1
|
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403:901-6. [PMID: 10706289 DOI: 10.1038/35002607] [Citation(s) in RCA: 3392] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss of let-7 gene activity causes reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes precocious expression of adult fates during larval stages. let-7 encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3' untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, indicating that expression of these genes may be directly controlled by let-7. A reporter gene bearing the lin-41 3' untranslated region is temporally regulated in a let-7-dependent manner. A second regulatory RNA, lin-4, negatively regulates lin-14 and lin-28 through RNA-RNA interactions with their 3' untranslated regions. We propose that the sequential stage-specific expression of the lin-4 and let-7 regulatory RNAs triggers transitions in the complement of heterochronic regulatory proteins to coordinate developmental timing.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans Proteins
- DNA, Helminth
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genes, Switch
- Molecular Sequence Data
- Protein Biosynthesis
- RNA, Helminth/genetics
- RNA, Helminth/physiology
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Suppression, Genetic
- Transcription Factors/genetics
Collapse
|
|
25 |
3392 |
2
|
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2:737-44. [PMID: 11025665 PMCID: PMC2852586 DOI: 10.1038/35036374] [Citation(s) in RCA: 2035] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch.
Collapse
|
research-article |
25 |
2035 |
3
|
Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993; 73:1155-64. [PMID: 8513499 DOI: 10.1016/0092-8674(93)90644-6] [Citation(s) in RCA: 766] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have employed a method based on the Cre-loxP recombination system of bacteriophage P1 to generate a mouse strain in which the JH segments and the intron enhancer in the IgH locus are deleted. By analysis of immunoglobulin isotype switch recombination in heterozygous mutant B cells activated by lipopolysaccharide plus interleukin-4, we show that, on the mutant chromosome, switch recombination at the mu gene switch region is strongly suppressed, whereas the switch region of the gamma 1 gene is efficiently rearranged. These data demonstrate an independent control of switch recombination at individual switch regions and suggest that, in the process of switch recombination, the alignment of the recombining strands occurs independently of and probably after the introduction of double-strand breaks into the switch regions involved.
Collapse
|
|
32 |
766 |
4
|
Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 1995; 375:318-22. [PMID: 7753195 DOI: 10.1038/375318a0] [Citation(s) in RCA: 505] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Globin genes are regulated in a tissue-specific and developmental stage-specific manner, with the beta-globin gene being the last to be activated in the beta-gene cluster. CACCC-nucleotide sequences, which bind multiple nuclear proteins, including ubiquitously expressed Sp1 and erythroid Krüppel-like factor (EKLF), are among the cis-regulatory sequences critical for transcription of globin and non-globin erythroid-expressed genes. To determine the function of EKLF in vivo, we created mice deficient in EKLF by gene targeting. These embryos die of anaemia during fetal liver erythropoiesis and show the molecular and haematological features of beta-globin deficiency, found in beta-thalassaemia. Although it is expressed at all stages, EKLF is not required for yolk sac erythropoiesis, erythroid commitment or expression of other potential target genes. Its stage-specific and beta-globin-gene-specific requirement suggests that EKLF may facilitate completion of the fetal-to-adult (haemoglobin gamma to beta) switch in humans.
Collapse
|
|
30 |
505 |
5
|
Abstract
Tau protein undergoes a shift in its molecular mass and its electrophoretic complexity during early postnatal development. We have sequenced a tau cDNA from an adult rat brain expression library and have found two inserted sequences. One of these inserts predicts a fourth repeated sequence homologous to the other three in the carboxyl end of tau that have the property of microtubule binding. Oligonucleotide probes directed against the insert hybridized only to tau mRNA at postnatal time points, even though tau is first expressed as early as embryonic day 13. A probe directed against the junction revealed expression of non-insert-containing tau mRNA from embryonic day 14 until postnatal day 8, after which time there was an abrupt decline in the expression of this immature form. Comparison of the developmentally expressed tau sequences with those sequences obtained directly from Alzheimer paired helical filaments revealed the presence of both the mature and the immature tau mRNA sequences.
Collapse
|
Comparative Study |
36 |
476 |
6
|
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20:165-96. [PMID: 11861601 DOI: 10.1146/annurev.immunol.20.090501.112049] [Citation(s) in RCA: 464] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.
