9
|
Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM, Patel YM, Sorokin EP, Avery CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM, Lim U, Lin BM, Lu Y, Nelson SC, Park SSL, Poisner H, Preuss MH, Richard MA, Schurmann C, Setiawan VW, Sockell A, Vahi K, Verbanck M, Vishnu A, Walker RW, Young KL, Zubair N, Acuña-Alonso V, Ambite JL, Barnes KC, Boerwinkle E, Bottinger EP, Bustamante CD, Caberto C, Canizales-Quinteros S, Conomos MP, Deelman E, Do R, Doheny K, Fernández-Rhodes L, Fornage M, Hailu B, Heiss G, Henn BM, Hindorff LA, Jackson RD, Laurie CA, Laurie CC, Li Y, Lin DY, Moreno-Estrada A, Nadkarni G, Norman PJ, Pooler LC, Reiner AP, Romm J, Sabatti C, Sandoval K, Sheng X, Stahl EA, Stram DO, Thornton TA, Wassel CL, Wilkens LR, Winkler CA, Yoneyama S, Buyske S, Haiman CA, Kooperberg C, Le Marchand L, Loos RJF, Matise TC, North KE, Peters U, Kenny EE, Carlson CS. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019; 570:514-518. [PMID: 31217584 PMCID: PMC6785182 DOI: 10.1038/s41586-019-1310-4] [Citation(s) in RCA: 666] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
666 |
19
|
Maier R, Moser G, Chen GB, Ripke S, Coryell W, Potash JB, Scheftner WA, Shi J, Weissman MM, Hultman CM, Landén M, Levinson DF, Kendler KS, Smoller JW, Wray NR, Lee SH, Absher D, Agartz I, Akil H, Amin F, Andreassen O, Anjorin A, Anney R, Arking D, Asherson P, Azevedo M, Backlund L, Badner J, Bailey A, Banaschewski T, Barchas J, Barnes M, Barrett T, Bass N, Battaglia A, Bauer M, Bayés M, Bellivier F, Bergen S, Berrettini W, Betancur C, Bettecken T, Biederman J, Binder E, Black D, Blackwood D, Bloss C, Boehnke M, Boomsma D, Breen G, Breuer R, Bruggeman R, Buccola N, Buitelaar J, Bunney W, Buxbaum J, Byerley W, Caesar S, Cahn W, Cantor R, Casas M, Chakravarti A, Chambert K, Choudhury K, Cichon S, Cloninger C, Collier D, Cook E, Coon H, Cormand B, Cormican P, Corvin A, Coryell W, Craddock N, Craig D, Craig I, Crosbie J, Cuccaro M, Curtis D, Czamara D, Daly M, Datta S, Dawson G, Day R, De Geus E, Degenhardt F, Devlin B, Djurovic S, Donohoe G, Doyle A, Duan J, Dudbridge F, Duketis E, Ebstein R, Edenberg H, Elia J, Ennis S, Etain B, Fanous A, Faraone S, et alMaier R, Moser G, Chen GB, Ripke S, Coryell W, Potash JB, Scheftner WA, Shi J, Weissman MM, Hultman CM, Landén M, Levinson DF, Kendler KS, Smoller JW, Wray NR, Lee SH, Absher D, Agartz I, Akil H, Amin F, Andreassen O, Anjorin A, Anney R, Arking D, Asherson P, Azevedo M, Backlund L, Badner J, Bailey A, Banaschewski T, Barchas J, Barnes M, Barrett T, Bass N, Battaglia A, Bauer M, Bayés M, Bellivier F, Bergen S, Berrettini W, Betancur C, Bettecken T, Biederman J, Binder E, Black D, Blackwood D, Bloss C, Boehnke M, Boomsma D, Breen G, Breuer R, Bruggeman R, Buccola N, Buitelaar J, Bunney W, Buxbaum J, Byerley W, Caesar S, Cahn W, Cantor R, Casas M, Chakravarti A, Chambert K, Choudhury K, Cichon S, Cloninger C, Collier D, Cook E, Coon H, Cormand B, Cormican P, Corvin A, Coryell W, Craddock N, Craig D, Craig I, Crosbie J, Cuccaro M, Curtis D, Czamara D, Daly M, Datta S, Dawson G, Day R, De Geus E, Degenhardt F, Devlin B, Djurovic S, Donohoe G, Doyle A, Duan J, Dudbridge F, Duketis E, Ebstein R, Edenberg H, Elia J, Ennis S, Etain B, Fanous A, Faraone S, Farmer A, Ferrier I, Flickinger M, Fombonne