1
|
Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ, Sethi T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 2006; 103:5060-5. [PMID: 16549783 PMCID: PMC1458794 DOI: 10.1073/pnas.0511167103] [Citation(s) in RCA: 480] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Indexed: 01/13/2023] Open
Abstract
Central to fibrogenesis and the scarring of organs is the activation of fibroblasts into matrix-secreting myofibroblasts. We demonstrate that Galectin-3 expression is up-regulated in established human fibrotic liver disease and is temporally and spatially related to the induction and resolution of experimental hepatic fibrosis. Disruption of the Galectin-3 gene blocks myofibroblast activation and procollagen (I) expression in vitro and in vivo, markedly attenuating liver fibrosis. Addition of exogenous recombinant Galectin-3 in vitro reversed this abnormality. The reduction in hepatic fibrosis observed in the Galectin-3(-/-) mouse occurred despite equivalent liver injury and inflammation, and similar tissue expression of TGF-beta. TGF-beta failed to transactivate Galectin-3(-/-) hepatic stellate cells, in contrast with WT hepatic stellate cells; however, TGF-beta-stimulated Smad-2 and -3 activation was equivalent. These data suggest that Galectin-3 is required for TGF-beta mediated myofibroblast activation and matrix production. Finally, in vivo siRNA knockdown of Galectin-3 inhibited myofibroblast activation after hepatic injury and may therefore provide an alternative therapeutic approach to the prevention and treatment of liver fibrosis.
Collapse
|
research-article |
19 |
480 |
2
|
Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, Fukada SY, Liu FT, Liew FY, Lukic ML. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1167-73. [PMID: 19124760 DOI: 10.4049/jimmunol.182.2.1167] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Galectin-3 (Gal-3) is a member of the beta-galactoside-binding lectin family and plays an important role in inflammation. However, the precise role of Gal-3 in autoimmune diseases remains obscure. We have investigated the functional role of Gal-3 in experimental autoimmune encephalomyelitis (EAE) following immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. Gal-3 deficient (Gal-3-/-) mice developed significantly milder EAE and markedly reduced leukocyte infiltration in the CNS compared with similarly treated wild-type (WT) mice. Gal-3-/- mice also contained fewer monocytes and macrophages but more apoptotic cells in the CNS than did WT mice. Following Ag stimulation in vitro, lymph node cells from the immunized Gal-3-/- mice produced less IL-17 and IFN-gamma than did those of the WT mice. In contrast, Gal-3-/- mice produced more serum IL-10, IL-5, and IL-13 and contained higher frequency of Foxp3+ regulatory T cells in the CNS than did the WT mice. Furthermore, bone marrow-derived dendritic cells from Gal-3-/- mice produced more IL-10 in response to LPS or bacterial lipoprotein than did WT marrow-derived dendritic cells. Moreover, Gal-3-/- dendritic cells induced Ag-specific T cells to produce more IL-10, IL-5, and IL-12, but less IL-17, than did WT dendritic cells. Taken together, our data demonstrate that Gal-3 plays an important disease-exacerbating role in EAE through its multifunctional roles in preventing cell apoptosis and increasing IL-17 and IFN-gamma synthesis, but decreasing IL-10 production.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Galectin 3/deficiency
- Galectin 3/genetics
- Galectin 3/physiology
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Growth Inhibitors/deficiency
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/biosynthesis
- Interleukin-17/biosynthesis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Severity of Illness Index
- Up-Regulation/immunology
Collapse
|
|
16 |
157 |
3
|
Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 2003; 112:389-97. [PMID: 12897206 PMCID: PMC166291 DOI: 10.1172/jci17592] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Galectin-3 is a member of a large family of animal lectins. This protein is expressed abundantly by macrophages, but its function in this cell type is not well understood. We have studied the effect of galectin-3 gene targeting on phagocytosis, a major function of macrophages. Compared with wild-type macrophages, galectin-3-deficient (gal3-/-) cells exhibited reduced phagocytosis of IgG-opsonized erythrocytes and apoptotic thymocytes in vitro. In addition, gal3-/- mice showed attenuated phagocytic clearance of apoptotic thymocytes by peritoneal macrophages in vivo. These mice also exhibited reduced IgG-mediated phagocytosis of erythrocytes by Kupffer cells in a murine model of autoimmune hemolytic anemia. Additional experiments indicate that extracellular galectin-3 does not contribute appreciably to the phagocytosis-promoting function of this protein. Confocal microscopic analysis of macrophages containing phagocytosed erythrocytes revealed localization of galectin-3 in phagocytic cups and phagosomes. Furthermore, gal3-/- macrophages exhibited a lower degree of actin rearrangement upon Fcgamma receptor crosslinkage. These results indicate that galectin-3 contributes to macrophage phagocytosis through an intracellular mechanism. Thus, galectin-3 may play an important role in both innate and adaptive immunity by contributing to phagocytic clearance of microorganisms and apoptotic cells.
