1
|
Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3:403-16. [PMID: 16753576 DOI: 10.1016/j.cmet.2006.05.005] [Citation(s) in RCA: 735] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/01/2005] [Accepted: 05/17/2006] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key sensor and regulator of intracellular and whole-body energy metabolism. We have identified a thienopyridone family of AMPK activators. A-769662 directly stimulated partially purified rat liver AMPK (EC50 = 0.8 microM) and inhibited fatty acid synthesis in primary rat hepatocytes (IC50 = 3.2 microM). Short-term treatment of normal Sprague Dawley rats with A-769662 decreased liver malonyl CoA levels and the respiratory exchange ratio, VCO2/VO2, indicating an increased rate of whole-body fatty acid oxidation. Treatment of ob/ob mice with 30 mg/kg b.i.d. A-769662 decreased hepatic expression of PEPCK, G6Pase, and FAS, lowered plasma glucose by 40%, reduced body weight gain and significantly decreased both plasma and liver triglyceride levels. These results demonstrate that small molecule-mediated activation of AMPK in vivo is feasible and represents a promising approach for the treatment of type 2 diabetes and the metabolic syndrome.
Collapse
|
Comparative Study |
19 |
735 |
2
|
Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol 2000; 14:947-55. [PMID: 10894146 DOI: 10.1210/mend.14.7.0470] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The liver is an important target organ of thyroid hormone. However, only a limited number of hepatic target genes have been identified, and little is known about the pattern of their regulation by thyroid hormone. We used a quantitative fluorescent cDNA microarray to identify novel hepatic genes regulated by thyroid hormone. Fluorescent-labeled cDNA prepared from hepatic RNA of T3-treated and hypothyroid mice was hybridized to a cDNA microarray, representing 2225 different mouse genes, followed by computer analysis to compare relative changes in gene expression. Fifty five genes, 45 not previously known to be thyroid hormone-responsive genes, were found to be regulated by thyroid hormone. Among them, 14 were positively regulated by thyroid hormone, and unexpectedly, 41 were negatively regulated. The expression of 8 of these genes was confirmed by Northern blot analyses. Thyroid hormone affected gene expression for a diverse range of cellular pathways and functions, including gluconeogenesis, lipogenesis, insulin signaling, adenylate cyclase signaling, cell proliferation, and apoptosis. This is the first application of the microarray technique to study hormonal regulation of gene expression in vivo and should prove to be a powerful tool for future studies of hormone and drug action.
Collapse
|
|
25 |
202 |
3
|
Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY. Transmembrane topology of glucose-6-phosphatase. J Biol Chem 1998; 273:6144-6148. [PMID: 9497333 DOI: 10.1074/jbc.273.11.6144] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis, causes glycogen storage disease type 1a, an autosomal recessive disorder. Characterization of the transmembrane topology of G6Pase should facilitate the identification of amino acid residues contributing to the active site and broaden our understanding of the effects of mutations that cause glycogen storage disease type 1a. Using N- and C-terminal tagged G6Pase, we show that in intact microsomes, the N terminus is resistant to protease digestion, whereas the C terminus is sensitive to such treatment. Our results demonstrate that G6Pase possesses an odd number of transmembrane helices, with its N and C termini facing the endoplasmic reticulum lumen and the cytoplasm, respectively. During catalysis, a phosphoryl-enzyme intermediate is formed, and the phosphoryl acceptor in G6Pase is a His residue. Sequence alignment suggests that mammalian G6Pases, lipid phosphatases, acid phosphatases, and a vanadium-containing chloroperoxidase (whose tertiary structure is known) share a conserved phosphatase motif. Active-site alignment of the vanadium-containing chloroperoxidase and G6Pases predicts that Arg-83, His-119, and His-176 in G6Pase contribute to the active site and that His-176 is the residue that covalently binds the phosphoryl moiety during catalysis. This alignment also predicts that Arg-83, His-119, and His-176 reside on the same side of the endoplasmic reticulum membrane, which is supported by the recently predicted nine-transmembrane helical model for G6Pase. We have previously shown that Arg-83 is involved in positioning the phosphate during catalysis and that His-119 is essential for G6Pase activity. Here we demonstrate that substitution of His-176 with structurally similar or dissimilar amino acids inactivates the enzyme, suggesting that His-176 could be the phosphoryl acceptor in G6Pase during catalysis.
