1
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
|
Review |
8 |
560 |
2
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
|
|
20 |
508 |
3
|
Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010; 464:441-4. [PMID: 20154731 DOI: 10.1038/nature08817] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/07/2010] [Indexed: 11/09/2022]
Abstract
The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.
Collapse
|
|
15 |
503 |
4
|
Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 2002; 99:3695-700. [PMID: 11904428 PMCID: PMC122586 DOI: 10.1073/pnas.062526999] [Citation(s) in RCA: 490] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Indexed: 01/11/2023] Open
Abstract
Biosynthesis of an Escherichia coli cell, with organic compounds as sources of energy and carbon, requires approximately 20 to 60 billion high-energy phosphate bonds [Stouthamer, A. H. (1973) Antonie van Leeuwenhoek 39, 545-565]. A substantial fraction of this energy budget is devoted to biosynthesis of amino acids, the building blocks of proteins. The fueling reactions of central metabolism provide precursor metabolites for synthesis of the 20 amino acids incorporated into proteins. Thus, synthesis of an amino acid entails a dual cost: energy is lost by diverting chemical intermediates from fueling reactions and additional energy is required to convert precursor metabolites to amino acids. Among amino acids, costs of synthesis vary from 12 to 74 high-energy phosphate bonds per molecule. The energetic advantage to encoding a less costly amino acid in a highly expressed gene can be greater than 0.025% of the total energy budget. Here, we provide evidence that amino acid composition in the proteomes of E. coli and Bacillus subtilis reflects the action of natural selection to enhance metabolic efficiency. We employ synonymous codon usage bias as a measure of translation rates and show increases in the abundance of less energetically costly amino acids in highly expressed proteins.
Collapse
|
research-article |
23 |
490 |
5
|
Abstract
Recently, a general method was developed that makes it possible to genetically encode unnatural amino acids with diverse physical, chemical, or biological properties in Escherichia coli, yeast, and mammalian cells. More than 30 unnatural amino acids have been incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA/aminoacyl-tRNA synthetase pair. These include fluorescent, glycosylated, metal-ion-binding, and redox-active amino acids, as well as amino acids with unique chemical and photochemical reactivity. This methodology provides a powerful tool both for exploring protein structure and function in vitro and in vivo and for generating proteins with new or enhanced properties.
Collapse
|
Review |
19 |
472 |
6
|
Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 2006; 444:85-8. [PMID: 17051155 DOI: 10.1038/nature05241] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/11/2006] [Indexed: 11/09/2022]
Abstract
Deuterostomes comprise vertebrates, the related invertebrate chordates (tunicates and cephalochordates) and three other invertebrate taxa: hemichordates, echinoderms and Xenoturbella. The relationships between invertebrate and vertebrate deuterostomes are clearly important for understanding our own distant origins. Recent phylogenetic studies of chordate classes and a sea urchin have indicated that urochordates might be the closest invertebrate sister group of vertebrates, rather than cephalochordates, as traditionally believed. More remarkable is the suggestion that cephalochordates are closer to echinoderms than to vertebrates and urochordates, meaning that chordates are paraphyletic. To study the relationships among all deuterostome groups, we have assembled an alignment of more than 35,000 homologous amino acids, including new data from a hemichordate, starfish and Xenoturbella. We have also sequenced the mitochondrial genome of Xenoturbella. We support the clades Olfactores (urochordates and vertebrates) and Ambulacraria (hemichordates and echinoderms). Analyses using our new data, however, do not support a cephalochordate and echinoderm grouping and we conclude that chordates are monophyletic. Finally, nuclear and mitochondrial data place Xenoturbella as the sister group of the two ambulacrarian phyla. As such, Xenoturbella is shown to be an independent phylum, Xenoturbellida, bringing the number of living deuterostome phyla to four.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