Collapse
|
Review |
23 |
464 |
7
|
Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2003; 11:29-35. [PMID: 14718920 DOI: 10.1038/nsmb710] [Citation(s) in RCA: 400] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 11/10/2003] [Indexed: 11/09/2022]
Abstract
A class of riboswitches that recognizes guanine and discriminates against other purine analogs was recently identified. RNAs that carry the consensus sequence and structural features of guanine riboswitches are located in the 5' untranslated region (UTR) of numerous prokaryotic genes, where they control the expression of proteins involved in purine salvage and biosynthesis. We report that three representatives of this riboswitch class bind adenine with values for apparent dissociation constant (apparent K(d)) that are several orders of magnitude lower than those for binding guanine. Because preference for adenine is attributable to a single nucleotide substitution, the RNA most likely recognizes its ligand by forming a Watson-Crick base pair. In addition, the adenine riboswitch associated with the ydhL gene of Bacillus subtilis functions as a genetic 'on' switch, wherein adenine binding causes a structural rearrangement that precludes formation of an intrinsic transcription terminator stem.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
400 |
8
|
Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature 1995; 377:495-500. [PMID: 7566146 DOI: 10.1038/377495a0] [Citation(s) in RCA: 394] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have generated transgenic plants in which the flower-meristem-identity gene LEAFY of Arabidopsis is constitutively expressed. LEAFY is sufficient to determine floral fate in lateral shoot meristems of both Arabidopsis and the heterologous species aspen, with the consequence that flower development is induced precociously. Our results also suggest a new level of regulation during flower development, as indicated by the competence of the main shoot to respond to LEAFY activity.
Collapse
|
|
30 |
394 |
9
|
Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ, Stern DM. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 2000; 6:1355-61. [PMID: 11100120 DOI: 10.1038/82168] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation of the zinc-finger transcription factor early growth response (Egr)-1, initially linked to developmental processes, is shown here to function as a master switch activated by ischemia to trigger expression of pivotal regulators of inflammation, coagulation and vascular hyperpermeability. Chemokine, adhesion receptor, procoagulant and permeability-related genes are coordinately upregulated by rapid ischemia-mediated activation of Egr-1. Deletion of the gene encoding Egr-1 strikingly diminished expression of these mediators of vascular injury in a murine model of lung ischemia/reperfusion, and enhanced animal survival and organ function. Rapid activation of Egr-1 in response to oxygen deprivation primes the vasculature for dysfunction manifest during reperfusion. These studies define a central and unifying role for Egr-1 activation in the pathogenesis of ischemic tissue damage.
Collapse
|
|
25 |
386 |
10
|
Abstract
Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.
Collapse
|
Review |
26 |
293 |
11
|
Abstract
Cyclic AMP response element binding protein (CREB)-responsive transcription plays a central role in the formation of long-term memory in Drosophila, Aplysia and mice. Agents that disrupt the activity of CREB specifically block the formation of long-term memory, whereas agents that increase the amount or activity of the transcription factor accelerate the process. These results have led to the recent hypothesis that CREB is pivotal in the switch from short-term (protein synthesis independent) to long-term (protein synthesis dependent) memory.
Collapse
|
Review |
29 |
291 |
12
|
Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger JD, Stephens DS. Capsule switching of Neisseria meningitidis. Proc Natl Acad Sci U S A 1997; 94:271-6. [PMID: 8990198 PMCID: PMC19312 DOI: 10.1073/pnas.94.1.271] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The different sialic acid (serogroups B, C, Y, and W-135) and nonsialic acid (serogroup A) capsular polysaccharides expressed by Neisseria meningitidis are major virulence factors and are used as epidemiologic markers and vaccine targets. However, the identification of meningococcal isolates with similar genetic markers but expressing different capsular polysaccharides suggests that meningococcal clones can switch the type of capsule they express. We identified, except for capsule, isogenic serogroups B [(alpha2-->8)-linked polysialic acid] and C [(alpha2-->9)-linked polysialic acid] meningococcal isolates from an outbreak of meningococcal disease in the U. S. Pacific Northwest. We used these isolates and prototype serogroup A, B, C, Y, and W-135 strains to define the capsular biosynthetic and transport operons of the major meningococcal serogroups and to show that switching from the B to C capsule in the outbreak strain was the result of allelic exchange of the polysialyltransferase. Capsule switching was probably the result of transformation and horizontal DNA exchange in vivo of a serogroup C capsule biosynthetic operon. These findings indicate that closely related virulent meningococcal clones may not be recognized by traditional serogroup-based surveillance and can escape vaccine-induced or natural protective immunity by capsule switching. Capsule switching may be an important virulence mechanism of meningococci and other encapsulated bacterial pathogens. As vaccine development progresses and broader immunization with capsular polysaccharide conjugate vaccines becomes a reality, the ability to switch capsular types may have important implications for the impact of these vaccines.