Collapse
|
|
27 |
131 |
4
|
Martins PJ, Haas M, Obici S. Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance. Diabetes 2010; 59:2418-25. [PMID: 20682682 PMCID: PMC3279549 DOI: 10.2337/db10-0449] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Olanzapine (OLZ) is an atypical antipsychotic whose clinical efficacy is hampered by side effects including weight gain and diabetes. Recent evidence shows that OLZ alters insulin sensitivity independent of changes in body weight and composition. The present study addresses whether OLZ-induced insulin resistance is driven by its central actions. RESEARCH DESIGN AND METHODS Sprague-Dawley rats received an intravenous (OLZ-IV group) or intracerebroventricular (OLZ-ICV group) infusion of OLZ or vehicle. Glucose kinetics were assessed before (basal period) and during euglycemic-hyperinsulinemic clamp studies. RESULTS OLZ-IV caused a transient increase in glycemia and a higher rate of glucose appearance (R(a)) in the basal period. During the hyperinsulinemic clamp, the glucose infusion rate (GIR) required to maintain euglycemia and the rate of glucose utilization (R(d)) were decreased in OLZ-IV, whereas endogenous glucose production (EGP) rate was increased compared with vehicle-IV. Consistent with an elevation in EGP, the OLZ-IV group had higher hepatic mRNA levels for the enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Phosphorylation of hypothalamic AMP-activated protein kinase (AMPK) was increased in OLZ-IV rats compared with controls. Similarly, an intracerebroventricular infusion of OLZ resulted in a transient increase in glycemia as well as a higher R(a) in the basal period. During the hyperinsulinemic period, OLZ-ICV caused a decreased GIR, an increased EGP, but no change in R(d). Furthermore, OLZ-ICV rats had increased hepatic gluconeogenic enzymes and elevated hypothalamic neuropeptide-Y and agouti-related protein mRNA levels. CONCLUSIONS Acute central nervous system exposure to OLZ induces hypothalamic AMPK and hepatic insulin resistance, pointing to a hypothalamic site of action for the metabolic dysregulation of atypical antipsychotics.
Collapse
|
research-article |
15 |
74 |
5
|
Panda S, Kar A. Piperine lowers the serum concentrations of thyroid hormones, glucose and hepatic 5'D activity in adult male mice. Horm Metab Res 2003; 35:523-6. [PMID: 14517767 DOI: 10.1055/s-2003-42652] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Piperine, the main alkaloid of Piper nigrum fruits, was evaluated for its thyroid hormone and glucose regulatory efficacy in adult male Swiss albino mice. Its daily oral administration (2.50 mg/kg) for 15 days lowered the serum levels of both the thyroid hormones, thyroxin (T (4)) and triiodothyronine (T (3)) as well as glucose concentrations with a concomitant decrease in hepatic 5'D enzyme and glucose-6-phospatase (G-6-Pase) activity. However, no significant alterations were observed in animals treated with 0.25 mg/kg of piperine in any of the activities studied except an inhibition in serum T (3) concentration. The decrease in T (4), T (3) concentrations and in G-6-Pase were comparable to that of a standard antithyroid drug, Proylthiouracil (PTU). The hepatic lipid-peroxidation (LPO) and the activity of endogenous antioxidants, superoxide dismutase (SOD), and catalase (CAT) were not significantly altered in either of the doses. It appears that the action of P. nigrum on thyroid functions is mediated through its active alkaloid, piperine. We also suggest that a higher dose of piperine may inhibit thyroid function and serum glucose concentration in euthyroid individuals.
Collapse
|
Comparative Study |
22 |
50 |
6
|
Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, Hara Y, Isemura M. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. PLANTA MEDICA 2004; 70:1100-1102. [PMID: 15549673 DOI: 10.1055/s-2004-832659] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has recently been reported that the major green tea polyphenolic constituent, epigallocatechin 3-gallate (EGCG), mimics the cellular effects of insulin including the reductive effect on the gene expression of rate-limiting gluconeogenic enzymes in a cell culture system. We show that administration of green tea that contains EGCG caused a reduction in the level of mRNAs for gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the mouse liver. EGCG alone was also found to down-regulate the gene expression of these enzymes but not so curcumin or quercetin. The results of this study support the idea that green tea intake may be beneficial in the prevention of diabetes mellitus.
Collapse
|
|
21 |
49 |
7
|
Parimala R, Sachdanandam P. Effect of Plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem 1993; 125:59-63. [PMID: 8264573 DOI: 10.1007/bf00926835] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) isolated from Plumbago zeylanica Linn, when administered orally, at a dosage of 4 mg/kg body weight induces tumour regression in 3-methyl-4-dimethyl aminoazobenzene (3MeDAB) induced hepatoma in Wistar male rats. The purpose of this investigation was to identify the changes in the rate of glycolysis and gluconeogenesis in tumour-bearing rats and the effects of treatment with Plumbagin. The levels of certain glycolytic enzymes, namely, hexokinase; phosphoglucoisomerase; and aldolase levels increased (p < 0.001) in hepatoma bearing rats, whereas they decreased in Plumbagin administered rats to near normal levels. Certain gluconeogenic enzymes, namely, glucose-6-phosphatase and fructose-1,6-diphosphatase decreased (p < 0.001) in tumour hosts, whereas Plumbagin administration increased the gluconeogenic enzyme levels in the treated animals. These investigations indicate the molecular basis of the different biological behaviour of 3MeDAB induced hepatoma and the anticarcinogenic property of Plumbagin against hepatoma studied in rats.
