1
|
Wang K, Yin J, Shen D, Li N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. BIORESOURCE TECHNOLOGY 2014; 161:395-401. [PMID: 24727700 DOI: 10.1016/j.biortech.2014.03.088] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 05/14/2023]
Abstract
Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid.
Collapse
|
Evaluation Study |
11 |
250 |
2
|
Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. BIORESOURCE TECHNOLOGY 2016; 199:386-397. [PMID: 26384658 DOI: 10.1016/j.biortech.2015.09.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 05/12/2023]
Abstract
When properly designed, pretreatments may enhance the methane potential and/or anaerobic digestion rate, improving digester performance. This paper aims at providing some guidelines on the most appropriate pretreatments for the main feedstocks of biogas plants. Waste activated sludge was firstly investigated and implemented at full-scale, its thermal pretreatment with steam explosion being most recommended as it increases the methane potential and digestion rate, ensures sludge sanitation and the heat needed is produced on-site. Regarding fatty residues, saponification is preferred for enhancing their solubilisation and bioavailability. In the case of animal by-products, this pretreatment can be optimised to ensure sterilisation, solubilisation and to reduce inhibition linked to long chain fatty acids. With regards to lignocellulosic biomass, the first goal should be delignification, followed by hemicellulose and cellulose hydrolysis, alkali or biological (fungi) pretreatments being most promising. As far as microalgae are concerned, thermal pretreatment seems the most promising technique so far.
Collapse
|
Review |
9 |
222 |
3
|
Debroas D, Mone A, Ter Halle A. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1222-1232. [PMID: 28514840 DOI: 10.1016/j.scitotenv.2017.05.059] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 05/20/2023]
Abstract
Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface.
Collapse
|
|
8 |
215 |
4
|
Nguyen TTX, Tomberlin JK, Vanlaerhoven S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. ENVIRONMENTAL ENTOMOLOGY 2015; 44:406-10. [PMID: 26313195 DOI: 10.1093/ee/nvv002] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/18/2014] [Indexed: 05/06/2023]
Abstract
Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue.
Collapse
|
|
10 |
212 |
5
|
Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 38:399-408. [PMID: 25555663 DOI: 10.1016/j.wasman.2014.12.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective.
Collapse
|
Review |
10 |
198 |
6
|
Guo XX, Liu HT, Wu SB. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:501-510. [PMID: 30695750 DOI: 10.1016/j.scitotenv.2019.01.137] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 05/27/2023]
Abstract
Aerobic composting is a typical biochemical process of stabilization and harmlessness of organic wastes during which organic matter degrades, and then aggregates, to produce humic substances (HSs). HSs are a core product of-and a crucial indicator of-the maturation of compost that can be used in soil amendments. The formation of HSs is affected by the characteristics of the raw materials involved, the presence of compost additives, microbial activity, temperature, pH, the C/N ratio, moisture content, oxygen content and particle size, all of which can interact with each other. The formation of HSs is therefore complex. Moreover, it is difficult to identify definitive structures of humic acids (HAs) and fulvic acids (FAs), which are the two major components of HSs. However, HSs represent the same functional groups and structural arrangements, which helps to predict their structures. Functional groups represented by phenol and carboxylic acid groups of HAs and FAs can provide various agronomic functions, such as plant growth enhancement, water and nutrient retention, and disease suppression capacity. Overall, HSs can act as a soil amendment, fertilizer, and plant growth regulator. These functions of HSs enhance the reuse potential of organic waste compost products; however, this requires scientific control of various composting parameters and appropriate application of final products.
Collapse
|
Review |
6 |
189 |
7
|
Simoneit BRT, Medeiros PM, Didyk BM. Combustion products of plastics as indicators for refuse burning in the atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:6961-70. [PMID: 16201617 DOI: 10.1021/es050767x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.
Collapse
|
|
20 |
158 |
8
|
Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A. Innovative "Green" and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review. Molecules 2017; 22:E680. [PMID: 28448474 PMCID: PMC6154587 DOI: 10.3390/molecules22050680] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Citrus is a major processed crop that results in large quantities of wastes and by-products rich in various bioactive compounds such as pectins, water soluble and insoluble antioxidants and essential oils. While some of those wastes are currently valorised by various technologies (yet most are discarded or used for feed), effective, non-toxic and profitable extraction strategies could further significantly promote the valorisation and provide both increased profits and high quality bioactives. The present review will describe and summarize the latest works concerning novel and greener methods for valorisation of citrus by-products. The outcomes and effectiveness of those technologies such as microwaves, ultrasound, pulsed electric fields and high pressure is compared both to conventional valorisation technologies and between the novel technologies themselves in order to highlight the advantages and potential scalability of these so-called "enabling technologies". In many cases the reported novel technologies can enable a valorisation extraction process that is "greener" compared to the conventional technique due to a lower energy consumption and reduced utilization of toxic solvents.
