1
|
Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 1997; 389:73-7. [PMID: 9288969 DOI: 10.1038/37987] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RBM and DAZ/SPGY are two families of genes located on the Y chromosome that encode proteins containing RNA-binding motifs, and both have been described as candidate human spermatogenesis genes. Transmission of deletions from father to son has been observed in the case of DAZ, but neither gene family has been shown to be essential for spermatogenesis in human males. The DAZ/SPGY genes are particularly amenable to a knockout approach, as they are found on the Y chromosome in Old World primates and apes, but in other mammals, they are represented only by an autosomal gene, DAZLA, which is also present in Old World primates and apes. It has also been shown that a Dazla homologue is essential for spermatogenesis in Drosophila. Here we show that Dazla protein is cytoplasmic in male and female germ cells, unlike the nuclear RBM protein. Disruption of the Dazla gene leads to loss of germ cells and complete absence of gamete production, demonstrating that Dazla is essential for the differentiation of germ cells.
Collapse
|
|
28 |
425 |
2
|
Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005; 132:603-14. [PMID: 15634699 DOI: 10.1242/dev.01595] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant life cycle involves an alternation of generations between sporophyte and gametophyte. Currently, the genes and pathways involved in gametophytic development and function in flowering plants remain largely unknown. A large-scale mutant screen of Ds transposon insertion lines was employed to identify 130 mutants of Arabidopsis thaliana with defects in female gametophyte development and function. A wide variety of mutant phenotypes were observed, ranging from defects in different stages of early embryo sac development to mutants with apparently normal embryo sacs, but exhibiting defects in processes such as pollen tube guidance, fertilization or early embryo development. Unexpectedly, nearly half of the mutants isolated in this study were found to be primarily defective in post-fertilization processes dependent on the maternal allele, suggesting that genes expressed from the female gametophyte or the maternal genome play a major role in the early development of plant embryos. Sequence identification of the genes disrupted in the mutants revealed genes involved in protein degradation, cell death, signal transduction and transcriptional regulation required for embryo sac development, fertilization and early embryogenesis. These results provide a first comprehensive overview of the genes and gene products involved in female gametophyte development and function within a flowering plant.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
405 |
3
|
van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001; 104:153-64. [PMID: 11163248 DOI: 10.1016/s0092-8674(01)00199-4] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.
Collapse
|
|
24 |
315 |
4
|
Abstract
Transport of macromolecules into and out of the nucleus is generally effected by targeting signals that are recognized by specific members of the importin/exportin transport receptor family. The latter mediate passage through the nuclear envelope-embedded nuclear pore complexes (NPCs) by conferring interaction with NPC constituents, as well as with other components of the nuclear transport machinery, including the guanine nucleotide-binding protein Ran. Importantly, nuclear transport is regulated at multiple levels via a diverse range of mechanisms, such as the modulation of the accessibility and affinity of target signal recognition by importins/exportins, with phosphorylation/dephosphorylation as a major mechanism. Alteration of the level of the expression of components of the nuclear transport machinery also appears to be a key determinant of transport efficiency, having central importance in development, differentiation and transformation.