Collapse
|
|
32 |
49 |
8
|
Cai H, Jiang Z, Yang X, Lin J, Cai Q, Li X. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr J 2020; 67:397-408. [PMID: 31875589 DOI: 10.1507/endocrj.ej19-0271] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It has been shown that circular RNAs, a class of non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of circular RNA HIPK3 (circHIPK3) in diabetes-associated metabolic disorders, including hyperglycemia and insulin resistance. Results show that oleate stimulated circHIPK3 increase, and that circHIPK3 enhanced the stimulatory effect of oleate on adipose deposition, triglyceride (TG) content, and cellular glucose content in HepG2 cells. MiR-192-5p was the potential target of circHIPK3, since circHIPK3 significantly decreased miR-192-5p mRNA level, whereas anti-circHIPK3 significantly increased miR-192-5p mRNA level. Further study shows that transcription factor forkhead box O1 (FOXO1) was a downstream regulator of miR-192-5p, since miR-192-5p significantly decreased FOXO1 expression, whereas circHIPK3 significantly increased FOXO1 expression. Notably, the inhibitory effect of miR-192-5p was significantly reversed by circHIPK3. In vivo study shows that anti-miR-192-5p significantly increased blood glucose content, which was significantly inhibited by FOXO1 shRNA. MiR-192-5p significantly decreased adipose deposition and TG content in HepG2 cells, which was significantly reversed by the co-treatment with circHIPK3. Forskolin/dexamethasone (FSK/DEX) significantly increased cellular glucose, mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), and this stimulatory effect of FSK/DEX was significantly inhibited by miR-192-5p. In the presence of circHIPK3, however, the inhibitory effect of miR-192-5p was totally lost. In summary, the present study demonstrated that circHIPK3 contributes to hyperglycemia and insulin resistance by sponging miR-192-5p and up-regulating FOXO1.
Collapse
|
|
5 |
46 |
9
|
Farombi EO, Alabi MC, Akuru TO. Kolaviron modulates cellular redox status and impairment of membrane protein activities induced by potassium bromate (KBrO(3)) in rats. Pharmacol Res 2002; 45:63-8. [PMID: 11820864 DOI: 10.1006/phrs.2001.0907] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we examined the modulatory effects of kolaviron, a biflavonoid from Garcinia kola seeds on the antioxidant defense mechanisms, cellular redox status and oxidative stress in the kidney and liver of rats pretreated with potassium bromate (KBrO(3)) intragastrically as a single dose of 300 mg kg(-1)weight for 4 weeks. Treatment of rats with KBrO(3)resulted in an insignificant difference (P> 0.05) in body weight compared to controls. However, a significant increase in kidney/body weight ratio (P< 0.001) was observed in rats treated with KBrO(3)while liver/body weight ratio was not affected. KBrO(3)depressed the activities of superoxide dismutase, glutathione peroxidase and catalase (P< 0.001) in the kidney but not in the liver. Kolaviron (200 mg kg(-1)body weight) administered three times a week for 4 weeks inhibited the decrease mediated by KBrO(3)of these enzymes in the kidney by 29, 88 and 45%, respectively. Similarly, kolaviron reduced the KBrO(3)-induced decrease in the activities of gamma -glutamyltransferase and microsomal Ca(2+)ATPase by 73 and 63% in the kidney. In addition, the extract elicited a 27 and 25% decrease in the KBrO(3)-induced increase in malondialdehyde and lipid hydroperoxide formation in the kidney. Kolaviron also attenuated the KBrO(3)-decreased activities of glucose 6-phosphatase, 5 prime prime or minute nucleotidase and alkaline phosphatase (membrane enzymes) by 72, 57 and 25% respectively. The results of the present investigation indicate the antioxidative effect of kolaviron, a natural antioxidant, on drug-induced kidney toxicity. Kolaviron may therefore intervene in the cellular redox status and depression of membrane protein activities caused by KBrO(3)and other environmental carcinogens in the kidney.