Collapse
MESH Headings
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/pathology
- Anemia, Hemolytic, Autoimmune/physiopathology
- Animals
- Apoptosis
- Erythrocytes/immunology
- Erythrocytes/physiology
- Galectin 3/deficiency
- Galectin 3/genetics
- Galectin 3/physiology
- Immunoglobulin G/metabolism
- In Vitro Techniques
- Kupffer Cells/physiology
- Macrophages, Peritoneal/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Opsonin Proteins/metabolism
- Phagocytosis/physiology
- Receptors, IgG/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
Collapse
|
research-article |
22 |
140 |
4
|
Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, Zdravkovic NS, Djukic AL, Arsenijevic NN, Lukic ML. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes 2013; 62:1932-44. [PMID: 23349493 PMCID: PMC3661611 DOI: 10.2337/db12-0222] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity-induced diabetes is associated with low-grade inflammation in adipose tissue and macrophage infiltration of islets. We show that ablation of galectin-3 (Gal-3), a galactoside-binding lectin, accelerates high-fat diet-induced obesity and diabetes. Obese LGALS3(-/-) mice have increased body weight, amount of total visceral adipose tissue (VAT), fasting blood glucose and insulin levels, homeostasis model assessment of insulin resistance, and markers of systemic inflammation compared with diet-matched wild-type (WT) animals. VAT of obese LGALS3(-/-) mice exhibited increased incidence of type 1 T and NKT lymphocytes and proinflammatory CD11c(+)CD11b(+) macrophages and decreased CD4(+)CD25(+)FoxP3(+) regulatory T cells and M2 macrophages. Pronounced mononuclear cell infiltrate, increased expression of NLRP3 inflammasome and interleukin-1β (IL-1β) in macrophages, and increased accumulation of advanced glycation end products (AGEs) and receptor for AGE (RAGE) expression were present in pancreatic islets of obese LGALS3(-/-) animals accompanied with elevated phosphorylated nuclear factor-κB (NF-κB) p65 and mature caspase-1 protein expression in pancreatic tissue and VAT. In vitro stimulation of LGALS3(-/-) peritoneal macrophages with lipopolysaccharide (LPS) and saturated fatty acid palmitate caused increased caspase-1-dependent IL-1β production and increased phosphorylation of NF-κB p65 compared with WT cells. Transfection of LGALS3(-/-) macrophages with NLRP3 small interfering RNA attenuated IL-1β production in response to palmitate and LPS plus palmitate. Obtained results suggest important protective roles for Gal-3 in obesity-induced inflammation and diabetes.
Collapse
|
research-article |
12 |
130 |
5
|
Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N, Hsu DK, Lukic ML. The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res 2012; 52:100-10. [PMID: 22418727 DOI: 10.1007/s12026-012-8286-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Galectin-3, a unique chimera-type member of the β-galactoside-binding soluble lectin family, is widely expressed in numerous cells. Here, we discuss the role of Galectin-3 in T-cell-mediated inflammatory (auto) immunity and tumor rejection by using Galectin-3-deficient mice and four disease models of human pathology: experimental autoimmune encephalomyelitis (EAE), Con-A-induced hepatitis, multiple low-dose streptozotocin-induced diabetes (MLD-STZ diabetes) and metastatic melanoma. We present evidence which suggest that Galectin-3 plays an important pro-inflammatory role in Con-A-induced hepatitis by promoting the activation of T lymphocytes, NKT cells and DCs, cytokine secretion, prevention of M2 macrophage polarization and apoptosis of mononuclear cells, and it leads to severe liver injury. In addition, experiments in Galectin-3-"knock-out" mice indicate that Galectin-3 is also involved in immune-mediated β-cell damage and is required for diabetogenesis in MLD-STZ model by promoting the expression of IFN-gamma, TNF-alpha, IL-17 and iNOS in immune and accessory effector cells. Next, our data demonstrated that Galectin-3 plays an important disease-exacerbating role in EAE through its multifunctional roles in preventing cell apoptosis and increasing IL-17 and IFN-gamma synthesis, but decreasing IL-10 production. Finally, based on our findings, we postulated that expression of Galectin-3 in the host may also facilitate melanoma metastasis by affecting tumor cell adhesion and modulating anti-melanoma immune response, in particular innate antitumor immunity. Taken together, we discuss the evidence of pro-inflammatory and antitumor activities of Galectin-3 and suggest that Galectin-3 may be an important therapeutic target.