Collapse
|
|
20 |
300 |
5
|
Gomez JM, Weil C, Ollitrault M, Le Bail PY, Breton B, Le Gac F. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1999; 113:413-28. [PMID: 10068502 DOI: 10.1006/gcen.1998.7222] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to evaluate potential interactions between somatotropic and gonadotropic axes in rainbow trout (Oncorhynchus mykiss), changes in pituitary content of the specific messenger RNA of growth hormone (GH) and gonadotropin (GTH) alpha- and beta-subunits were studied during gametogenesis with respect to pituitary and plasma hormone concentrations. Quantitative analyses of mRNA and hormones were performed by dot blot hybridization and homologous RIA on individual fish according to stage of spermatogenesis and oogenesis. All transcripts were detectable in 9-month-old immature fish. GH, GTH IIbeta, and GTH alpha increased moderately throughout most of gametogenesis and then more dramatically at spermiation and during the periovulatory period. GTH Ibeta mRNA increased first from stage I to V in males and more abruptly at spermiation, while in females GTH Ibeta transcripts increased first during early vitellogenesis and again around ovulation. Pituitary GH absolute content (microgram/pituitary, not normalized with body weight) increased slowly during gametogenesis and more abruptly in males during spermiation. In the pituitary of previtellogenic females and immature males, GTH I beta peptide contents were 80- to 500-fold higher than GTH II beta peptide contents. GTH I contents rose regularly during the initial phases of vitellogenesis and spermatogenesis and then more abruptly in the final stages of gonadal maturation, while GTH II contents show a dramatic elevation during final oocyte growth and maturation, in postovulated females, and during spermiogenesis and spermiation in males. Blood plasma GTH II concentrations were undetectable in most gonadal stages, but were elevated during spermiogenesis and spermiation and during oocyte maturation and postovulation. In contrast, plasma GTH I was already high ( approximately 2 ng/ml) in fish with immature gonads, significantly increased at the beginning of spermatogonial proliferation, and then increased again between stages III and VI to reach maximal levels ( approximately 9 ng/ml) toward the end of sperm cell differentiation, but decreased at spermiation. In females, plasma GTH I rose strongly for the first time up to early exogenous vitellogenesis, decreased during most exogenous vitellogenesis, and increased again around ovulation. Our data revealed that patterns of relative abundance of GTH Ibeta mRNA and pituitary and plasma GTH I were similar, but not the GTH II patterns, suggesting differential regulation between these two hormones at the transcriptional and posttranscriptional levels. Pituitary and plasma GH changes could not be related to sexual maturation, and only a weak relationship was observed between GH and gonadotropin patterns, demonstrating that no simple connection exists between somatotropic and gonadotropic axes at the pituitary level during gametogenesis.
Collapse
|
|
26 |
189 |
6
|
Froment P, Gizard F, Defever D, Staels B, Dupont J, Monget P. Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J Endocrinol 2006; 189:199-209. [PMID: 16648288 DOI: 10.1677/joe.1.06667] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARalpha, PPARbeta/delta and PPARgamma) are a family of nuclear receptors that are activated by binding of natural ligands, such as polyunsaturated fatty acids or by synthetic ligands. Synthetic molecules of the glitazone family, which bind to PPARgamma, are currently used to treat type II diabetes and also to attenuate the secondary clinical symptoms frequently associated with insulin resistance, including polycystic ovary syndrome (PCOS). PPARs are expressed in different compartments of the reproductive system (hypothalamus, pituitary, ovary, uterus and testis). Conservative functions of PPARs in mammalian species could be suggested through several in vivo and in vitro studies, especially in the ovary and during placental development. Several groups have described a strong expression of PPARgamma in ovarian granulosa cells, and glitazones modulate granulosa cell proliferation and steroidogenesis in vitro. All these recent data raise new questions about the biologic actions of PPARs in reproduction and their use in therapeutic treatments of fertility troubles such as PCOS or endometriosis. In this review, we first describe the roles of PPARs in different compartments of the reproductive axis (from male and female gametogenesis to parturition), with a focus on PPARgamma. Secondly, we discuss the possible molecular mechanisms underlying the effect of glitazones on PCOS. Like other 'insulin sensitizer' molecules, such as metformin, glitazones may in fact act directly on ovarian cells. Finally, we discuss the eventual actions of PPARs as mediators of environmental toxic substances for reproductive function.
Collapse
|
Review |
19 |
161 |
7
|
Gems D, Riddle DL. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 1996; 379:723-5. [PMID: 8602217 DOI: 10.1038/379723a0] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Theories of life-history evolution propose that trade-offs occur between fitness components, including longevity and maximal reproduction. In Drosophila, female lifespan is shortened by increased egg production, receipt of male accessory fluid and courting. Male lifespan is also reduced by courting and/or mating. Here we show that in the nematode Caenorhabditis elegans, mating with males reduces the lifespan of hermaphrodites by a mechanism independent of egg production or receipt of sperm. Conversely, males appear unaffected by mating. Thus, in C. elegans there is no apparent trade-off between longevity and increased egg or sperm production, but there is a substantial cost to hermaphrodites associated with copulation.