Collapse
|
|
23 |
40 |
10
|
Ekor M, Emerole GO, Farombi EO. Phenolic extract of soybean (Glycine max) attenuates cisplatin-induced nephrotoxicity in rats. Food Chem Toxicol 2010; 48:1005-12. [PMID: 20109512 DOI: 10.1016/j.fct.2009.12.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/20/2009] [Accepted: 12/24/2009] [Indexed: 01/13/2023]
Abstract
The present study investigated the modulatory role of phenolic extract of soybean (PESB) in a rat model of nephrotoxic acute renal failure induced by cisplatin. Cisplatin (2 mg/kg/day) was administered to the rats for 5 days and the animals were pretreated with PESB (250-1000 mg/kg). Blood urea nitrogen reduced by 49.8% and 59.0%, serum creatinine by 34.7% and 62.1% and urinary N-acetyl-beta-D-glucosaminidase also decreased by 37.7% and 49.2% following treatment with 250- and 500-mg/kg doses of the extract respectively in the cisplatin-treated rats. The extract also significantly increased renal myeloperoxidase activity by 26.8% and 40.6% at these doses. PESB also decreased renal xanthine oxidase activity and serum nitrate/nitrite in the cisplatin-treated rats. In addition, PESB significantly attenuated the marked renal oxidative damage that accompanied cisplatin treatment. The extract improved liver histology and significantly increased the activities of the antioxidant enzymes measured [superoxide dismutase, catalase, glutathione-S-transferase], prevented glutathione depletion and decreased malondialdehyde level following cisplatin treatment. Furthermore, cisplatin-induced decrease in the activities of glucose-6-phosphatase and 5'-nucleotidase in these rats was attenuated only at 250 mg/kg dose of the extract. We concluded therefore that PESB via antioxidant and possibly anti-inflammatory actions offered protective benefit against cisplatin-mediated acute toxic injury to the kidney.
Collapse
|
|
15 |
36 |
11
|
Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49:3390-4. [PMID: 21978819 DOI: 10.1016/j.fct.2011.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
In the present study, the effect of alcoholic stem extract of Gymnema montanum (GMSt) on blood glucose, plasma insulin, and carbohydrate metabolic enzymes were studied in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (60 mg/kg bw). Five days after STZ induction, diabetic rats received GMSt orally at the doses of 25, 50, 100 and 200mg/kg daily for 3 weeks. Graded doses of stem extract showed a significant reduction in blood glucose levels and improvement in plasma insulin levels. The effect was more pronounced in 100 and 200mg/kg than 50mg/kg. GMSt showed significant increase in hexokinase, Glucose-6-phosphate dehydrogenase and glycogen content in liver of diabetic rats while there was significant reduction in the levels of glucose-6-phosphatase and fructose-1,6-bisphosphatase. The present study clearly indicated significant antidiabetic effect with the stem extract of G. montanum and lends support for its traditional usage.
Collapse
|
Journal Article |
14 |
36 |
12
|
Ling ZC, Khan A, Delauny F, Davani B, Ostenson CG, Gustafsson JA, Okret S, Landau BR, Efendic S. Increased glucocorticoid sensitivity in islet beta-cells: effects on glucose 6-phosphatase, glucose cycling and insulin release. Diabetologia 1998; 41:634-9. [PMID: 9662043 DOI: 10.1007/s001250050961] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose-6-phosphatase (G6Pase) activity and the rate of glucose cycling are increased in islets from animal models of Type II (non-insulin-dependent) diabetes mellitus. Glucocorticoid treatment further stimulates these processes and inhibits glucose-induced insulin release. To determine whether these effects result from a direct action of glucocorticoids on the beta-cells, we used isolated islets. The islets were from transgenic mice overexpressing the glucocorticoid receptor in their beta-cells to increase the cells' sensitivity to glucocorticoid. Islets from transgenic and non-transgenic control mice utilized and oxidized the same amount of glucose. In contrast, islet G6Pase activity was 70 % higher, glucose cycling was increased threefold and insulin release was 30 % lower in islets from transgenic mice. Hepatic G6Pase activity was the same in transgenic and control mice. Dexamethasone administration increased G6Pase activity and glucose cycling and decreased insulin release in both transgenic and control mouse islets. We conclude that glucocorticoids stimulate islet G6Pase activity and glucose cycling by acting directly on the beta-cell. That activity may be linked to the inhibition of insulin release.