Collapse
|
Review |
8 |
157 |
9
|
Parizeau K, von Massow M, Martin R. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 35:207-17. [PMID: 25445261 DOI: 10.1016/j.wasman.2014.09.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 05/04/2023]
Abstract
It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.
Collapse
|
|
10 |
155 |
10
|
Yang F, Li GX, Yang QY, Luo WH. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. CHEMOSPHERE 2013; 93:1393-1399. [PMID: 24001663 DOI: 10.1016/j.chemosphere.2013.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH₄, N₂O, and NH₃) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH₄ and N₂O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO₂-eqt(-1) dry matter) than the other treatments.
Collapse
|
|
12 |
134 |
11
|
Goldstein MC, Titmus AJ, Ford M. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean. PLoS One 2013; 8:e80020. [PMID: 24278233 PMCID: PMC3835860 DOI: 10.1371/journal.pone.0080020] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
133 |
12
|
Sundberg C, Smårs S, Jönsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. BIORESOURCE TECHNOLOGY 2004; 95:145-150. [PMID: 15246438 DOI: 10.1016/j.biortech.2004.01.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 01/16/2004] [Accepted: 01/18/2004] [Indexed: 05/24/2023]
Abstract
During composting of household waste, the acidity of the material affects the process during the initial phase of rising temperature. In this study, the effects of temperature (36-46 degrees C) and pH (4.6-9.2) on the respiration rate during the early phase of composting were investigated in two different composts. A respiration method where small compost samples were incubated at constant temperature was used. The respiration rate was strongly reduced at 46 degrees C and pH below 6, compared to composts with a higher pH or lower temperature. The combination of high temperature and low pH is a possible adverse factor in large-scale composting of food waste.
Collapse
|
Comparative Study |
21 |
130 |
13
|
Vavilin VA, Angelidaki I. Anaerobic degradation of solid material: Importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol Bioeng 2004; 89:113-22. [PMID: 15540194 DOI: 10.1002/bit.20323] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found.
Collapse
|
|
21 |
122 |
14
|
Zhang L, Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1509-1515. [PMID: 22537972 DOI: 10.1016/j.wasman.2012.03.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.
Collapse
|
Comparative Study |
13 |
113 |
15
|
Sheets JP, Yang L, Ge X, Wang Z, Li Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 44:94-115. [PMID: 26235446 DOI: 10.1016/j.wasman.2015.07.037] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed.
Collapse
|
Review |
10 |
111 |
16
|
Tai J, Zhang W, Che Y, Feng D. Municipal solid waste source-separated collection in China: A comparative analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:1673-1682. [PMID: 21504843 DOI: 10.1016/j.wasman.2011.03.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/21/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.
Collapse
|
Comparative Study |
14 |
110 |
17
|
Lee DH, Behera SK, Kim JW, Park HS. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:876-82. [PMID: 18796348 DOI: 10.1016/j.wasman.2008.06.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/04/2008] [Accepted: 06/19/2008] [Indexed: 05/25/2023]
Abstract
This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.
Collapse
|
|
16 |
102 |
18
|
Lim JW, Wang JY. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:813-819. [PMID: 23290270 DOI: 10.1016/j.wasman.2012.11.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O2/L(R)-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.
Collapse
|
Evaluation Study |
12 |
101 |
19
|
Fisgativa H, Tremier A, Dabert P. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 50:264-274. [PMID: 26868845 DOI: 10.1016/j.wasman.2016.01.041] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
In order to determine the variability of food waste (FW) characteristics and the influence of these variable values on the anaerobic digestion (AD) process, FW characteristics from 70 papers were compiled and analysed statistically. Results indicated that FW characteristics values are effectively very variable and that 24% of these variations may be explained by the geographical origin, the type of collection source and the season of the collection. Considering the whole range of values for physicochemical characteristics (especially volatile solids (VS), chemical oxygen demand (COD) and biomethane potential (BMP)), FW show good potential for AD treatment. However, the high carbohydrates contents (36.4%VS) and the low pH (5.1) might cause inhibitions by the rapid acidification of the digesters. As regards the variation of FW characteristics, FW categories were proposed. Moreover, the adequacy of FW characteristics with AD treatment was discussed. Four FW categories were identified with critical characteristics values for AD performance: (1) the high dry matter (DM) and total ammonia nitrogen (TAN) content of FW collected with green waste, (2) the high cellulose (CEL) content of FW from the organic fraction of municipal solid waste, (3) the low carbon-to-nitrogen (C/N) ratio of FW collected during summer, (4) the high value of TAN and Na of FW from Asia. For these cases, an aerobic pre-treatment or a corrective treatment seems to be advised to avoid instabilities along the digestion. Finally, the results of this review-paper provide a data basis of values for FW characteristics that could be used for AD process design and environmental assessment.