Collapse
|
|
29 |
156 |
8
|
Kim HU, Li Y, Huang AHC. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. THE PLANT CELL 2005; 17:1073-89. [PMID: 15772283 PMCID: PMC1087987 DOI: 10.1105/tpc.104.030403] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 02/02/2005] [Indexed: 05/19/2023]
Abstract
Lysophosphatidyl acyltransferase (LPAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. We examined putative LPAT genes in Arabidopsis thaliana and characterized two related genes that encode the cytoplasmic LPAT. LPAT2 is the lone gene that encodes the ubiquitous and endoplasmic reticulum (ER)-located LPAT. It could functionally complement a bacterial mutant with defective LPAT. LPAT2 and 3 synthesized in recombinant bacteria and yeast possessed in vitro enzyme activity higher on 18:1-CoA than on 16:0-CoA. LPAT2 was expressed ubiquitously in diverse tissues as revealed by RT-PCR, profiling with massively parallel signature sequencing, and promoter-driven beta-glucuronidase gene expression. LPAT2 was colocalized with calreticulin in the ER by immunofluorescence microscopy and subcellular fractionation. LPAT3 was expressed predominately but more actively than LPAT2 in pollen. A null allele (lpat2) having a T-DNA inserted into LPAT2 was identified. The heterozygous mutant (LPAT2/lpat2) had minimal altered vegetative phenotype but produced shorter siliques that contained normal seeds and remnants of aborted ovules in a 1:1 ratio. Results from selfing and crossing it with the wild type revealed that lpat2 caused lethality in the female gametophyte but not the male gametophyte, which had the redundant LPAT3. LPAT2-cDNA driven by an LPAT2 promoter functionally complemented lpat2 in transformed heterozygous mutants to produce the lpat2/lpat2 genotype. LPAT3-cDNA driven by the LPAT2 promoter could rescue the lpat2 female gametophytes to allow fertilization to occur but not to full embryo maturation. Two other related genes, putative LPAT4 and 5, were expressed ubiquitously albeit at low levels in diverse organs. When they were expressed in bacteria or yeast, the microbial extract did not contain LPAT activity higher than the endogenous LPAT activity. Whether LPAT4 and 5 encode LPATs remains to be elucidated.
Collapse
|
research-article |
20 |
155 |
9
|
Schlatt S, Honaramooz A, Boiani M, Schöler HR, Dobrinski I. Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol Reprod 2003; 68:2331-5. [PMID: 12606381 DOI: 10.1095/biolreprod.102.014894] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ectopic grafting of testicular tissue is a promising new approach that can be used to preserve testicular function. This technique has been used recently to differentiate the neonatal testes of different species, up to the level of complete spermatogenesis. This approach can be applied successfully to generate live progeny using sperm extracted from grafts originating from testes of newborn donors. The sperm are capable of supporting normal development and producing fertile male and female offspring after intracytoplasmic injection into mouse oocytes and embryo transfer into surrogate mothers. The grafted tissue was also capable of significantly normalizing reproductive hormone levels in the castrated recipients. This technique presents new avenues for experimentation. The recipient mouse can be regarded as a living incubator and a culture system of testicular tissue, allowing the experimental manipulation of several aspects of testis development and spermatogenesis. The successful generation of pups indicates that this technique can be used to study the testicular phenotype and to breed mutant or transgenic mouse strains with lethal postnatal phenotypes. The ability to generate sperm from the germ line ex vivo also paves the way for the development of new strategies for preserving fertility in boys undergoing cancer therapy.
Collapse
|
|
22 |
154 |
10
|
Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:819-31. [PMID: 16460514 DOI: 10.1111/j.1365-313x.2005.02643.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The protein kinase cdc2 is conserved throughout eukaryotes and acts as a key regulator of the cell cycle. In plants, A-type cyclin-dependent kinase (CDKA), a homologue of cdc2, has a role throughout the cell cycle. Here we show that a loss-of-function mutation in CDKA;1, encoding the only Arabidopsis CDKA, results in lethality of the male gametophyte. Heterozygous plants produced mature siliques containing about 50% aborted seeds, and segregation distortion was observed in paternal inheritance. Microspores normally undergo an asymmetric cell division, pollen mitosis I (PMI), to produce bicellular pollen grains. The larger vegetative cell does not divide, but the smaller generative cell undergoes mitosis, PMII, to form the two sperm cells, thereby generating tricellular pollen grains. The cdka-1 mutant, however, produces mature bicellular pollen grains, consisting of a single sperm-like cell and a vegetative cell, due to failure of PMII. The mutant sperm-like cell is fertile, and preferentially fuses with the egg cell to initiate embryogenesis. As the central cell nucleus remains unfertilized, however, double fertilization does not occur. In heterozygous plants, the embryo is arrested at the globular stage, most likely because of loss of endosperm development, whereas it is arrested at the one- or two-cell stage in presumptive homozygous plants. Thus, CDKA;1 is essential for cell division of the generative cell in male gametogenesis.