Collapse
|
|
27 |
36 |
13
|
Weber LW, Lebofsky M, Stahl BU, Smith S, Rozman KK. Correlation between toxicity and effects on intermediary metabolism in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated male C57BL/6J and DBA/2J mice. Toxicol Appl Pharmacol 1995; 131:155-62. [PMID: 7878671 DOI: 10.1006/taap.1995.1057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Male mice were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by gavage. C57BL/6J (C57) mice received 0.03 to 235 micrograms/kg, DBA/2J (DBA) mice 1 to 3295 micrograms/kg. On Day 8 after dosing blood was collected, and livers and kidneys were removed. Body weights and feed intake were not much affected until Day 8 after exposure. Hepatomegaly developed at doses above 3 and 97.5 micrograms/kg in C57 and DBA mice, respectively. Ethoxyresorufin O-deethylase activity was induced in liver with an ED50 of 1.1 and 16 micrograms/kg and in kidney with an ED50 of 65 and 380 micrograms/kg in C57 and DBA mice, respectively. The activity of phosphoenolpyruvate carboxykinase (PEPCK) in livers of both mouse strains was reduced over the entire dose range, displaying a plateau in the dose response at the onset of acute toxicity of TCDD. This enzyme activity was decreased by as much as 80% at the respective lethal doses. PEPCK activity in kidney was not affected. Glucose-6-phosphatase activity (G-6-Pase) in liver was altered only in the lethal dose range with a maximum reduction of about 50%. Serum glucose concentration was reduced over the entire dose range, but the reduction was significant only at doses in which G-6-Pase activity was affected, reaching levels as low as 3 mmol/liter in DBA mice. Tryptophan 2,3-dioxygenase activity was not lowered at any dose of TCDD in either mouse strain, and no increase in serum tryptophan levels was observed. Serum levels of thyroxine (T4) and triiodothyronine (T3) were dose dependently decreased over most of the dose range administered, with T3 levels exactly paralleling T4 levels in both mouse strains. It is concluded that TCDD causes acute toxicity in male C57 and DBA mice by a severe reduction of gluconeogenesis, but, in contrast to rats, it does not affect tryptophan homeostasis. Following administration of TCDD serum T3 levels in the mouse appear to correlate with T4 levels, whereas in the rat they are independent of each other.
Collapse
|
|
30 |
35 |
14
|
Mosseri R, Waner T, Shefi M, Shafrir E, Meyerovitch J. Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vandadate treatment on hepatic glucose-6-phoshatase and phosphoenolpyruvate carboxykinase. Metabolism 2000; 49:321-5. [PMID: 10726908 DOI: 10.1016/s0026-0495(00)90132-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The contribution of gluconeogenesis to hyperglycemia in non-obese diabetic (NOD) mice has been investigated using oral vanadate administration. Vanadate compounds have been shown to mimic many actions of insulin; however, the exact mechanism is poorly understood. The aims of the present study were (1) to elucidate vanadate's action in vivo, and to assess the possibility that its glucose-reducing effect is dependent on the presence of a minimal concentration of insulin; and (2) to evaluate the effects of vanadate administration on the key hepatic gluconeogenesis enzymes, glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as glucose-6-phosphate dehydrogenase (G-6-PDH). Vanadate caused a significant reduction in blood glucose but failed to normalize it, despite effective serum vanadate concentrations (26.2 +/- 1.6 micromol/L). Two weeks after initiation of treatment, blood glucose levels were 26.0 +/- 1.8, 21.7 +/- 3.0, 16.0 +/- 1.6, and 14.3 +/- 2.3 mmol/L in the control (C), insulin (I), vanadate (V), and combined vanadate and insulin (V + I) groups, respectively (P < .001). G-6-Pase activity was significantly reduced by vanadate (622 +/- 134 v365 +/- 83 nmol/min/mg protein in C vV, P < .05). PEPCK activity was also significantly reduced (844 +/- 370, 623 +/- 36, 337 +/- 43, and 317 +/- 75 nmol/min/mg in the C, I, V, and V + I groups, respectively, P < .001). No significant differences in the hepatic glycogen stores and G-6-PDH activity were noted between treatment groups. Our study suggests that the inhibition of hepatic G-6-Pase and PEPCK activity by vanadate plays an important role in reducing blood glucose levels in NOD mice.
Collapse
|
|
25 |
33 |
15
|
Bhat UG, Ilievski V, Unterman TG, Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol 2014; 85:1629-36. [PMID: 24921432 PMCID: PMC4394373 DOI: 10.1902/jop.2014.140070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A close association between periodontitis and diabetes has been demonstrated in human cross-sectional studies, but an exact relationship between periodontitis and prediabetes has not been established. Previous studies using animal model systems consistently have shown that hyperinsulinemia occurs in animals with periodontitis compared to animals with healthy periodontium (while maintaining normoglycemia). Because bacterial lipopolysaccharide (LPS) plays an important role in the pathogenesis of periodontitis, we hypothesized that LPS may stimulate insulin secretion through a direct effect on β cell function. To test this hypothesis, pancreatic β cell line MIN6 cells were used to determine the effect of Porphyromonas gingivalis (Pg) LPS on insulin secretion. Furthermore, expression of genes altered by Pg LPS in innate immunity and insulin-signaling pathways was determined. METHODS MIN6 cells were grown in medium with glucose concentration of normoglycemia (5.5 mM). Pg LPS was added to each well at final concentrations of 50, 200, and 500 ng/mL. Insulin secretion was measured using enzyme-linked immunosorbent assay. Gene expression levels altered by Pg LPS were determined by polymerase chain reaction (PCR) array for mouse innate and adaptive immunity response and mouse insulin-signaling pathways, and results were confirmed for specific genes of interest by quantitative PCR. RESULTS Pg LPS stimulated insulin secretion in the normoglycemic condition by ≈1.5- to 3.0-fold depending on the concentration of LPS. Pg LPS treatment altered the expression of several genes involved in innate and adaptive immune response and insulin-signaling pathway. Pg LPS upregulated the expression of the immune response-related genes cluster of differentiation 8a (Cd8a), Cd14, and intercellular adhesion molecule-1 (Icam1) by about two-fold. LPS also increased the expression of two insulin signaling-related genes, glucose-6-phosphatase catalytic subunit (G6pc) and insulin-like 3 (Insl3), by three- to four-fold. CONCLUSIONS We have demonstrated for the first time that Pg LPS stimulates insulin secretion by pancreatic β cell line MIN cells. Pg LPS may have significant implications on the development of β cell compensation and insulin resistance in prediabetes in individuals with periodontitis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
31 |
16
|
Li Y, Méchin MC, van de Werve G. Diabetes affects similarly the catalytic subunit and putative glucose-6-phosphate translocase of glucose-6-phosphatase. J Biol Chem 1999; 274:33866-8. [PMID: 10567346 DOI: 10.1074/jbc.274.48.33866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.