Collapse
|
research-article |
28 |
286 |
13
|
Abstract
Class-switch recombination (CSR) occurs by an unusual and intriguing mechanism that has not been clearly elucidated as yet. Currently, we know that this mechanism involves recombination between large and highly repetitive switch (S) regions, is targeted by S-region transcription and requires the activity of the newly discovered activation-induced deaminase (AID). In this review, we discuss the potential role of these factors in CSR, discuss potential relationships between CSR and somatic hypermutation, and speculate how CSR and related mechanisms might contribute to genomic instability.
Collapse
|
Review |
23 |
285 |
14
|
Rajewsky K, Förster I, Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 1987; 238:1088-94. [PMID: 3317826 DOI: 10.1126/science.3317826] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The repertoire of antibody variable (V) regions has been subject to evolutionary selection, affecting both the diversity of V region genes in the germline and their expression in the B lymphocyte population and its subsets. In ontogeny, contact with an antigen leads to the expansion of B cells expressing antibodies complementary to it. In a defined phase of B cell differentiation, new sets of V regions are generated from the existing repertoire through somatic hypermutation. Cells carrying advantageous antibody mutants are selected into the memory compartment and produce a stable secondary response upon reexposure to the antigen.
Collapse
|
Review |
38 |
276 |
15
|
Gauchat JF, Lebman DA, Coffman RL, Gascan H, de Vries JE. Structure and expression of germline epsilon transcripts in human B cells induced by interleukin 4 to switch to IgE production. J Exp Med 1990; 172:463-73. [PMID: 1695667 PMCID: PMC2188335 DOI: 10.1084/jem.172.2.463] [Citation(s) in RCA: 264] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interleukin 4 (IL-4)-induced IgE production coincides with the appearance of the 2.2-kb productive epsilon-mRNA, but is preceded by synthesis of a 1.7-kb epsilon-RNA. Analysis of cDNA copies of the 5' end of this RNA indicated that the 1.7-kb epsilon-RNA is a germline epsilon immunoglobulin heavy chain transcript with an exon mapping 5' to the switch region. Transcription through switch regions has been implicated in the control of class switching. However, IL-4 or cloned CD4+ T cells were able to induce germline epsilon transcripts without inducing IgE synthesis, for which both signals were required. These results indicate that induction of human germline epsilon-RNA does not necessarily result in IgE synthesis, and that additional regulatory mechanisms are involved in class switching.
Collapse
|
research-article |
35 |
264 |
16
|
Bell LR, Horabin JI, Schedl P, Cline TW. Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 1991; 65:229-39. [PMID: 2015624 DOI: 10.1016/0092-8674(91)90157-t] [Citation(s) in RCA: 264] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sex-lethal is a binary switch gene that controls all aspects of Drosophila sexual dimorphism. It must be active in females and inactive in males. The on/off regulation reflects alternative RNA splicing in which full-length proteins are produced only in females. Here we investigate the role of Sxl in maintaining sexual pathway commitments. By ectopic expression of a female Sxl cDNA in transgenic male flies, we show that Sxl protein induces a rapid switch from male- to female-specific splicing. The ectopically expressed Sxl protein wil trans-activate an endogenous wild-type Sxl gene. This establishes a feedback loop in which Sxl proteins induce their own synthesis by directing the female-specific splicing of Sxl transcripts. We conclude that the female determined state is maintained by Sxl through positive autoregulation, while the male determined state is maintained by default.
