1
|
Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 1988; 319:157-61. [PMID: 2968517 DOI: 10.1056/nejm198807213190307] [Citation(s) in RCA: 965] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
|
37 |
965 |
2
|
Abstract
Lipid II is a membrane-anchored cell-wall precursor that is essential for bacterial cell-wall biosynthesis. The effectiveness of targeting Lipid II as an antibacterial strategy is highlighted by the fact that it is the target for at least four different classes of antibiotic, including the clinically important glycopeptide antibiotic vancomycin. However, the growing problem of bacterial resistance to many current drugs, including vancomycin, has led to increasing interest in the therapeutic potential of other classes of compound that target Lipid II. Here, we review progress in understanding of the antibacterial activities of these compounds, which include lantibiotics, mannopeptimycins and ramoplanin, and consider factors that will be important in exploiting their potential as new treatments for bacterial infections.
Collapse
|
Review |
19 |
513 |
3
|
Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 1989; 8:943-50. [PMID: 2532132 DOI: 10.1007/bf01967563] [Citation(s) in RCA: 467] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycopeptide antibiotics, including vancomycin and teicoplanin, are large, rigid molecules that inhibit a late stage in bacterial cell wall peptidoglycan synthesis. The three-dimensional structure contains a cleft into which peptides of highly specific configuration (L-aa-D-aa-D-aa) can fit: such sequences are found only in bacterial cell walls, hence glycopeptides are selectively toxic. Glycopeptides interact with peptides of this conformation by hydrogen bonding, forming stable complexes. As a result of binding to L-aa-D-Ala-D-Ala groups in wall intermediates, glycopeptides inhibit, apparently by steric hindrance, the formation of the backbone glycan chains (catalysed by peptidoglycan polymerase) from the simple wall subunits as they are extruded through the cytoplasmic membrane. The subsequent transpeptidation reaction that imparts rigidity to the cell wall is also thus inhibited. This unique mechanism of action, involving binding of the bulky inhibitor to the substrate outside the membrane so that the active sites of two enzymes cannot align themselves correctly, renders the acquisition of resistance to the glycopeptide antibiotics more difficult than that to the majority of the other antibiotic groups.
Collapse
|
Review |
36 |
467 |
4
|
Arthur M, Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 1993; 37:1563-71. [PMID: 8215264 PMCID: PMC188020 DOI: 10.1128/aac.37.8.1563] [Citation(s) in RCA: 446] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
research-article |
32 |
446 |
5
|
Abstract
Endothelin-1 is an endothelium-derived vasoconstrictor peptide, possibly involved in the pathophysiology of cardiovascular disease. We examined the contribution of endogenously generated endothelin-1 to maintenance of peripheral vascular tone in healthy subjects by local intraarterial administration of an inhibitor of endothelin converting enzyme, phosphoramidon, and of a selective endothelin receptor A antagonist, BQ-123. Brachial artery infusion of local doses of proendothelin-1, the precursor to endothelin-1, caused a slow-onset dose-dependent forearm vasoconstriction which was abolished by co-infusion of phosphoramidon. Phosphoramidon did not affect responses to endothelin-1. Phosphoramidon caused slow-onset vasodilatation when infused alone, with blood flow increasing by 37% at 90 min (p = 0.03). Vasoconstriction to endothelin-1 was abolished by co-infusion of BQ-123 (p = 0.006), with forearm blood flow tending to increase. Infusion of BQ-123 alone caused progressive vasodilatation, with blood flow increasing by 64% after 60 min (p = 0.007). These results show that endogenous production of endothelin-1 contributes to the maintenance of vascular tone. Endothelin converting enzyme inhibitors and receptor antagonists may have therapeutic potential as vasodilators.