358 |
7
|
The PsychENCODE Consortium, Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, Jaffe AE, Pinto D, Dracheva S, Geschwind DH, Mill J, Nairn AC, Abyzov A, Pochareddy S, Prabhakar S, Weissman S, Sullivan PF, State MW, Weng Z, Peters MA, White KP, Gerstein MB, Senthil G, Lehner T, Sklar P, Sestan N. The PsychENCODE project. Nat Neurosci 2015; 18:1707-1712. [PMID: 26605881 PMCID: PMC4675669 DOI: 10.1038/nn.4156] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
305 |
8
|
Karijolich J, Yu YT. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 2011; 474:395-8. [PMID: 21677757 PMCID: PMC3381908 DOI: 10.1038/nature10165] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/28/2011] [Indexed: 11/09/2022]
Abstract
All three translation termination codons, or nonsense codons, contain a uridine residue at the first position of the codon. Here, we demonstrate that pseudouridylation (conversion of uridine into pseudouridine (Ψ), ref. 4) of nonsense codons suppresses translation termination both in vitro and in vivo. In vivo targeting of nonsense codons is accomplished by the expression of an H/ACA RNA capable of directing the isomerization of uridine to Ψ within the nonsense codon. Thus, targeted pseudouridylation represents a novel approach for promoting nonsense suppression in vivo. Remarkably, we also show that pseudouridylated nonsense codons code for amino acids with similar properties. Specifically, ΨAA and ΨAG code for serine and threonine, whereas ΨGA codes for tyrosine and phenylalanine, thus suggesting a new mode of decoding. Our results also suggest that RNA modification, as a naturally occurring mechanism, may offer a new way to expand the genetic code.
Collapse
|
research-article |
14 |
289 |
9
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
258 |
10
|
Singh VK, Mangalam AK, Dwivedi S, Naik S. Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 1998; 24:318-9. [PMID: 9494736 DOI: 10.2144/98242pf02] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
|
27 |
233 |
11
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
|
|
21 |
217 |
12
|
Abstract
Forty different single-factor criteria and multi-factor hypotheses about chronological order of appearance of amino acids in the early evolution are summarized in consensus ranking. All available knowledge and thoughts about origin and evolution of the genetic code are thus combined in a single list where the amino acids are ranked chronologically. Due to consensus nature of the chronology it has several important properties not visible in individual rankings by any of the initial criteria. Nine amino acids of the Miller's imitation of primordial environment are all ranked as topmost (G, A, V, D, E, P, S, L, T). This result does not change even after several criteria related to Miller's data are excluded from calculations. The consensus order of appearance of the 20 amino acids on the evolutionary scene also reveals a unique and strikingly simple chronological organization of 64 codons, that could not be figured out from individual criteria: New codons appear in descending order of their thermostability, as complementary pairs, with the complements recruited sequentially from the codon repertoires of the earlier or simultaneously appearing amino acids. These three rules (Thermostability, Complementarity and Processivity) hold strictly as well as leading position of the earliest amino acids according to Miller. The consensus chronology of amino acids, G/A, V/D, P, S, E/L, T, R, N, K, Q, I, C, H, F, M, Y, W, and the derived temporal order for codons may serve, thus, as a justified working model of choice for further studies on the origin and evolution of the genetic code.
Collapse
|
|
25 |
205 |
13
|
Abstract
During the expression of a certain genes standard decoding is over-ridden in a site or mRNA specific manner. This recoding occurs in response to special signals in mRNA and probably occurs in all organisms. This review deals with the function and distribution of recoding with a focus on the ribosomal frameshifting used for gene expression in bacteria.