Collapse
|
|
34 |
264 |
17
|
Lebman DA, Coffman RL. Interleukin 4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. J Exp Med 1988; 168:853-62. [PMID: 3049907 PMCID: PMC2189023 DOI: 10.1084/jem.168.3.853] [Citation(s) in RCA: 253] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although it has been established that IL-4 enhances both IgG1 and IgE secretion in LPS-stimulated B cell cultures, these studies failed to determine whether IL-4 preferentially induces isotype switching or preferentially allows for the maturation of precommitted precursor cells. To distinguish between these possibilities, it is necessary to ascertain the effect of IL-4 on the isotypes secreted by individual precursor cells during clonal expansion. Therefore, clonal cultures of B cells stimulated with a Th2 helper cell line specific for rabbit Ig and rabbit anti-mouse IgM were established. The majority of B cells are capable of undergoing clonal expansion under these conditions. To vary the level of IL-4 present, either IL-4 or anti-IL-4 was added to cultures. In the presence of IL-4 there was an increase in the proportion of clones that secreted IgE and a decrease in the proportion of clones that secreted IgM. The addition of IL-4 to cultures also increased the amount of IgE secreted by individual clones. Thus, these experiments definitively prove that IL-4 causes specific heavy chain class switching to IgE in Th2-stimulated B cell cultures. In contrast, IL-4 does not affect the proportion of clones secreting IgG1, suggesting that other consequences of Th cell-B cell interactions play a role in the generation of an IgG1 response.
Collapse
|
research-article |
37 |
253 |
18
|
Behringer RR, Ryan TM, Palmiter RD, Brinster RL, Townes TM. Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev 1990; 4:380-9. [PMID: 1692558 DOI: 10.1101/gad.4.3.380] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies demonstrated correct tissue- and temporal-specific expression of human gamma- and beta-globin genes in transgenic mice; however, expression was extremely low. When the erythroid-specific DNase I super-hypersensitive (HS) sites that are normally located upstream of the human beta-globin locus were fused individually to gamma- or beta-globin genes, expression increased to endogenous mouse globin levels but temporal specificity was lost. In contrast, when the HS sequences were combined with fragments containing both gamma- and beta-globin genes, correct developmental regulation was restored. We suggest that human gamma- to beta-globin gene switching during development results from competition of individual globin gene family members for interaction with the HS sequences and that factors influencing these competitive interactions determine temporal specificity.
Collapse
|
|
35 |
243 |
19
|
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 2011; 118:2044-54. [PMID: 21613252 PMCID: PMC3292426 DOI: 10.1182/blood-2011-03-331371] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/10/2011] [Indexed: 01/17/2023] Open
Abstract
The cellular events that lead to terminal erythroid differentiation rely on the controlled interplay of extra- and intracellular regulatory factors. Their downstream effects are highly coordinated and result in the structural/morphologic and metabolic changes that uniquely characterize a maturing red blood cell. Erythroid Krüppel-like factor (EKLF/KLF1) is one of a very small number of intrinsic transcription factors that play a major role in regulating these events. This review covers 3 major aspects of erythropoiesis in which EKLF plays crucial functions: (1) at the megakaryocyte-erythroid progenitor stage, where it is involved in erythroid lineage commitment; (2) during the global expansion of erythroid gene expression in primitive and definitive lineages, where it plays a direct role in globin switching; and (3) during the terminal maturation of red cells, where it helps control exit from the cell cycle. We conclude by describing recent studies of mammalian EKLF/KLF1 mutations that lead to altered red cell phenotypes and disease.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
236 |
20
|
Maruyama M, Lam KP, Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 2000; 407:636-42. [PMID: 11034213 DOI: 10.1038/35036600] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunological memory in the antibody system is generated in T-cell-dependent responses and carried by long-lived memory B cells that recognize antigen by high-affinity antibodies. But it remains controversial whether these B cells represent true 'memory' cells (that is, their maintenance is independent of the immunizing antigen), or whether they are a product of a chronic immune response driven by the immunizing antigen, which can be retained in the organism for extended time periods on the surface of specialized antigen-presenting cells (follicular dendritic cells). Cell transfer experiments provided evidence in favour of a role of the immunizing antigen; however, analysis of memory cells in intact animals, which showed that these cells are mostly resting and can persist in the absence of detectable T-cell help or follicular dendritic cells, argued against it. Here we show, by using a genetic switch mediated by Cre recombinase, that memory B cells switching their antibody specificity away from the immunizing antigen are indeed maintained in the animal over long periods of time, similar to cells retaining their original antigen-binding specificity.