E, Foroud T, Frank J, Franke B, Fraser C, Freedman R, Freimer N, Freitag C, Friedl M, Frisén L, Gallagher L, Gejman P, Georgieva L, Gershon E, Geschwind D, Giegling I, Gill M, Gordon S, Gordon-Smith K, Green E, Greenwood T, Grice D, Gross M, Grozeva D, Guan W, Gurling H, De Haan L, Haines J, Hakonarson H, Hallmayer J, Hamilton S, Hamshere M, Hansen T, Hartmann A, Hautzinger M, Heath A, Henders A, Herms S, Hickie I, Hipolito M, Hoefels S, Holmans P, Holsboer F, Hoogendijk W, Hottenga JJ, Hultman C, Hus V, Ingason A, Ising M, Jamain S, Jones I, Jones L, Kähler A, Kahn R, Kandaswamy R, Keller M, Kelsoe J, Kendler K, Kennedy J, Kenny E, Kent L, Kim Y, Kirov G, Klauck S, Klei L, Knowles J, Kohli M, Koller D, Konte B, Korszun A, Krabbendam L, Krasucki R, Kuntsi J, Kwan P, Landén M, Långström N, Lathrop M, Lawrence J, Lawson W, Leboyer M, Ledbetter D, Lee P, Lencz T, Lesch KP, Levinson D, Lewis C, Li J, Lichtenstein P, Lieberman J, Lin DY, Linszen D, Liu C, Lohoff F, Loo S, Lord C, Lowe J, Lucae S, MacIntyre D, Madden P, Maestrini E, Magnusson P, Mahon P, Maier W, Malhotra A, Mane S, Martin C, Martin N, Mattheisen M, Matthews K, Mattingsdal M, McCarroll S, McGhee K, McGough J, McGrath P, McGuffin P, McInnis M, McIntosh A, McKinney R, McLean A, McMahon F, McMahon W, McQuillin A, Medeiros H, Medland S, Meier S, Melle I, Meng F, Meyer J, Middeldorp C, Middleton L, Milanova V, Miranda A, Monaco A, Montgomery G, Moran J, Moreno-De-Luca D, Morken G, Morris D, Morrow E, Moskvina V, Mowry B, Muglia P, Mühleisen T, Müller-Myhsok B, Murtha M, Myers R, Myin-Germeys I, Neale B, Nelson S, Nievergelt C, Nikolov I, Nimgaonkar V, Nolen W, Nöthen M, Nurnberger J, Nwulia E, Nyholt D, O’Donovan M, O’Dushlaine C, Oades R, Olincy A, Oliveira G, Olsen L, Ophoff R, Osby U, Owen M, Palotie A, Parr J, Paterson A, Pato C, Pato M, Penninx B, Pergadia M, Pericak-Vance M, Perlis R, Pickard B, Pimm J, Piven J, Posthuma D, Potash J, Poustka F, Propping P, Purcell S, Puri V, Quested D, Quinn E, Ramos-Quiroga J, Rasmussen H, Raychaudhuri S, Rehnström K, Reif A, Ribasés M, Rice J, Rietschel M, Ripke S, Roeder K, Roeyers H, Rossin L, Rothenberger A, Rouleau G, Ruderfer D, Rujescu D, Sanders A, Sanders S, Santangelo S, Schachar R, Schalling M, Schatzberg A, Scheftner W, Schellenberg G, Scherer S, Schork N, Schulze T, Schumacher J, Schwarz M, Scolnick E, Scott L, Sergeant J, Shi J, Shilling P, Shyn S, Silverman J, Sklar P, Slager S, Smalley S, Smit J, Smith E, Smoller J, Sonuga-Barke E, St Clair D, State M, Steffens M, Steinhausen HC, Strauss J, Strohmaier J, Stroup T, Sullivan P, Sutcliffe J, Szatmari P, Szelinger S, Thapar A, Thirumalai S, Thompson R, Todorov A, Tozzi F, Treutlein J, Tzeng JY, Uhr M, van den Oord E, Van Grootheest G, Van Os J, Vicente A, Vieland V, Vincent J, Visscher P, Walsh C, Wassink T, Watson S, Weiss L, Weissman M, Werge T, Wienker T, Wiersma D, Wijsman E, Willemsen G, Williams N, Willsey A, Witt S, Wray N, Xu W, Young A, Yu T, Zammit S, Zandi P, Zhang P, Zitman F, Zöllner S. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet 2015; 96:283-294. [PMID: 25640677 PMCID: PMC4320268 DOI: 10.1016/j.ajhg.2014.12.006] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022] Open
Abstract
Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
173 |