Collapse
|
Review |
13 |
96 |
6
|
Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, Cooper D, Perretti M, Fantuzzi G. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One 2013; 8:e57915. [PMID: 23451284 PMCID: PMC3579848 DOI: 10.1371/journal.pone.0057915] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/27/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3), a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO) WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6Chigh monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
82 |
7
|
Chen HY, Sharma BB, Yu L, Zuberi R, Weng IC, Kawakami Y, Kawakami T, Hsu DK, Liu FT. Role of Galectin-3 in Mast Cell Functions: Galectin-3-Deficient Mast Cells Exhibit Impaired Mediator Release and Defective JNK Expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:4991-7. [PMID: 17015681 DOI: 10.4049/jimmunol.177.8.4991] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Galectin-3 is a member of the beta-galactoside-binding animal lectin family expressed in various cell types, including mast cells. To determine the role of galectin-3 in the function of mast cells, we studied bone marrow-derived mast cells (BMMC) from wild-type (gal3(+/+)) and galectin-3-deficient (gal3(-/-)) mice. Cells from the two genotypes showed comparable expression of IgE receptor and c-Kit. However, upon activation by FcepsilonRI cross-linkage, gal3(-/-) BMMC secreted a significantly lower amount of histamine as well as the cytokine IL-4, compared with gal3(+/+) BMMC. In addition, we found significantly reduced passive cutaneous anaphylaxis reactions in gal3(-/-) mice compared with gal3(+/+) mice. These results indicate that there is a defect in the response of mast cells in gal3(-/-) mice. Unexpectedly, we found that gal3(-/-) BMMC contained a dramatically lower basal level of JNK1 protein compared with gal3(+/+) BMMC, which is probably responsible for the lower IL-4 production. The decreased JNK1 level in gal3(-/-) BMMC is accompanied by a lower JNK1 mRNA level, suggesting that galectin-3 regulates the transcription of the JNK gene or processing of its RNA. All together, these results point to an important role of galectin-3 in mast cell biology.
Collapse
|
|
19 |
77 |
8
|
Breuilh L, Vanhoutte F, Fontaine J, van Stijn CMW, Tillie-Leblond I, Capron M, Faveeuw C, Jouault T, van Die I, Gosset P, Trottein F. Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect Immun 2007; 75:5148-57. [PMID: 17785480 PMCID: PMC2168304 DOI: 10.1128/iai.02006-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Galectin-3 (Gal-3) is a multifunctional beta-galactoside-binding lectin that senses self-derived and microbial glycoconjugates. Although Gal-3 is important in immune reactions and host defense in some experimental models, the function of Gal-3 during helminthic diseases (e.g., schistosomiasis) is still elusive. We show that, compared to wild-type Schistosoma mansoni-infected mice, infected Gal-3-/- mice have a reduced number of T and B lymphocytes in the spleen, develop reduced liver granulomas at 7 weeks (acute phase) and 14 weeks (chronic phase) postinfection, and mount a biased cellular and humoral Th1 response. In an attempt to understand this latter phenomenon, we studied the role of endogenous Gal-3 in dendritic cells (DCs), the most potent antigen-presenting cells, both in vitro and in vivo. Although Gal-3 deficiency in DCs does not impact their differentiation and maturation processes, it greatly influences the strength (but not the nature) of the adaptive immune response that they trigger, suggesting that Gal-3 deficiency in some other cell types may be important during murine schistosomiasis. As a whole, this study implies that Gal-3 is a modulator of the immune/inflammatory responses during helminthic infection and reveals for the first time that Gal-3 expression in DCs is pivotal to control the magnitude of T-lymphocyte priming.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
76 |
9
|
Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Cordone S, Taurino M, Serino M, Marano G, Federici M, Pricci F, Pugliese G. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol 2009; 29:831-6. [PMID: 19359660 DOI: 10.1161/atvbaha.109.186791] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Modified lipoproteins, particularly oxidized LDLs, are believed to evoke an inflammatory response which participates in all stages of atherosclerosis. Disposal of these particles is mediated through receptors which may trigger proinflammatory signaling pathways leading to vascular injury. This study was aimed at assessing the role in atherogenesis of one of these receptors, galectin-3. METHODS AND RESULTS Galectin-3-deficient and wild-type mice were fed an atherogenic diet or standard chow for 8 months. Lesion area and length were higher in galectin-3-deficient versus wild-type mice. At the level of the aortic sinus, wild-type animals showed only fatty streaks, whereas galectin-3-deficient mice developed complex lesions, associated with extensive inflammatory changes. This was indicated by the presence of T lymphocytes with activated Th1-phenotype and by more marked monocyte-macrophage infiltration, inflammatory mediator expression, vascular cell apoptosis, and proinflammatory transcription factor activation. Increased accumulation of oxidixed LDLs and lipoxidation products and upregulation of other receptors for these compounds, including the proinflammatory RAGE, were detected in galectin-3-deficient versus wild-type mice. CONCLUSIONS These data suggest a unique protective role for galectin-3 in the uptake and effective removal of modified lipoproteins, with concurrent downregulation of proinflammatory pathways responsible for atherosclerosis initiation and progression.