Collapse
|
Clinical Trial |
31 |
422 |
6
|
Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 1989; 33:1588-91. [PMID: 2554802 PMCID: PMC172707 DOI: 10.1128/aac.33.9.1588] [Citation(s) in RCA: 403] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vancomycin resistance exhibited by Enterococcus faecalis isolates V583, V586, and V587 is described. The vancomycin MICs ranged from 32 to 64 micrograms/ml. Although resistant to vancomycin, the isolates were susceptible to teicoplanin (MIC, less than or equal to 0.5 micrograms/ml). Such a glycopeptide susceptibility profile has not been previously described for E. faecalis. Time kill studies showed that vancomycin resistance adversely affected the synergistic activity that vancomycin and aminoglycoside combinations usually demonstrate against enterococci. However, the ability to detect vancomycin resistance varied with the susceptibility testing method used. Whereas broth microdilution, broth macrodilution, and agar dilution methods detected resistance, disk-agar diffusion and the AutoMicrobic system Gram-Positive GPS-A susceptibility card (Vitek Systems Inc., Hazelwood, Mo.) did not. To detect vancomycin resistance reliably and establish the incidence of such E. faecalis isolates, adjustments in some susceptibility testing methods may be necessary.
Collapse
|
research-article |
36 |
403 |
7
|
Kren V, Martínková L. Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr Med Chem 2001; 8:1303-28. [PMID: 11562268 DOI: 10.2174/0929867013372193] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numbers of biologically active compounds are glycosides. Sometimes, the glycosidic residue is crucial for their activity, in other cases glycosylation only improves pharmacokinetic parameters. Recent developments in molecular glycobiology brought better understanding to the aglycone vs. glycoside activities, and made possible to develop new, more active or more effective glycodrugs based on these findings - very illustrative recent example is the story of vancomycin. This paper deals with an array of glycosidic compounds currently used in medicine but also with biological activity of some glycosidic metabolites of the known drugs. It involves glycosides of vitamins, polyphenolic glycosides (flavonoids), alkaloid glycosides, glycosides in the group of antibiotics, glycopeptides, cardiac glycosides, steroid and terpenoid glycosides etc. The physiological role of the glycosyl and structure-activity relations (SAR) in the glycosidic moiety (-ies) are discussed.
Collapse
|
Review |
24 |
344 |
8
|
Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem 1995; 270:15262-8. [PMID: 7797512 DOI: 10.1074/jbc.270.25.15262] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endothelins (ET) are a family of potent vasoactive peptides that are produced from biologically inactive intermediates, termed big endothelins, via a proteolytic processing at Trp21-Val/Ile22. We recently cloned and characterized a membrane-bound metalloprotease that catalyzes this proteolytic activation, endothelin-converting enzyme-1 (ECE-1) (Xu, D., Emoto, N., Giaid, A., Slaughter, C., Kaw, S., deWit, D., and Yanagisawa, M. (1994) Cell 78, 473-485). This enzyme was shown to function in the secretory pathway as well as on the cell surface. Here we report molecular cloning of another novel enzyme, ECE-2, that produces mature ET-1 from big ET-1 both in vitro and in transfected cells. The cDNA sequence predicts that bovine ECE-2 is a metalloprotease structurally related to ECE-1, neutral endopeptidase 24.11, and human Kell blood group protein. The deduced amino acid sequence of ECE-2 is most similar to ECE-1, with an overall identity of 59%. ECE-2 resembles ECE-1 in that it is inhibited in vitro by phosphoramidon and FR901533 but not by thiorphan or captopril, and it converts big ET-1 more efficiently than big ET-2 or big ET-3. However, ECE-2 also exhibits the following striking differences from ECE-1. (i) The sensitivity of ECE-2 to phosphoramidon is 250-fold higher as compared with ECE-1, while FR901533 inhibits both enzymes at similar concentrations. (ii) ECE-2 has an acidic pH optimum at pH 5.5, which is in sharp contrast to the neutral pH optimum of ECE-1. ECE-2 has a narrow pH profile and is virtually inactive at neutral pH. Chinese hamster ovary (CHO) cells, which lack detectable levels of endogenous ECE activity, secrete mature ET-1 into the medium when doubly transfected with ECE-2 and prepro-ET-1 cDNAs. However, ECE-2-transfected CHO cells do not efficiently produce mature ET-1 when present with an exogenous source of big ET-1 through coculture with prepro-ET-1-transfected CHO cells. These findings suggest that ECE-2 acts as an intracellular enzyme responsible for the conversion of endogenously synthesized big ET-1 at the trans-Golgi network, where the vesicular fluid is acidified.