Collapse
|
|
26 |
27 |
17
|
Sujatha V, Sachdanandam P. Recuperative effect of Semecarpus anacardium linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma-bearing rats. Phytother Res 2002; 16 Suppl 1:S14-8. [PMID: 11933133 DOI: 10.1002/ptr.777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Semecarpus anacardium Linn. of the family Anacardiaceae has many applications in the Ayurvedic and Siddha systems of medicine. We have tested the antitumour activity of Semecarpus anacardium nut extract against experimental mammary carcinoma in animals. As there is a direct relationship between the proliferation of tumour cells and the activities of the glycolytic and gluconeogenic enzymes, we studied changes in the activities of enzymes involved in this metabolic pathway in the liver and kidney. The enzymes investigated were glycolytic enzymes, namely hexokinase, phosphoglucoisomerase, aldolase and the gluconeogenic enzymes, namely glucose-6-phosphatase and fructose-1,6-biphosphatase in experimental rats. A significant rise in glycolytic enzyme activities and a simultaneous fall in gluconeogenic enzyme activities were found in mammary carcinoma bearing rats. Drug administration returned these enzyme activities to their respective control activities.
Collapse
|
|
23 |
23 |
18
|
Arion WJ, Canfield WK, Callaway ES, Burger HJ, Hemmerle H, Schubert G, Herling AW, Oekonomopulos R. Direct evidence for the involvement of two glucose 6-phosphate-binding sites in the glucose-6-phosphatase activity of intact liver microsomes. Characterization of T1, the microsomal glucose 6-phosphate transport protein by a direct binding assay. J Biol Chem 1998; 273:6223-7. [PMID: 9497346 DOI: 10.1074/jbc.273.11.6223] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S 5627 is a synthetic analogue of chlorogenic acid. S 5627 is a potent linear competitive inhibitor of glucose 6-phosphate (Glc-6-P) hydrolysis by intact microsomes (Ki = 41 nM) but is without effect on the enzyme in detergent- or NH4OH-disrupted microsomes. 3H-S 5627 was synthesized and used as a ligand in binding studies directed at characterizing T1, the Glc-6-P transporter. Binding was evaluated using Ca2+-aggregated microsomes, which can be sedimented at low g forces. Aside from a modest reduction in K values for both substrate and S 5627, Ca2+ aggregation had no effect on glucose-6-phosphatase (Glc-6-Pase). Scatchard plots of binding data are readily fit to a simple "two-site" model, with Kd = 21 nM for the high affinity site and Kd = 2 microM for the low affinity site. Binding to the high affinity site was competitively blocked by Glc-6-P (Ki = 9 microM), whereas binding was unaffected by mannose-6-phosphate, Pi, and PPi and only modestly depressed by 2-deoxy-D-glucose 6-phosphate, a poor substrate for Glc-6-Pase in intact microsomes. Thus the high affinity 3H-S 5627 binding site fits the criteria for T1. Permeabilization of the membrane with 0.3% (3-[(chloramidopropyl)-dimethylammonio]-1-propanesulfonate) activated Glc-6-Pase and broadened its substrate specificity, but it did not significantly alter the binding of 3H-S 5627 to the high affinity sites or the ability of Glc-6-P to block binding. These data demonstrate unequivocally that two independent Glc-6-P binding sites are involved in the hydrolysis of Glc-6-P by intact microsomes. The present findings are the strongest and most direct evidence to date against the notion that the substrate specificity and the intrinsic activity of Glc-6-Pase in native membranes are determined by specific conformational constraints imposed on the enzyme protein. These data constitute compelling evidence for the role of T1 in Glc-6-Pase activity.