Collapse
|
|
16 |
76 |
10
|
Comte I, Kim Y, Young CC, van der Harg JM, Hockberger P, Bolam PJ, Poirier F, Szele FG. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci 2011; 124:2438-47. [PMID: 21693585 PMCID: PMC3124373 DOI: 10.1242/jcs.079954] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 01/01/2023] Open
Abstract
The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3(-/-) mice. Interestingly, far fewer new BrdU(+) neurons were found in the OB of Gal3(-/-) mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3(-/-) mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell-cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3(-/-) mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
70 |
11
|
Ge XN, Bahaie NS, Kang BN, Hosseinkhani RM, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P. Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1205-14. [PMID: 20543100 PMCID: PMC2918241 DOI: 10.4049/jimmunol.1000039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role played by the beta-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knockout (KO) mice were subjected to repetitive allergen challenge with OVA up to 12 wk, and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, subepithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared with that WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, found in inflammatory zone 1, and TGF-beta were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared with that of WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines and profibrogenic and angiogenic mediators.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
66 |
12
|
Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW. Inhibition of advanced glycation and absence of galectin-3 prevent blood-retinal barrier dysfunction during short-term diabetes. EXPERIMENTAL DIABETES RESEARCH 2008; 2007:51837. [PMID: 17641742 PMCID: PMC1880865 DOI: 10.1155/2007/51837] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/02/2007] [Indexed: 01/13/2023]
Abstract
Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3−/− transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3−/− mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3−/− mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
60 |
13
|
Di Gregoli K, Somerville M, Bianco R, Thomas AC, Frankow A, Newby AC, George SJ, Jackson CL, Johnson JL. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:1491-1509. [PMID: 32295421 PMCID: PMC7253188 DOI: 10.1161/atvbaha.120.314252] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Galectin-3 (formerly known as Mac-2), encoded by the LGALS3 gene, is proposed to regulate macrophage adhesion, chemotaxis, and apoptosis. We investigated the role of galectin-3 in determining the inflammatory profile of macrophages and composition of atherosclerotic plaques. Approach and Results: We observed increased accumulation of galectin-3-negative macrophages within advanced human, rabbit, and mouse plaques compared with early lesions. Interestingly, statin treatment reduced galectin-3-negative macrophage accrual in advanced plaques within hypercholesterolemic (apolipoprotein E deficient) Apoe-/- mice. Accordingly, compared with Lgals3+/+:Apoe-/- mice, Lgals3-/-:Apoe-/- mice displayed altered plaque composition through increased macrophage:smooth muscle cell ratio, reduced collagen content, and increased necrotic core area, characteristics of advanced plaques in humans. Additionally, macrophages from Lgals3-/- mice exhibited increased invasive capacity in vitro and in vivo. Furthermore, loss of galectin-3 in vitro and in vivo was associated with increased expression of proinflammatory genes including MMP (matrix metalloproteinase)-12, CCL2 (chemokine [C-C motif] ligand 2), PTGS2 (prostaglandin-endoperoxide synthase 2), and IL (interleukin)-6, alongside reduced TGF (transforming growth factor)-β1 expression and consequent SMAD signaling. Moreover, we found that MMP12 cleaves macrophage cell-surface galectin-3 resulting in the appearance of a 22-kDa fragment, whereas plasma levels of galectin-3 were reduced in Mmp12-/-:Apoe-/- mice, highlighting a novel mechanism where MMP12-dependent cleavage of galectin-3 promotes proinflammatory macrophage polarization. Moreover, galectin-3-positive macrophages were more abundant within plaques of Mmp12-/-:Apoe-/- mice compared with Mmp12+/+:Apoe-/- animals. CONCLUSIONS This study reveals a prominent protective role for galectin-3 in regulating macrophage polarization and invasive capacity and, therefore, delaying plaque progression.