Collapse
|
Comparative Study |
30 |
324 |
9
|
Otvos L, O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39:14150-9. [PMID: 11087363 DOI: 10.1021/bi0012843] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.
Collapse
|
|
25 |
260 |
10
|
Haurum JS, Tan L, Arsequell G, Frodsham P, Lellouch AC, Moss PA, Dwek RA, McMichael AJ, Elliott T. Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 1995; 25:3270-6. [PMID: 8566011 DOI: 10.1002/eji.1830251211] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule.
Collapse
|
|
30 |
249 |
11
|
Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme. J Biol Chem 2001; 276:24540-8. [PMID: 11337485 DOI: 10.1074/jbc.m007579200] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deposition of beta-amyloid (Abeta) peptides in the brain is an early and invariant feature of all forms of Alzheimer's disease. As with any secreted protein, the extracellular concentration of Abeta is determined not only by its production but also by its catabolism. A major focus of Alzheimer's research has been the elucidation of the mechanisms responsible for the generation of Abeta. Much less, however, is known about the mechanisms responsible for Abeta removal in the brain. In this report, we describe the identification of endothelin-converting enzyme-1 (ECE-1) as a novel Abeta-degrading enzyme. We show that treatment of endogenous ECE-expressing cell lines with the metalloprotease inhibitor phosphoramidon causes a 2-3-fold elevation in extracellular Abeta concentration that appears to be due to inhibition of intracellular Abeta degradation. Furthermore, we show that overexpression of ECE-1 in Chinese hamster ovary cells, which lack endogenous ECE activity, reduces extracellular Abeta concentration by up to 90% and that this effect is completely reversed by treatment of the cells with phosphoramidon. Finally, we show that recombinant soluble ECE-1 is capable of hydrolyzing synthetic Abeta40 and Abeta42 in vitro at multiple sites.
Collapse
|
|
24 |
249 |
12
|
Stryjewski ME, Corey GR. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infect Dis 2014; 58 Suppl 1:S10-9. [PMID: 24343827 DOI: 10.1093/cid/cit613] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The horizontal transmission of methicillin resistance to Staphylococcus aureus (MRSA) in hospital and community settings, and growing prevalence of these strains, presents a significant clinical challenge to the management of serious infections worldwide. While infection control initiatives have stemmed the rising prevalence, MRSA remains a significant pathogen. More recently, evidence that MRSA is becoming resistant to glycopeptides and newer therapies raises concern about the use of these therapies in clinical practice. Vancomycin resistance has become evident in select clinical settings through rising MICs, growing awareness of heteroresistance, and emergence of intermediate-resistant and fully resistant strains. While resistance to linezolid and daptomycin remains low overall, point mutations leading to resistance have been described for linezolid, and horizontal transmission of cfr-mediated resistance to linezolid has been reported in clinical isolates. These resistance trends for newer therapies highlight the ongoing need for new and more potent antimicrobial therapies.
Collapse
|
Review |
11 |
234 |
13
|
Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S, Kiyama H, Iwata H, Tomita T, Iwatsubo T, Saido TC. Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 2001; 276:21895-901. [PMID: 11278416 DOI: 10.1074/jbc.m008511200] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.