Collapse
|
|
19 |
148 |
11
|
Fritzenwanker JH, Technau U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol 2002; 212:99-103. [PMID: 11914942 DOI: 10.1007/s00427-002-0214-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Accepted: 01/03/2002] [Indexed: 11/29/2022]
Abstract
A protocol was established to reproducibly induce spawning in the basal cnidarian Nematostella vectensis (Anthozoa). We found that a combination of feeding regime, dark-light cycle and temperature shift synergistically induced gametogenesis in adult polyps. Females lay between 100-600 eggs. This procedure led reproducibly to the production of thousands of eggs over the course of more than 1 year in weekly cycles. Gametes are released in a time window of about 2 h resulting in predictable and fairly synchronized development. We also present a method for in vitro fertilization allowing manipulation of early embryos. These methods as well as the simple culture conditions could provide important prerequisites for the use of Nematostella as a model system for the development of a basal Metazoa.
Collapse
|
|
23 |
145 |
12
|
Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J 2004; 3:24. [PMID: 15253774 PMCID: PMC497046 DOI: 10.1186/1475-2875-3-24] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 07/14/2004] [Indexed: 11/16/2022] Open
Abstract
The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.
Collapse
|
Review |
21 |
142 |
13
|
Brill A, Torchinsky A, Carp H, Toder V. The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet 1999; 16:512-9. [PMID: 10575578 PMCID: PMC3455372 DOI: 10.1023/a:1020541019347] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Programmed cell death or apoptosis is a widespread biological phenomenon. Apoptosis is characterized by typical cell features such as membrane blebbing, chromatin condensation, and DNA fragmentation. It involves a number of membrane receptors (e.g., Fas, TNFR) and a cascade of signal transduction steps resulting in the activation of a number of cysteine proteases known as caspases. Disordered apoptosis may lead to carcinogenesis and participates in the pathogenesis of Alzheimer disease, Parkinson disease, or AIDS. Programmed cell death plays an important role in the processes of gamete maturation as well as in embryo development, contributing to the appropriate formation of various organs and structures. Apoptosis is one of the mechanisms of action of various cytotoxic agents and teratogens. Teratogen-induced excessive death of embryonic cells is undoubtedly one of the most important events preceding the occurrence of structural abnormalities, regardless of their nature. Therefore understanding the mechanisms involved in physiological as well as in disturbed or dysregulated apoptosis may lead to the development of new methods of preventive treatment of various developmental abnormalities. The present review summarizes data on the mechanisms of programmed cell death and concentrates on apoptosis involved in normal or disturbed gametogenesis and in normal and abnormal embryonic development.
Collapse
|
review-article |
26 |
137 |
14
|
Bennink S, Kiesow MJ, Pradel G. The development of malaria parasites in the mosquito midgut. Cell Microbiol 2016; 18:905-18. [PMID: 27111866 PMCID: PMC5089571 DOI: 10.1111/cmi.12604] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.