Collapse
|
research-article |
5 |
58 |
14
|
Radosavljevic G, Jovanovic I, Majstorovic I, Mitrovic M, Lisnic VJ, Arsenijevic N, Jonjic S, Lukic ML. Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis 2011; 28:451-62. [PMID: 21442355 DOI: 10.1007/s10585-011-9383-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/14/2011] [Indexed: 11/26/2022]
Abstract
Galectin-3, a β galactoside-binding lectin, plays an important role in the processes relevant to tumorigenesis such as malignant cell transformation, invasion and metastasis. We have investigated whether deletion of Galectin-3 in the host affects the metastasis of B16F1 malignant melanoma. Galectin-3-deficient (Gal-3(-/-)) mice are more resistant to metastatic malignant melanoma as evaluated by number and size of metastatic colonies in the lung. In vitro assays showed lower number of attached malignant cells in the tissue section derived from Gal-3(-/-) mice. Furthermore, lack of Galectin-3 correlates with higher serum levels of IFN-γ and IL-17 in tumor bearing hosts. Interestingly, spleens of Gal-3(-/-) mice have lower number of Foxp3(+) T cells after injection of B16F1 melanoma cells. Finally, we found that while CD8(+) T cell and adherent cell cytotoxicity were similar, there was greater cytotoxic activity of splenic NK cells of Gal-3(-/-) mice compared with "wild-type" (Gal-3( +/+ )) mice. Despite the reduction in total number of CD3ε(-)NK1.1(+), Gal-3(-/-) mice constitutively have a significantly higher percentage of effective cytotoxic CD27(high)CD11b(high) NK cells as well as the percentage of immature CD27(high)CD11b(low) NK cells. In contrast, CD27(low)CD11b(high) less functionally exhausted NK cells and NK cells bearing inhibitory KLRG1 receptor were more numerous in Gal-3( +/+ ) mice. It appears that lack of Galectin-3 affects tumor metastasis by at least two independent mechanisms: by a decrease in binding of melanoma cells onto target tissue and by enhanced NK-mediated anti-tumor response suggesting that Galectin-3 may be considered as therapeutic target.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
56 |
15
|
Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Mazzitelli G, Cordone S, Pesce C, Pugliese F, Pricci F, Pugliese G. Advanced lipoxidation end-products mediate lipid-induced glomerular injury: role of receptor-mediated mechanisms. J Pathol 2009; 218:360-9. [PMID: 19334049 DOI: 10.1002/path.2536] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 01/20/2009] [Indexed: 12/20/2022]
Abstract
Atherosclerosis and renal disease are related conditions, sharing several risk factors. This includes hyperlipidaemia, which may result in enhanced lipoprotein accumulation and chemical modification, particularly oxidation, with formation of advanced lipoxidation endproducts (ALEs). We investigated whether increased lipid peroxidation plays a major role in the pathogenesis of lipid-induced renal disease, via receptor-mediated mechanisms involving the scavenger and advanced glycation endproduct (AGE) receptors. Mice knocked out for galectin-3 (Gal3(-/-)), an AGE receptor previously shown to protect from AGE-induced renal injury, and the corresponding wild-type (Gal3(+/+)) animals, were fed an atherogenic high-fat diet (HFD; 15% fat, 1.25% cholesterol and 0.5% sodium cholate); mice fed a normal-fat diet (NFD; 4% fat) served as controls. Gal3(+/+) mice fed a HFD developed glomerular disease, as indicated by proteinuria, mesangial expansion and glomerular hypertrophy and sclerosis. Glomerular injury was associated with increased glomerular matrix protein expression, ALE and oxidized LDL content, oxidative stress, AGE and scavenger receptor expression and macrophage infiltration, with only modest renal/glomerular fat accumulation and changes in lipid metabolism. Fibrotic and inflammatory changes, together with accumulation of ALEs, such as 4-hydroxy-2-nonenal adducts and N(epsilon)-carboxymethyllysine, oxidative stress and expression of the receptor of AGEs (RAGE), were significantly more marked in Gal3(-/-) animals, whereas fat deposition and abnormalities in lipid metabolism remained modest. Thus, lipid-induced renal damage is mainly dependent on lipid peroxidation with formation of carbonyl reactive species and ALEs, which accumulate within the kidney tissue, thus triggering receptor-mediated pro-inflammatory signalling pathways, as in atherogenesis. Moreover, galectin-3 exerts a significant role in the uptake and effective removal of modified lipoproteins, with diversion of these products from RAGE-dependent pro-inflammatory pathways associated with downregulation of RAGE expression.