Collapse
|
Review |
23 |
174 |
14
|
Itzkovitz S, Alon U. The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res 2007; 17:405-12. [PMID: 17293451 PMCID: PMC1832087 DOI: 10.1101/gr.5987307] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA sequences that code for proteins need to convey, in addition to the protein-coding information, several different signals at the same time. These "parallel codes" include binding sequences for regulatory and structural proteins, signals for splicing, and RNA secondary structure. Here, we show that the universal genetic code can efficiently carry arbitrary parallel codes much better than the vast majority of other possible genetic codes. This property is related to the identity of the stop codons. We find that the ability to support parallel codes is strongly tied to another useful property of the genetic code--minimization of the effects of frame-shift translation errors. Whereas many of the known regulatory codes reside in nontranslated regions of the genome, the present findings suggest that protein-coding regions can readily carry abundant additional information.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
157 |
15
|
Abstract
The evolutionary forces that produced the canonical genetic code before the last universal ancestor remain obscure. One hypothesis is that the arrangement of amino acid/codon assignments results from selection to minimize the effects of errors (e.g., mistranslation and mutation) on resulting proteins. If amino acid similarity is measured as polarity, the canonical code does indeed outperform most theoretical alternatives. However, this finding does not hold for other amino acid properties, ignores plausible restrictions on possible code structure, and does not address the naturally occurring nonstandard genetic codes. Finally, other analyses have shown that significantly better code structures are possible. Here, we show that if theoretically possible code structures are limited to reflect plausible biological constraints, and amino acid similarity is quantified using empirical data of substitution frequencies, the canonical code is at or very close to a global optimum for error minimization across plausible parameter space. This result is robust to variation in the methods and assumptions of the analysis. Although significantly better codes do exist under some assumptions, they are extremely rare and thus consistent with reports of an adaptive code: previous analyses which suggest otherwise derive from a misleading metric. However, all extant, naturally occurring, secondarily derived, nonstandard genetic codes do appear less adaptive. The arrangement of amino acid assignments to the codons of the standard genetic code appears to be a direct product of natural selection for a system that minimizes the phenotypic impact of genetic error. Potential criticisms of previous analyses appear to be without substance. That known variants of the standard genetic code appear less adaptive suggests that different evolutionary factors predominated before and after fixation of the canonical code. While the evidence for an adaptive code is clear, the process by which the code achieved this optimization requires further attention.
Collapse
|
|
25 |
156 |
16
|
Donaldson LF, Harmar AJ, McQueen DS, Seckl JR. Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 16:143-9. [PMID: 1281253 DOI: 10.1016/0169-328x(92)90204-o] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptides in dorsal root ganglia (DRG) have been implicated in the pathogenesis of pain and neurogenic inflammation in experimental and clinical arthritis. Recently we demonstrated increased levels of substance P (SP) and calcitonin gene-related peptide (CGRP) confined to innervating DRG in adjuvant-mediated monoarthritis. We have now investigated whether changes in peptide content are reflected in altered neuropeptide gene expression and the time course involved. Using in situ hybridization we found marked increases in expression of beta-preprotachykinin (PPT; 81 +/- 24% rise) and alpha-CGRP (44 +/- 6% rise) mRNAs in innervating (ipsilateral L5) DRG neurones only. These increases occurred at the onset of acute inflammation (8 h) and persisted until chronic arthritis developed after 14 days. There were no changes in the proportion of DRG neurones expressing PPT or CGRP mRNAs. Messenger RNA encoding vasoactive intestinal polypeptide (VIP) was not induced. These data suggest that increased synthesis of PPT and CGRP peptides in DRG may play a role in the pathogenesis both of adjuvant-mediated acute inflammation and chronic arthritis.
Collapse
|
|
33 |
144 |
17
|
Gilis D, Massar S, Cerf NJ, Rooman M. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2001; 2:RESEARCH0049. [PMID: 11737948 PMCID: PMC60310 DOI: 10.1186/gb-2001-2-11-research0049] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 07/06/2001] [Accepted: 09/28/2001] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The genetic code is known to be efficient in limiting the effect of mistranslation errors. A misread codon often codes for the same amino acid or one with similar biochemical properties, so the structure and function of the coded protein remain relatively unaltered. Previous studies have attempted to address this question quantitatively, by estimating the fraction of randomly generated codes that do better than the genetic code in respect of overall robustness. We extended these results by investigating the role of amino-acid frequencies in the optimality of the genetic code. RESULTS We found that taking the amino-acid frequency into account decreases the fraction of random codes that beat the natural code. This effect is particularly pronounced when more refined measures of the amino-acid substitution cost are used than hydrophobicity. To show this, we devised a new cost function by evaluating in silico the change in folding free energy caused by all possible point mutations in a set of protein structures. With this function, which measures protein stability while being unrelated to the code's structure, we estimated that around two random codes in a billion (109) are fitter than the natural code. When alternative codes are restricted to those that interchange biosynthetically related amino acids, the genetic code appears even more optimal. CONCLUSIONS These results lead us to discuss the role of amino-acid frequencies and other parameters in the genetic code's evolution, in an attempt to propose a tentative picture of primitive life.