Collapse
|
Review |
9 |
129 |
15
|
Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, Dietz K. Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data. Trans R Soc Trop Med Hyg 2001; 95:497-501. [PMID: 11706658 DOI: 10.1016/s0035-9203(01)90016-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum malaria is one of mankind's main killers. Part of the parasite's life-cycle is spent in human blood, mainly as asexual stages. A fraction of the asexual parasites develops into gametocytes (gamete precursors) while sequestered in deep tissues. After re-entering the circulation, gametocytes can be picked up by a mosquito to continue the parasite's life-cycle. We present estimates of the conversion probability from asexual parasites to circulating gametocytes and of the gametocytes' sequestration and circulation times, obtained for the first time by fitting a dynamic model to individual patients' histories (daily records of 113 neurosyphilitic patients undergoing malariatherapy). The model assumes that the conversion probability can vary among the successive waves of asexual parasitaemia of a patient, and that gametocytes die at an age-dependent rate which increases under high asexual parasite densities. On average, 1 gametocyte per 156 asexual parasites (range 7.4-3700) is produced. The most remarkable findings are the large individual variation of conversion probabilities and circulation times, the average gametocyte circulation time of 6.4 days (range 1.3-22.2 days) which is more than twice the currently accepted value, and the large variation of conversion probabilities among successive waves of asexual parasitaemia without any particular time pattern. The latter finding could be explained by an association between conversion probability and variation of PfEMP1.
Collapse
|
|
24 |
126 |
16
|
Navarro RE, Shim EY, Kohara Y, Singson A, Blackwell TK. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis inC. elegans. Development 2001; 128:3221-32. [PMID: 11546739 DOI: 10.1242/dev.128.17.3221] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A high frequency of apoptosis is a conserved hallmark of oocyte development. In C. elegans, about half of all developing oocytes are normally killed by a physiological germline-specific apoptosis pathway, apparently so that they donate cytoplasm to the survivors. We have investigated the functions of CGH-1, the C. elegans ortholog of the predicted RNA helicase ste13/ME31B/RCK/p54, which is germline-associated in metazoans and required for sexual reproduction in yeast. We show that CGH-1 is expressed specifically in the germline and early embryo, and is localized to P granules and other possible mRNA-protein particles. cgh-1 is required for oocyte and sperm function. It is also needed to prevent the physiological germline apoptosis mechanism killing essentially all developing oocytes, making lack of cgh-1 function the first stimulus identified that can trigger this mechanism. We conclude that cgh-1 and its orthologs may perform conserved functions during gametogenesis, that in C. elegans certain aspects of oocyte development are monitored by the physiological germline apoptosis pathway, and that similar surveillance mechanisms may contribute to germline apoptosis in other species.
Collapse
|
|
24 |
123 |
17
|
Sinden RE, Butcher GA, Billker O, Fleck SL. Regulation of infectivity of Plasmodium to the mosquito vector. ADVANCES IN PARASITOLOGY 1996; 38:53-117. [PMID: 8701799 DOI: 10.1016/s0065-308x(08)60033-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
Review |
29 |
111 |
18
|
Wang D, Tyson MD, Jackson SS, Yadegari R. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:13244-9. [PMID: 16924116 PMCID: PMC1559784 DOI: 10.1073/pnas.0605551103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis, a complex of Polycomb-group (PcG) proteins functions in the female gametophyte to control the initiation of seed development. Mutations in the PcG genes, including MEDEA (MEA) and FERTILIZATION-INDEPENDENT SEED 2 (FIS2), produce autonomous seeds where endosperm proliferation occurs in the absence of fertilization. By using a yeast two-hybrid screen, we identified MEA and a related protein, SWINGER (SWN), as SET-domain partners of FIS2. Localization data indicated that all three proteins are present in the female gametophyte. Although single-mutant swn plants did not show any defects, swn mutations enhanced the mea mutant phenotype in producing autonomous seeds. Thus, MEA and SWN perform partially redundant functions in controlling the initiation of endosperm development before fertilization in Arabidopsis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
108 |
19
|
Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR. An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci U S A 2002; 99:15800-5. [PMID: 12426401 PMCID: PMC137796 DOI: 10.1073/pnas.232580499] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinin-Independent 1 (CKI1) belongs to a group of putative plant histidine kinases whose members do not appear to act as ethylene receptors. The deduced protein structure, combined with the observation that Arabidopsis callus cultures overexpressing CKI1 exhibit a "cytokinin-independent" cell division and greening phenotype, led to the hypothesis that CKI1 is involved in cytokinin signaling, perhaps acting as a cytokinin receptor. To test the function of CKI1, we used a reverse-genetic approach to identify plants carrying T-DNA insertions in CKI1. Two independent alleles were identified, which produce the same developmental phenotype. Analyses of populations segregating for the cki1-5 or cki1-6 T-DNA insertion alleles failed to reveal any homozygous cki1 plants, indicating that the homozygous mutant condition was lethal. Based on segregation distortion, transmission studies, a microscopy-based examination of developing female gametophytes, and mRNA expression data, we suggest that CKI1 function is required for megagametophyte development. Our work with CKI1 mutants indicates that signal transduction by means of a HisAsp phosphorelay system may play an important and previously unsuspected role in female gametophyte development in Arabidopsis.