Collapse
|
|
16 |
56 |
16
|
Zhang H, Liang X, Duan C, Liu C, Zhao Z. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One 2014; 9:e103482. [PMID: 25254965 PMCID: PMC4177814 DOI: 10.1371/journal.pone.0103482] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Galectin-3 has a relatively high level of expression in triple-negative breast cancers and is a potential marker for this disease. However, the clinical and prognostic implications of galectin-3 expression in breast cancer remain unclear. We examined mastectomy specimens from 1086 breast cancer cases and matching, adjacent non-cancerous tissues using immunohistochemistry. Overall, triple-negative breast cancers expressed galectin-3 more strongly than did other breast cancers types (63.59% vs 21.36%, P = 0.001). Galectin-3 expression was not found to be an independent prognostic factor for breast cancer by Cox regression analysis, but was associated with chemotherapeutic resistance. Apoptosis was only weakly induced by arsenic trioxide (ATO) treatment in galectin-3-positive breast cancer cells (MDA-MB-231 and MCF-7), although ATO treatment up-regulated galectin-3 expression. Knockdown of galectin-3 in MDA-MB-231 cells sensitized them to killing by ATO. These findings support a possible role for galectin-3 as a marker for triple-negative breast cancer progression and as a therapeutic target in combination with ATO treatment, although the mechanisms that underlie this synergy require further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
53 |
17
|
Nomoto K, Tsuneyama K, Abdel Aziz HO, Takahashi H, Murai Y, Cui ZG, Fujimoto M, Kato I, Hiraga K, Hsu DK, Liu FT, Takano Y. Disrupted galectin-3 causes non-alcoholic fatty liver disease in male mice. J Pathol 2007; 210:469-77. [PMID: 17029217 DOI: 10.1002/path.2065] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectin-3, a beta-galactoside-binding animal lectin, is a multifunctional protein. Previous studies have suggested that galectin-3 may play an important role in inflammatory responses. Non-alcoholic fatty liver disease (NAFLD) is increasingly recognized as a liver condition that may progress to end-stage liver disease and based on the known functions of galectin-3, it was hypothesized that galectin-3 might play a role in the development of NAFLD. Thus, this study investigated the role of galectin-3 in NAFLD by comparing galectin-3 knockout (gal3(-/-)) mice and wild-type (gal3(+/+)) mice. The livers of gal3(-/-) male mice at 6 months of age histologically displayed mild to severe fatty change. The liver weight per body weight ratio, serum alanine aminotransferase levels, liver triglyceride levels, and liver lipid peroxide in gal3(-/-) mice were significantly increased compared with those in gal3(+/+) mice. Furthermore, the hepatic protein levels of advanced glycation end-products (AGE), receptor for AGE (RAGE), and peroxisome proliferator-activated receptor gamma (PPARgamma) were increased in gal3(-/-) mice relative to gal3(+/+) mice. In conclusion, this study suggests that the absence of gal3 can cause clinico-pathological features in male mice similar to those of NAFLD.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
52 |
18
|
Mok SWF, Riemer C, Madela K, Hsu DK, Liu FT, Gültner S, Heise I, Baier M. Role of galectin-3 in prion infections of the CNS. Biochem Biophys Res Commun 2007; 359:672-8. [PMID: 17555713 DOI: 10.1016/j.bbrc.2007.05.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/22/2007] [Indexed: 11/24/2022]
Abstract
Galectin-3 is a multi-functional protein and participates in mediating inflammatory reactions. The pronounced overexpression of galectin-3 in prion-infected brain tissue prompted us to study the role of this protein in a murine prion model. Immunofluorescence double-labelling identified microglia as the major cell type expressing galectin-3. Ablation of galectin-3 did not affect PrP(Sc)-deposition and development of gliosis. However, galectin-3(-/-)-mice showed prolonged survival times upon intracerebral and peripheral scrapie infections. Moreover, protein levels of the lysosomal activation marker LAMP-2 were markedly reduced in prion-infected galectin-3(-/-)-mice suggesting a role of galectin-3 in regulation of lysosomal functions. Lower mRNA levels of Beclin-1 and Atg5 in prion-infected wild-type and galectin-3(-/-)-mice indicated an impairment of autophagy although autophagosome formation was unchanged. The results point towards a detrimental role of galectin-3 in prion infections of the CNS and suggest that endo-/lysosomal dysfunction in combination with reduced autophagy may contribute to disease development.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