Collapse
|
|
27 |
22 |
19
|
Pagliassotti MJ, Wei Y, Bizeau ME. Glucose-6-phosphatase activity is not suppressed but the mRNA level is increased by a sucrose-enriched meal in rats. J Nutr 2003; 133:32-7. [PMID: 12514263 DOI: 10.1093/jn/133.1.32] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The expression of glucose-6-phosphatase (G6Pase) mRNA is repressed by insulin and stimulated by cAMP and dexamethasone, with the insulin effect dominant. Both lipids and glucose increase the expression of G6Pase mRNA under conditions in which insulin is either absent or at basal levels. The aim of the present study was to investigate dietary nutrient regulation of G6Pase mRNA and protein under postprandial conditions. Male rats (n = 6-8/group) were deprived of food for 48 h and then either remained food deprived (FD) or were refed diets containing 68% cornstarch and 12% corn oil (ST; % energy), 68% sucrose and 12% corn oil (SU) or 35% cornstarch and 45% corn oil (HF) for 3 h. Rats were anesthetized, blood was drawn from the portal vein, and the liver was removed and immediately processed for subsequent analyses. Energy intake over the 3-h refeeding period did not differ among groups (209 +/- 25 kJ). Portal vein glucose and insulin were 5.0 +/- 0.2 mmol/L and 90 +/- 18 pmol/L, respectively, in FD rats and were not significantly different among the refed groups (14.5 +/- 1.2 mmol/L and 1302 +/- 154 pmol/L, respectively). Compared with the FD rats, G6Pase mRNA was approximately 50% lower in ST and HF groups, whereas it was approximately 1.6 fold higher in SU-refed rats (P < 0.05). G6Pase activity in whole liver homogenates was lower in ST and HF rats than in FD and SU rats. Insulin receptor substrate (IRS) phosphorylation, IRS-association with phosphatidylinositol 3 (PI3)-kinase and activation of protein kinase B (PKB) were not significantly different among the refed groups. However, glycogen synthase kinase-3alpha phosphorylation was lower and cAMP response element binding protein (CREB) phosphorylation was higher in SU rats than in ST and HF refed groups. Thus, the postprandial environment after ingestion of sucrose appears to overcome the dominant effects of insulin on G6Pase mRNA, perhaps via cellular changes that reduce phosphorylation of, and therefore activate, glycogen synthase kinase-3alpha.
Collapse
|
|
22 |
22 |
20
|
Konstantopoulos N, Molero JC, McGee SL, Spolding B, Connor T, de Vries M, Wanyonyi S, Fahey R, Morrison S, Swinton C, Jones S, Cooper A, Garcia-Guerra L, Foletta VC, Krippner G, Andrikopoulos S, Walder KR. Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo. Diabetes 2012; 61:2146-54. [PMID: 22586591 PMCID: PMC3402314 DOI: 10.2337/db11-0578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA(1c) levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.
Collapse
|
research-article |
13 |
21 |
21
|
Ling ZC, Hong-Lie C, Ostenson CG, Efendic S, Khan A. Hyperglycemia contributes to impaired insulin response in GK rat islets. Diabetes 2001; 50 Suppl 1:S108-12. [PMID: 11272166 DOI: 10.2337/diabetes.50.2007.s108] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin secretion and glucose metabolism were compared in pancreatic islets from type 2 diabetic GK rats treated with phlorizin or vehicle. Treatment of control and GK rats with phlorizin for 30 days did not affect body weight, islet glucose utilization, or islet glucose oxidation. In phlorizin-treated GK rats, glucose-induced insulin release was about twofold higher at 11.0 and 16.7 mmol/l glucose compared with vehicle, treated GK rats, whereas phlorizin had no effect on control Wistar rats. However, also in phlorizin-treated GK rats, the amount of insulin released by the islets was significantly less than that from control rats (5.29+/-0.33 vs. 7.50+/-1.31 pmol x min(-1) islet(-1) at 16.7 mmol/l glucose; P<0.001). Islet glucose-6-phosphatase activity was significantly higher in GK rats than in control rats; phlorizin treatment significantly decreased this activity. These findings demonstrate that hyperglycemia per se constitutes an important factor for impaired insulin release in GK rats. Correction of hyperglycemia normalizes islet glucose-6-phosphatase activity, which may be an underlying factor for the partial improvement of glucose-induced insulin release.