Collapse
|
research-article |
23 |
108 |
20
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
|
Review |
15 |
99 |
21
|
Ramirez Llodra E. Fecundity and life-history strategies in marine invertebrates. ADVANCES IN MARINE BIOLOGY 2002; 43:87-170. [PMID: 12154615 DOI: 10.1016/s0065-2881(02)43004-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The reproductive strategies of an organism play a major role in the dynamics of the population and the biogeography and continuity of the species. Numerous processes are involved in reproduction leading to the production of offspring. Although diverse processes are involved in oogenesis (the production of eggs) and spermatogenesis (the production of sperm), the basic patterns of gametogenesis are similar amongst invertebrates, with the proliferation and differentiation of germ cells leading to the final production of mature gametes. The production of gametes, especially eggs, is energetically expensive, and therefore strongly sensitive to selective pressures. An organism can ingest and assimilate a limited amount of energy from the environment. The different ways by which energy is allocated to growth and reproduction in order to maximize fitness forms the basis of the differing life-history strategies that have developed in marine invertebrates. Fecundity is defined as the number of offspring produced by a female in a determined time period. The term fecundity needs to be explicitly defined in each study in order to obtain the maximum information from the data analysed. Because of the variety of egg production patterns found among marine invertebrates, a wide range of methodologies has been developed to quantify fecundity. These include direct egg counts in brooding species, spawning induction in live individuals and histological studies of preserved material. Specific considerations need to be taken into account for colonial organisms, because of their modular organization. The production of eggs requires an optimal allocation of energy into growth and reproduction for the maximization of parental fitness. Fecundity is central in studies of life-history theory and in the development of life-history models because it is directly related to energy allocation and partitioning. There are important relationships and trade-offs between fecundity and other life-history traits, such as egg size, female size and age, age at first reproduction, reproductive effort and residual reproductive value. These trade-offs, together with morpho-functional constraints and genetic variation determine the evolution of life histories through natural selection. Fecundity is a highly plastic character within the limits defined by the bioenergetics and life-history strategy of the organism. Egg production is affected mainly by environmental factors such as food quantity and quality, temperature or presence of toxic elements in the habitat. The differences in fecundity found among closely related species from different biogeographical locations reflect, at least in part, the differing environmental conditions of their habitat.
Collapse
|
Review |
23 |
87 |
22
|
Viarengo A, Canesi L, Pertica M, Livingstone DR. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1991; 100:187-90. [PMID: 1677853 DOI: 10.1016/0742-8413(91)90151-i] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The seasonal variations in the level of antioxidant compounds (glutathione (GSH), vitamin E, carotenoids) and in the activity of antioxidant enzymes, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), GSH-peroxidase (EC 1.11.1.9) in the digestive gland of mussels (Mytilus sp.) were evaluated. The lipid peroxidation process was also measured by determining the tissue concentration of malondialdehyde (MDA). 2. The physiological fluctuations of the antioxidant defence systems were inversely related to the accumulation of lipid peroxidation products (MDA) in the tissue. The observed seasonal variations are presumably related to the changing metabolic status of the animals, itself dependent on such factors as gonad ripening and food availability. 3. In particular, the obtained data indicate that a reduction of the antioxidant defence systems, occurring during winter, could be directly responsible for an enhanced susceptibility of mussels tissues to oxidative stress, as indicated by the high MDA concentration observed in this period.