Collapse
|
|
25 |
234 |
21
|
Deans TL, Cantor CR, Collins JJ. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 2007; 130:363-72. [PMID: 17662949 DOI: 10.1016/j.cell.2007.05.045] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/11/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Here, we introduce an engineered, tunable genetic switch that couples repressor proteins and an RNAi target design to effectively turn any gene off. We used the switch to regulate the expression of EGFP in mouse and human cells and found that it offers >99% repression as well as the ability to tune gene expression. To demonstrate the system's modularity and level of gene silencing, we used the switch to tightly regulate the expression of diphtheria toxin and Cre recombinase, respectively. We also used the switch to tune the expression of a proapoptotic gene and show that a threshold expression level is required to induce apoptosis. This work establishes a system for tight, tunable control of mammalian gene expression that can be used to explore the functional role of various genes as well as to determine whether a phenotype is the result of a threshold response to changes in gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
208 |
22
|
Liu Z, Butow RA. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 1999; 19:6720-8. [PMID: 10490611 PMCID: PMC84662 DOI: 10.1128/mcb.19.10.6720] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1999] [Accepted: 07/02/1999] [Indexed: 11/20/2022] Open
Abstract
The Hap2,3,4,5p transcription complex is required for expression of many mitochondrial proteins that function in electron transport and the tricarboxylic acid (TCA) cycle. We show that as the cells' respiratory function is reduced or eliminated, the expression of four TCA cycle genes, CIT1, ACO1, IDH1, and IDH2, switches from HAP control to control by three genes, RTG1, RTG2, and RTG3. The expression of four additional TCA cycle genes downstream of IDH1 and IDH2 is independent of the RTG genes. We have previously shown that the RTG genes control the retrograde pathway, defined as a change in the expression of a subset of nuclear genes, e.g., the glyoxylate cycle CIT2 gene, in response to changes in the functional state of mitochondria. We show that the cis-acting sequence controlling RTG-dependent expression of CIT1 includes an R box element, GTCAC, located 70 bp upstream of the Hap2,3,4,5p binding site in the CIT1 upstream activation sequence. The R box is a binding site for Rtg1p-Rtg3p, a heterodimeric, basic helix-loop-helix/leucine zipper transcription factor complex. We propose that in cells with compromised mitochondrial function, the RTG genes take control of the expression of genes leading to the synthesis of alpha-ketoglutarate to ensure that sufficient glutamate is available for biosynthetic processes and that increased flux of the glyoxylate cycle, via elevated CIT2 expression, provides a supply of metabolites entering the TCA cycle sufficient to support anabolic pathways. Glutamate is a potent repressor of RTG-dependent expression of genes encoding both mitochondrial and nonmitochondrial proteins, suggesting that it is a specific feedback regulator of the RTG system.
Collapse
|
research-article |
26 |
208 |
23
|
Matzke AJ, Matzke MA. Position effects and epigenetic silencing of plant transgenes. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:142-8. [PMID: 10066569 DOI: 10.1016/s1369-5266(98)80016-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nuclear processes that silence plant transgenes are being revealed by analyses of natural triggers of epigenetic modifications, particularly cytosine methylation, and by comparisons of the genomic environments of differentially expressed transgene loci. It is increasingly apparent that plant genomes can sense and respond to the presence of foreign DNA in certain sequence contexts and at multiple dispersed sites. Determining the basis of this sensitivity and how nuclear defense systems are activated poses major challenges for the future.
Collapse
|
Review |
27 |
206 |
24
|
Holmes AM, Haber JE. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 1999; 96:415-24. [PMID: 10025407 DOI: 10.1016/s0092-8674(00)80554-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.
Collapse
|
|
26 |
206 |
25
|
Cogné M, Lansford R, Bottaro A, Zhang J, Gorman J, Young F, Cheng HL, Alt FW. A class switch control region at the 3' end of the immunoglobulin heavy chain locus. Cell 1994; 77:737-47. [PMID: 8205622 DOI: 10.1016/0092-8674(94)90057-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We replaced the IgH 3' enhancer (3'EH) region with a neomycin resistance gene in ES cells and generated chimeric mice in which all mature lymphocytes were either heterozygous (3'EH+/-) or homozygous (3'EH-/-) for the mutation. In vitro activated 3'EH-/- B cells responded similarly to 3'EH+/- B cells with respect to proliferation and secretion of IgM and IgG1 but were specifically deficient in IgG2a, IgG2b, IgG3, and IgE secretion. These isotype deficiencies correlated with a deficiency in accumulation of transcripts from and class switching to affected CH genes. In vivo, chimeric mice containing only 3'EH-/- B cells were deficient in serum IgG2a and IgG3. We propose that the 3'EH-/- mutation disrupts the activity of a regulatory region that influences heavy chain class switching to several different CH genes that lie as far as 100 kb upstream of the mutation.
Collapse
|
|
31 |
199 |