51 |
19
|
Silva-Monteiro E, Reis Lorenzato L, Kenji Nihei O, Junqueira M, Rabinovich GA, Hsu DK, Liu FT, Savino W, Chammas R, Villa-Verde DMS. Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:546-56. [PMID: 17255323 PMCID: PMC1851869 DOI: 10.2353/ajpath.2007.060389] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During acute infection with Trypanosoma cruzi, the causative agent of Chagas' disease, the thymus undergoes intense atrophy followed by a premature escape of CD4+CD8+ immature cortical thymocytes. Here we report a pivotal role for the endogenous lectin galectin-3 in accelerating death of thymocytes and migration of these cells away from the thymus after T. cruzi infection. We observed a pronounced increase in galectin-3 expression that paralleled the extensive depletion of CD4+CD8+ immature thymocytes after infection. In vitro, recombinant galectin-3 induced increased levels of death in cortical immature thymocytes. Consistent with the role of galectin-3 in promoting cell death, thymuses from gal-3-/- mice did not show cortical thymocyte depletion after parasite infection in vivo. In addition, galectin-3 accelerated laminin-driven CD4+CD8+ thymocyte migration in vitro and in vivo induced exportation of CD4+CD8+ cells from the thymus to the peripheral compartment. Our findings provide evidence of a novel role for galectin-3 in the regulation of thymus physiology and identify a potential mechanism based on protein-glycan interactions in thymic atrophy associated with acute T. cruzi infection.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
47 |
20
|
Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC, Miaw SC, Hsu DK, Wu-Hsieh BA, Liu FT. Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1209-1222. [PMID: 23916470 PMCID: PMC3791687 DOI: 10.1016/j.ajpath.2013.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/02/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Galectin-3 is a β-galactoside-binding animal lectin with diverse functions, including regulation of T helper (Th) 1 and Th2 responses. Current data indicate that galectin-3 expressed in dendritic cells (DCs) may be contributory. Th17 cells have emerged as critical inducers of tissue inflammation in autoimmune disease and important mediators of host defense against fungal pathogens, although little is known about galectin-3 involvement in Th17 development. We investigated the role of galectin-3 in the induction of Th17 immunity in galectin-3-deficient (gal3(-/-)) and gal3(+/+) mouse bone marrow-derived DCs. We demonstrate that intracellular galectin-3 negatively regulates Th17 polarization in response to the dectin-1 agonist curdlan (a β-glucan present on the cell wall of fungal species) and lipopolysaccharide, agents that prime DCs for Th17 differentiation. On activation of dectin-1, gal3(-/-) DCs secreted higher levels of the Th17-axis cytokine IL-23 compared with gal3(+/+) DCs and contained higher levels of activated c-Rel, an NF-κB subunit that promotes IL-23 expression. Levels of active Raf-1, a kinase that participates in downstream inhibition of c-Rel binding to the IL23A promoter, were impaired in gal3(-/-) DCs. Modulation of Th17 by galectin-3 in DCs also occurred in vivo because adoptive transfer of gal3(-/-) DCs exposed to Candida albicans conferred higher Th17 responses and protection against fungal infection. We conclude that galectin-3 suppresses Th17 responses by regulating DC cytokine production.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
46 |
21
|