Collapse
|
Comparative Study |
34 |
83 |
23
|
Gauthier-Clerc S, Pellerin J, Amiard JC. Estradiol-17beta and testosterone concentrations in male and female Mya arenaria (Mollusca bivalvia) during the reproductive cycle. Gen Comp Endocrinol 2006; 145:133-9. [PMID: 16197945 DOI: 10.1016/j.ygcen.2005.08.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 08/01/2005] [Accepted: 08/14/2005] [Indexed: 11/29/2022]
Abstract
Perturbation of the reproductive cycle as well as vitellin-like protein synthesis have already been reported in Mya arenaria sampled in contaminated areas of the St. Lawrence maritime estuary (Québec, Canada). To assess the potential role of endocrine disruptors in modulating the reproductive cycle in clams, the role of sex steroids has to be clarified. We determined the levels of estradiol-17beta and testosterone during the reproductive cycle in female and male M. arenaria. Both steroids were measured by ELISA in the gonads and no differences in steroid profiles appeared between sexes. Estrogen levels varied between 150 and 400 pg g(-1) wet weight over gametogenesis and were near 10 times higher than testosterone levels. Results showed transient increases of both steroids at the onset of vitellogenesis in females and during the spawning stage in both sexes. These findings indicate that these hormones could have a role as endogenous modulators of gametogenesis. Further studies are, however, needed to describe the pathway of steroid synthesis in clam gonad and elucidate steroid involvement in controlling gametogenesis and as well as their relationship with neurohormones since these latter are required to promote sexual maturation.
Collapse
|
|
19 |
82 |
24
|
Pierantoni R, Cobellis G, Meccariello R, Fasano S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:69-141. [PMID: 12199520 DOI: 10.1016/s0074-7696(02)18012-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review emphasizes the comparative approach for developing insight into knowledge related to cellular communications occurring in the hypothalamus-pituitary-gonadal axis. Indeed, research on adaptive phenomena leads to evolutionary tracks. Thus, going through recent results, we suggest that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream. Furthermore, the use of different routes of communication by a certain mediator leads to a conceptual change related to what hormones are. Nevertheless, endocrine communication should leave out of consideration the source (glandular or not) of mediator. Finally, we point out that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms. In fact, different anatomical organization permits access to tissues not readily approachable in mammals.
Collapse
|
Review |
22 |
80 |
25
|
Holland MC, Gothilf Y, Meiri I, King JA, Okuzawa K, Elizur A, Zohar Y. Levels of the native forms of GnRH in the pituitary of the gilthead seabream, Sparus aurata, at several characteristic stages of the gonadal cycle. Gen Comp Endocrinol 1998; 112:394-405. [PMID: 9843645 DOI: 10.1006/gcen.1998.7138] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brains of the gilthead seabream, Sparus aurata, contain three different forms of gonadotropin-releasing hormone (GnRH): seabream (sb) GnRH, chicken (c) GnRH-II, and salmon (s) GnRH. In the present study, we developed three specific enzyme-linked-immunosorbent assays (ELISA) for sbGnRH, cGnRH-II, and sGnRH and used them to measure the levels of each GnRH form in the pituitary of male and female seabream at different stages of gametogenesis. The sensitivity was 6 pg/well for the sbGnRH assay, 7 pg/well for the cGnRH-II assay, and 2 pg/well for the sGnRH assay. Levels of each of the three GnRH forms were measured in pituitaries from fish sampled at the beginning of gonadal recrudescence and during the spawning season. Of the three forms, only sbGnRH and cGnRH-II were detected in the pituitary, irrespective of reproductive state or sex. Recrudescent fish had similar levels of sbGnRH and cGnRH-II in the pituitary. In sexually mature fish, the levels of sbGnRH were higher than those in recrudescent fish while pituitary cGnRH-II content remained unchanged. Consequently, sbGnRH levels were 3- to 17-fold higher than cGnRH-II levels in mature fish. Positive correlations also existed between pituitary sbGnRH content and pituitary and plasma gonadotropin (GtH) II levels. Surprisingly, mature 1-year-old males had significantly higher levels of sbGnRH in the pituitary than mature 3-year-old males, while pituitary and plasma GtH II levels were similar between these two groups. Although the reason for this difference in sbGnRH levels is unclear, a possible role of sbGnRH in the processes of puberty or sex-inversion is implied. Based on the present results, it can be suggested that in the gilthead seabream, sbGnRH is the most relevant form of GnRH in the control of reproduction.
Collapse
|
|
27 |
76 |