatment had obvious learning and memory deficits, and showed decreases in brain acetylcholine (ACh) level and in activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE). Formation of senile plaque (SP)-like and neurofibrillary tangle (NFT)-like structures was also observed. The behavioral and pathological changes persisted for at least 6 weeks after withdrawal of D-gal and Al. CONCLUSION Combined use of D-gal and Al is an effective way to establish the non-transgenic Alzheimer's disease (AD) animal model, and is useful for studies of AD pathogenesis and therapeutic evaluation.
Collapse
|
Comparative Study |
14 |
59 |