Hsieh WC, Mackinnon AC, Lu WY, Jung J, Boulter L, Henderson NC, Simpson KJ, Schotanus B, Wojtacha D, Bird TG, Medine CN, Hay DC, Sethi T, Iredale JP, Forbes SJ. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut 2015; 64:312-21. [PMID: 24837171 DOI: 10.1136/gutjnl-2013-306290] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Following chronic liver injury or when hepatocyte proliferation is impaired, ductular reactions containing hepatic progenitor cells (HPCs) appear in the periportal regions and can regenerate the liver parenchyma. HPCs exist in a niche composed of myofibroblasts, macrophages and laminin matrix. Galectin-3 (Gal-3) is a β-galactoside-binding lectin that binds to laminin and is expressed in injured liver in mice and humans. DESIGN We examined the role of Gal-3 in HPC activation. HPC activation was studied following dietary induced hepatocellular (choline-deficient ethionine-supplemented diet) and biliary (3,5-diethoxycarbonyl-1,4-dihydrocollidine supplemented diet) injury in wild type and Gal-3(-/-) mice. RESULTS HPC proliferation was significantly reduced in Gal-3(-/-) mice. Gal-3(-/-) mice failed to form a HPC niche, with reduced laminin formation. HPCs isolated from wild type mice secrete Gal-3 which enhanced adhesion and proliferation of HPCs on laminin in an undifferentiated form. These effects were attenuated in Gal3(-/-) HPCs and in wild type HPCs treated with the Gal-3 inhibitor lactose. Gal-3(-/-) HPCs in vitro showed increased hepatocyte function and prematurely upregulated both biliary and hepatocyte differentiation markers and regulated cell cycle genes leading to arrest in G0/G1. CONCLUSIONS We conclude that Gal-3 is required for the undifferentiated expansion of HPCs in their niche in injured liver.
Collapse
|
|
10 |
45 |
22
|
Ruas LP, Bernardes ES, Fermino ML, de Oliveira LL, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS One 2009; 4:e4519. [PMID: 19229338 PMCID: PMC2641003 DOI: 10.1371/journal.pone.0004519] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/16/2009] [Indexed: 12/02/2022] Open
Abstract
There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3−/−) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3−/− macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
43 |
23
|
Saegusa J, Hsu DK, Liu W, Kuwabara I, Kuwabara Y, Yu L, Liu FT. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol 2008; 128:2403-11. [PMID: 18463681 PMCID: PMC2768377 DOI: 10.1038/jid.2008.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Keratinocytes undergo apoptosis in a variety of physiological and pathological conditions. Galectin-3 is a member of a family of beta-galactoside-binding animal lectins expressed abundantly in keratinocytes and other epithelial cells. Here, we have studied the regulatory role of galectin-3 in keratinocyte apoptosis by using cells from gene-targeted galectin-3 null (gal3(-/-)) mice. We showed that galectin-3 mRNA was transiently upregulated in ultraviolet-B (UVB)-irradiated wild-type keratinocytes. We found that gal3(-/-) keratinocytes were significantly more sensitive to apoptosis induced by UVB as well as various other stimuli, both in vitro and in vivo, than wild-type cells. Moreover, we demonstrated that increased apoptosis in gal3(-/-) keratinocytes was attributable to higher extracellular signal-regulated kinase (ERK) activation and lower AKT activation after UVB irradiation. We conclude that endogenous galectin-3 is an anti-apoptotic molecule in keratinocytes functioning by suppressing ERK activation and enhancing AKT activation and may play a role in the development of apoptosis-related skin diseases.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
39 |
24
|
Mauris J, Mantelli F, Woodward AM, Cao Z, Bertozzi CR, Panjwani N, Godula K, Argüeso P. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers. PLoS One 2013; 8:e72304. [PMID: 23977277 PMCID: PMC3747151 DOI: 10.1371/journal.pone.0072304] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Background Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. Methodology/Principal Findings Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. Conclusions/Significance These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
39 |
25
|
Debray C, Vereecken P, Belot N, Teillard P, Brion JP, Pandolfo M, Pochet R. Multifaceted role of galectin-3 on human glioblastoma cell motility. Biochem Biophys Res Commun 2005; 325:1393-8. [PMID: 15555581 DOI: 10.1016/j.bbrc.2004.10.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Indexed: 11/26/2022]
Abstract
Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-alpha6 and -beta1, proteins known to be implicated in the regulation of cell adhesion.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
33 |