Collapse
|
|
24 |
227 |
14
|
Leclercq R, Derlot E, Weber M, Duval J, Courvalin P. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 1989; 33:10-5. [PMID: 2523687 PMCID: PMC171412 DOI: 10.1128/aac.33.1.10] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enterococcus faecium BM4165 and BM4178, isolated from immunocompromised patients, one treated with vancomycin, were inducibly resistant to high levels of the glycopeptide antibiotics vancomycin and teicoplanin but susceptible to the new lipopeptide daptomycin (LY146032). Strain BM4165 was also resistant to macrolidelincosamide-streptogramin B-type (MLS) antibiotics. The genes conferring resistance to glycopeptides and to MLS antibiotics in strain BM4165 were carried on plasmids pIP819 and pIP821, respectively; pIP819 also carried genes that encoded resistance to MLS antibiotics. The two plasmids, which were distinct although related, were self-transferable to other E. faecium strains. Plasmid pIP819 could also conjugate to E. faecalis, Streptococcus sanguis, S. pyogenes, S. lactis, and Listeria monocytogenes, in which it conferred inducible glycopeptide resistance, but not to S. aureus. Glycopeptide-inactivating activity was not detected, and the biochemical mechanism of resistance remains unknown. Based on this first report of transferable resistance to glycopeptides, we anticipate dissemination of resistance to these antibiotics in gram-positive cocci and bacilli in which it can be phenotypically expressed.
Collapse
|
research-article |
36 |
222 |
15
|
Klare I, Heier H, Claus H, Reissbrodt R, Witte W. vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 1995; 125:165-71. [PMID: 7875564 DOI: 10.1111/j.1574-6968.1995.tb07353.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycopeptide-resistant Enterococcus faecium strains were isolated from a pig farm and a poultry farm both using avoparcin as a food additive. Such organisms were not isolated in a hen's eggs-producing farm not using avoparcin. Glycopeptide-resistant enterococci were also detected in broiler chicken carcasses that were delivered to a hospital's kitchen. The resistance was determined by the vanA gene as indicated by the detection of the inducible 39-kDa cytoplasmic membrane protein and of a vanA-specific DNA sequence amplified by polymerase chain reaction. Genomic DNA fragment patterns of strains from animal sources were different from each other and also from those of strains isolated in hospitals and from sewage treatment plants. This findings suggest the dissemination of the vanA determinant among different enterococcal strains of distinct ecological origin.
Collapse
|
|
30 |
221 |
16
|
|
|
20 |
219 |
17
|
Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jollès P, Fiat AM. Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 1998; 80:155-65. [PMID: 9587673 DOI: 10.1016/s0300-9084(98)80022-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In adult humans, after milk or yogurt ingestion, many peptides derived from alpha s1-, beta- or kappa-caseins were detected in stomach, including the kappa-caseinoglycopeptide, an inhibitor of platelet aggregation. Smaller peptides derived from casein and lactoferrin were recovered from duodenum. Two long peptides, the kappa-caseinoglycopeptide and the N-terminal peptide of alpha s1-casein, were absorbed and detected in plasma. These results support the concept that food-born peptides could have physiological activities in man.
Collapse
|
|
27 |
217 |
18
|
Barcia-Macay M, Seral C, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother 2006; 50:841-51. [PMID: 16495241 PMCID: PMC1426441 DOI: 10.1128/aac.50.3.841-851.2006] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pharmacodynamic properties governing the activities of antibiotics against intracellular Staphylococcus aureus are still largely undetermined. Sixteen antibiotics of seven different pharmacological classes (azithromycin and telithromycin [macrolides]; gentamicin [an aminoglycoside]; linezolid [an oxazolidinone]; penicillin V, nafcillin, ampicillin, and oxacillin [beta-lactams]; teicoplanin, vancomycin, and oritavancin [glycopeptides]; rifampin [an ansamycin]; and ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin [quinolones]) have been examined for their activities against S. aureus (ATCC 25923) in human THP-1 macrophages (intracellular) versus that in culture medium (extracellular) by using a 0- to 24-h exposure time and a wide range of extracellular concentrations (including the range of the MIC to the maximum concentration in serum [C(max); total drug] of humans). All molecules except the macrolides caused a net reduction in bacterial counts that was time and concentration/MIC ratio dependent (four molecules tested in detail [gentamicin, oxacillin, moxifloxacin, and oritavancin] showed typical sigmoidal dose-response curves at 24 h). Maximal intracellular activities remained consistently