Collapse
|
|
24 |
21 |
22
|
Moorthy K, Yadav UCS, Siddiqui MR, Sharma D, Basir SF, Baquer NZ. Effect of estradiol and progesterone treatment on carbohydrate metabolizing enzymes in tissues of aging female rats. Biogerontology 2005; 5:249-59. [PMID: 15314275 DOI: 10.1023/b:bgen.0000038026.89337.02] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to determine the effect of administration of estradiol (E2), progesterone (P4), and combination of estradiol and progesterone (EP) in aging female rats. The changes in the activities of hexokinase (HK), glucose-6-phosphatase (G6P'tase) and glucose-6-phosphate dehydrogenase (G6PDH) enzymes, and in protein levels in tissues of rats namely brain (cerebral hemisphere), heart, liver, kidney and uterus have been measured in different age groups. The random blood sugar level was measured in serum and liver. The different age groups of rats were given 0.1 microg/g body weight estradiol, 2.5 microg/g body weight progesterone and a similar concentration of both in a combined treatment for 1 month. This dose was selected after determining estrogen and progesterone levels in 3 month adult female animals so that the aging female animals had circulating hormone levels nearly the same as those of young female animals. The random sugar level was determined in serum and liver cytosolic fractions, and it was increased by combination treatment. The protein content in tissues showed significant changes only with combined hormone administration when compared with age-matched controls. The activity of HK decreased in aged animals and significantly increased by hormone treatments in all the tissues of the aged rats studied. The activity of G6P'tase increased with age up to 1.5 years and decreased in 2 years. Treatment with E2 and EP further decreased the activity significantly in all the tissues. G6PDH showed a similar pattern as was observed in HK in all the age groups. Therefore, the E2 and EP treatments caused an entire series of growth-related responses, including an increased uptake of glucose, increased the protein level in the tissues of aging rats, thereby reducing the risk factors associated with aging by normalizing hormone levels which decreased with aging and resulted in diseases such as Alzheimer's diseases and diabetes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
20 |
23
|
Abstract
Glucagon increased the activities of alanine amino transferase (AAT), fructose-1:6-bisphosphatase (fru-P2ase) and glucose-6-phosphatase (G-6-Pase) in goat brain tissue by about 100%, 150% and 50% respectively. These increase in activities were reversed by beta-antagonists propranolol. Well known alpha-agonist and antagonist like phenylephrine and phenoxybenzamine also increased AAT and G-6-Pase activities and these increased activities were reversed by propranolol. Phenylephrine and phenoxybenzamine however did not increase brain Fru-P2ase activity. However the most interesting finding is that cerebral cortical slices could produce glucose from alanine and this glucose production was enhanced by glucagon, phenylephrine and phenoxybenzamine. Propranolol reversed the effects of these agonists and antagonist to a great extent. From all these experiments we suggest brain to be a gluconeogenic organ although much less efficient than liver.
Collapse
|
|
32 |
19 |
24
|
González-Santiago AE, Vargas-Guerrero B, García-López PM, Martínez-Ayala AL, Domínguez-Rosales JA, Gurrola-Díaz CM. Lupinus albus Conglutin Gamma Modifies the Gene Expressions of Enzymes Involved in Glucose Hepatic Production In Vivo. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:134-140. [PMID: 28101822 DOI: 10.1007/s11130-016-0597-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.
Collapse
|
|
8 |
17 |
25
|
Swe MT, Thongnak L, Jaikumkao K, Pongchaidecha A, Chatsudthipong V, Lungkaphin A. Dapagliflozin attenuates renal gluconeogenic enzyme expression in obese rats. J Endocrinol 2020; 245:193-205. [PMID: 32092034 DOI: 10.1530/joe-19-0480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/08/2022]
Abstract
The kidneys release glucose into the systemic circulation through glucose reabsorption and renal gluconeogenesis. Currently, the significance of renal glucose release in pathological conditions has become a subject of interest. We examined the effect of sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i) on renal gluconeogenic enzyme expression in obese rats. Male Wistar rats (180-200 g) were fed either a normal diet (ND, n = 6) or a high-fat diet. At 16 weeks, after confirming the degree of glucose intolerance, high-fat diet-fed rats were randomly subdivided into three groups (n = 6/group): untreated group (HF), treated with dapagliflozin 1 mg/kg/day (HFSG) and treated with metformin 30 mg/kg/day (HFM). The treatment was continued for 4 weeks. We observed that dapagliflozin or metformin mitigated the enhanced expression of renal gluconeogenic enzymes, PEPCK, G6Pase and FBPase, as well as improved glucose tolerance and renal function in obese rats. Dapagliflozin downregulated the elevated expression of gluconeogenic transcription factors p-GSK3β, p-CREB and coactivator PGC1α in the renal cortical tissue. Metformin reduced the expression levels of renal cortical FOXO1 and CREB. Furthermore, reduced renal insulin signaling was improved and renal oxidative stress was attenuated by either dapagliflozin or metformin treatment in obese rats. We concluded that glucose tolerance was improved by dapagliflozin in obese prediabetic rats by suppressing renal glucose release from not only glucose reabsorption but also renal gluconeogenesis through improving renal cortical insulin signaling and oxidative stress. The efficacy of dapagliflozin in improving renal insulin signaling, oxidative stress and renal function was greater than that of metformin.
Collapse
|
|
5 |
16 |