Collapse
|
Review |
9 |
99 |
20
|
Yang F, Li Y, Han Y, Qian W, Li G, Luo W. Performance of mature compost to control gaseous emissions in kitchen waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:262-269. [PMID: 30543975 DOI: 10.1016/j.scitotenv.2018.12.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the performance of mature compost to mitigate gaseous emissions during kitchen waste composting. Cornstalk was mixed with kitchen waste at a ratio of 3:17 (wet weight) as the bulking agent. Mature compost (10% of raw composting materials on the wet weight basis) was mixed into or covered on the composting pile. A control treatment without any addition of mature compost was conducted for comparison. Results show that mature compost did not significantly affect the composting process. Nevertheless, gaseous emissions during kitchen waste composting were considerably reduced with the addition of mature compost. In particular, mixing mature compost with raw composting materials reduced ammonia, methane, and nitrous oxide emissions by 58.0%, 44.8%, and 73.6%, respectively. As a result, nitrogen could be conserved to increase nutrient contents and germination index of the compost product. Furthermore, the total greenhouse gas emissions during kitchen waste composting were reduced by 69.2% with the mixture of mature composting. By contrast, a lower reduction in gaseous emissions was observed when the same amount of mature compost was covered on the composting pile.
Collapse
|
|
6 |
96 |
21
|
Acha EM, Mianzan HW, Iribarne O, Gagliardini DA, Lasta C, Daleo P. The role of the Río de la Plata bottom salinity front in accumulating debris. MARINE POLLUTION BULLETIN 2003; 46:197-202. [PMID: 12586115 DOI: 10.1016/s0025-326x(02)00356-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Río de la Plata, one of the most important South American estuarine environments, is characterized by a bottom salinity front that generates an ecotone between the river and the estuary. Based on bottom trawls and costal sampling we describe the distribution, types, and amount of debris found in the bottom and shoreline across this front. Plastics and plastic bags were the main debris types in both areas. Concentrations of total debris upriver the front were always significantly higher than downriver the front showing that the front acts as a barrier accumulating debris. Moreover, a large part of debris end ups accumulated in the coastal area upriver the frontal position. This area is particularly sensitive because the coastline encompasses an UNESCO Man and the Biosphere Reserve and a Ramsar site, and due to the ecological significance of the front for many valuable species.
Collapse
|
|
22 |
95 |
22
|
Zhao J, Gui L, Wang Q, Liu Y, Wang D, Ni BJ, Li X, Xu R, Zeng G, Yang Q. Aged refuse enhances anaerobic digestion of waste activated sludge. WATER RESEARCH 2017; 123:724-733. [PMID: 28719817 DOI: 10.1016/j.watres.2017.07.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 05/16/2023]
Abstract
In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion.
Collapse
|
|
8 |
95 |
23
|
Li Z, Lu H, Ren L, He L. Experimental and modeling approaches for food waste composting: a review. CHEMOSPHERE 2013; 93:1247-1257. [PMID: 23876506 DOI: 10.1016/j.chemosphere.2013.06.064] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques.
Collapse
|
Review |
12 |
94 |
24
|
Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:2653-8. [PMID: 23790673 DOI: 10.1016/j.wasman.2013.05.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 05/12/2013] [Accepted: 05/16/2013] [Indexed: 05/24/2023]
Abstract
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37±1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9-70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.
Collapse
|
|
12 |
91 |
25
|
Zhai N, Zhang T, Yin D, Yang G, Wang X, Ren G, Feng Y. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 38:126-131. [PMID: 25623001 DOI: 10.1016/j.wasman.2014.12.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
This study investigated the effects of different initial pH (6.0, 6.5, 7.0, 7.5 and 8.0) and uncontrolled initial pH (CK) on the lab-scale anaerobic co-digestion of kitchen waste (KW) with cow manure (CM). The variations of pH, alkalinity, volatile fatty acids (VFAs) and total ammonia nitrogen (NH4(+)-N) were analyzed. The modified Gompertz equation was used for selecting the optimal initial pH through comprehensive evaluation of methane production potential, degradation of volatile solids (VS), and lag-phase time. The results showed that CK and the fermentation with initial pH of 6.0 failed. The pH values of the rest treatments reached 7.7-7.9 with significantly increased methane production. The predicted lag-phase times of treatments with initial pH of 6.5 and 7.5 were 21 and 22 days, which were 10 days shorter than the treatments with initial pH of 7.0 and 8.0, respectively. The maximum methane production potential (8579 mL) and VS degradation rate (179.8 mL/g VS) were obtained when the initial pH was 7.5, which is recommended for co-digestion of KW and CM.
Collapse
|
|
10 |
91 |