Collapse
|
research-article |
24 |
142 |
18
|
Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson B, Uhlén M. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res 2004; 14:221-7. [PMID: 14762060 PMCID: PMC327097 DOI: 10.1101/gr.1673304] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 11/24/2003] [Indexed: 11/25/2022]
Abstract
Mycoplasma mycoides subsp. mycoidesSC (MmymySC)is the etiological agent of contagious bovine pleuropneumonia (CBPP), a highly contagious respiratory disease in cattle. The genome of Mmymy SC type strain PG1(T) has been sequenced to map all the genes and to facilitate further studies regarding the cell function of the organism and CBPP. The genome is characterized by a single circular chromosome of 1211703 bp with the lowest G+C content (24 mole%)and the highest density of insertion sequences (13% of the genome size)of all sequenced bacterial genomes. The genome contains 985 putative genes, of which 72 are part of insertion sequences and encode transposases. Anomalies in the GC-skew pattern and the presence of large repetitive sequences indicate a high genomic plasticity. A variety of potential virulence factors was identified, including genes encoding putative variable surface proteins and enzymes and transport proteins responsible for the production of hydrogen peroxide and the capsule, which is believed to have toxic effects on the animal.
Collapse
|
Comparative Study |
21 |
140 |
19
|
Abstract
Genetic code expansion for synthesis of proteins containing noncanonical amino acids is a rapidly growing field in synthetic biology. Creating optimal orthogonal translation systems will require re-engineering central components of the protein synthesis machinery on the basis of a solid mechanistic biochemical understanding of the synthetic process.
Collapse
|
research-article |
12 |
131 |
20
|
Wong GKS, Wang J, Tao L, Tan J, Zhang J, Passey DA, Yu J. Compositional gradients in Gramineae genes. Genome Res 2002; 12:851-6. [PMID: 12045139 PMCID: PMC1383739 DOI: 10.1101/gr.189102] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Accepted: 04/03/2002] [Indexed: 11/24/2022]
Abstract
In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage. The magnitudes of these gradients are large enough to hinder the annotation of the rice genome and to confound the detection of protein homologies across the monocot-eudicot divide.
Collapse
|
Comparative Study |
23 |
129 |
21
|
Lee N, Bessho Y, Wei K, Szostak JW, Suga H. Ribozyme-catalyzed tRNA aminoacylation. NATURE STRUCTURAL BIOLOGY 2000; 7:28-33. [PMID: 10625423 DOI: 10.1038/71225] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RNA world hypothesis implies that coded protein synthesis evolved from a set of ribozyme catalyzed acyl-transfer reactions, including those of aminoacyl-tRNA synthetase ribozymes. We report here that a bifunctional ribozyme generated by directed in vitro evolution can specifically recognize an activated glutaminyl ester and aminoacylate a targeted tRNA, via a covalent aminoacyl-ribozyme intermediate. The ribozyme consists of two distinct catalytic domains; one domain recognizes the glutamine substrate and self-aminoacylates its own 5'-hydroxyl group, and the other recognizes the tRNA and transfers the aminoacyl group to the 3'-end. The interaction of these domains results in a unique pseudoknotted structure, and the ribozyme requires a change in conformation to perform the sequential aminoacylation reactions. Our result supports the idea that aminoacyl-tRNA synthetase ribozymes could have played a key role in the evolution of the genetic code and RNA-directed translation.
Collapse
MESH Headings
- Acylation
- Base Sequence
- Binding Sites
- Catalytic Domain
- Cloning, Molecular
- Evolution, Molecular
- Genetic Code/genetics
- Glutamine/metabolism
- Kinetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Gln/metabolism
- Sequence Alignment
- Structure-Activity Relationship
- Substrate Specificity
Collapse
|
|
25 |
125 |
22
|
Boore JL, Medina M, Rosenberg LA. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the bivalve Mytilus edulis. Mol Biol Evol 2004; 21:1492-503. [PMID: 15014161 DOI: 10.1093/molbev/msh090] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and it has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer noncoding nucleotides than any other mtDNA studied to date, with the largest noncoding region only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but it is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
114 |
23
|
Goto K, Watanabe M, Kondo H, Yuasa H, Sakane F, Kanoh H. Gene cloning, sequence, expression and in situ localization of 80 kDa diacylglycerol kinase specific to oligodendrocyte of rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 16:75-87. [PMID: 1339302 DOI: 10.1016/0169-328x(92)90196-i] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 3.1 kbp cDNA clone encoding diacylglycerol (DG) kinase of 80 kDa (80K-DG kinase) was isolated from a rat brain cDNA library. The deduced amino acid sequence was 82% homologous to previously identified porcine 80K-DG kinase and contained zinc finger-like sequences, E-F hand motifs and ATP-binding sites similar to the porcine counterpart. By in situ hybridization histochemistry of rat brain at postnatal week 3, the expression signals for 80K-DG kinase mRNA appeared predominantly on somata of discrete cells in the white matter, and the expression pattern was similar to that of the myelin-specific proteins. In immunohistochemistry using the antibody against bacterially expressed DG kinase-fusion protein, numerous fibrous or dot-like structures exhibiting the immunoreactivity were concentrated in the white matter and they were arranged to radiate in the cerebral cortex and the cerebellar granular layer in a pattern almost identical to that of oligodendrocytes. No neuronal cells exhibited the immunoreactivity. The present finding thus strongly suggests that 80K-DG kinase is expressed specifically in the oligodendrocytes, but not neurons, and may be involved in the myelin formation and metabolism. In addition, the intense hybridization signals and the immunoreactivity for this protein were detected in the entire medulla of the thymus and the periarterial lymphatic area of the splenic white pulp both of which represent T-cell-dependent areas.
Collapse
|
|
33 |
111 |
24
|
Wan XF, Xu D, Kleinhofs A, Zhou J. Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol 2004; 4:19. [PMID: 15222899 PMCID: PMC476735 DOI: 10.1186/1471-2148-4-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 06/28/2004] [Indexed: 11/25/2022] Open
Abstract
Background Codon usage bias has been widely reported to correlate with GC composition. However, the quantitative relationship between codon usage bias and GC composition across species has not been reported. Results Based on an informatics method (SCUO) we developed previously using Shannon informational theory and maximum entropy theory, we investigated the quantitative relationship between codon usage bias and GC composition. The regression based on 70 bacterial and 16 archaeal genomes showed that in bacteria, SCUO = -2.06 * GC3 + 2.05*(GC3)2 + 0.65, r = 0.91, and that in archaea, SCUO = -1.79 * GC3 + 1.85*(GC3)2 + 0.56, r = 0.89. We developed an analytical model to quantify synonymous codon usage bias by GC compositions based on SCUO. The parameters within this model were inferred by inspecting the relationship between codon usage bias and GC composition across 70 bacterial and 16 archaeal genomes. We further simplified this relationship using only GC3. This simple model was supported by computational simulation. Conclusions The synonymous codon usage bias could be simply expressed as 1+ (p/2)log2(p/2) + ((1-p)/2)log2((l-p)/2), where p = GC3. The software we developed for measuring SCUO (codonO) is available at .
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
104 |
25
|
Magliery TJ, Anderson J, Schultz PG. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. J Mol Biol 2001; 307:755-69. [PMID: 11273699 PMCID: PMC7125544 DOI: 10.1006/jmbi.2001.4518] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.
Collapse
MESH Headings
- Amino Acid Sequence
- Ampicillin/pharmacology
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Cephalosporins/metabolism
- Codon/chemistry
- Codon/genetics
- Codon/metabolism
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Frameshift Mutation/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Gene Library
- Genes, Reporter/genetics
- Genetic Code/genetics
- Molecular Sequence Data
- Mutagenesis
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/genetics
- Serine/metabolism
- Substrate Specificity
- Suppression, Genetic/genetics
- beta-Lactamases/biosynthesis
- beta-Lactamases/chemistry
- beta-Lactamases/genetics
Collapse
|
research-article |
24 |
103 |