lower than extracellular activities, irrespective of the level of drug accumulation and of the pharmacological class. Relative potencies (50% effective concentration or at a fixed extracellular concentration/MIC ratio) were also decreased, but to different extents. At an extracellular concentration corresponding to their C(max)s (total drug) in humans, only oxacillin, levofloxacin, garenoxacin, moxifloxacin, and oritavancin had truly intracellular bactericidal effects (2-log decrease or more, as defined by the Clinical and Laboratory Standards Institute guidelines). The intracellular activities of antibiotics against S. aureus (i) are critically dependent upon their extracellular concentrations and the duration of cell exposure (within the 0- to 24-h time frame) to antibiotics and (ii) are always lower than those that can be observed extracellularly. This model may help in rationalizing the choice of antibiotic for the treatment of S. aureus intracellular infections.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
205 |
19
|
Oefner C, D'Arcy A, Hennig M, Winkler FK, Dale GE. Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol 2000; 296:341-9. [PMID: 10669592 DOI: 10.1006/jmbi.1999.3492] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neutral endopeptidase is a mammalian type II integral membrane zinc-containing endopeptidase, which degrades and inactivates a number of bioactive peptides. The range of substrates cleaved by neutral endopeptidase in vitro includes the enkephalins, substance P, endothelin, bradykinin and atrial natriuretic factor. Due to the physiological importance of neutral endopeptidase in the modulation of nociceptive and pressor responses there is considerable interest in inhibitors of this enzyme as novel analgesics and anti-hypertensive agents. Here we describe the crystal structure of the extracellular domain (residues 52-749) of human NEP complexed with the generic metalloproteinase inhibitor phosphoramidon at 2.1 A resolution. The structure reveals two multiply connected folding domains which embrace a large central cavity containing the active site. The inhibitor is bound to one side of this cavity and its binding mode provides a detailed understanding of the ligand-binding and specificity determinants.
Collapse
|
|
25 |
204 |
20
|
Brown DFJ, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, Wren MWD. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother 2005; 56:1000-18. [PMID: 16293678 DOI: 10.1093/jac/dki372] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
These evidence-based guidelines have been produced after a literature review of the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). We have considered the detection of MRSA in screening samples and the detection of reduced susceptibility to glycopeptides in S. aureus. Recommendations are given for the identification of S. aureus and for suitable methods of susceptibility testing and screening for MRSA and for S. aureus with reduced susceptibility to glycopeptides. These guidelines indicate what tests should be used but not when the tests are applicable, as aspects of this are dealt with in guidelines on control of MRSA. There are currently several developments in screening media and molecular methods. It is likely that some of our recommendations will require modification as the new methods become available.
Collapse
|
|
20 |
194 |
21
|
Fidler IJ, Sone S, Fogler WE, Barnes ZL. Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide. Proc Natl Acad Sci U S A 1981; 78:1680-4. [PMID: 6940181 PMCID: PMC319196 DOI: 10.1073/pnas.78.3.1680] [Citation(s) in RCA: 192] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The multiple systemic administration of multilamellar liposomes composed of phosphatidylserine and phosphatidylcholine (molar ratio 3:7) that contained water-soluble muramyl dipeptide (MDP) activated alveolar macrophages to become tumoricidal and eradicated established spontaneous pulmonary and lymph node metastases. Spontaneously metastasizing melanoma cells were injected into the footpads of mice. After 4-5 weeks, the tumors were resected by a midfemoral amputation; 3 days later, twice-weekly injections of liposomes were initiated and continued for 4 weeks. In some experiments the mice were killed 2 weeks after the final treatment. Seventy-four percent of animals injected with liposomes containing MDP were free of visible metastases. In a separate life-span experiment, 60% of mice treated with liposome-encapsulated MDP were tumor-free 120 days after the last liposome treatment or 110 days after all control mice treated with free MDP or control liposome preparations had died of disseminated cancer. These data suggest that the systemic administration of liposomes containing MDP, or similar compounds that produce macrophage activation, may provide an additional useful approach to the therapeutic regimens currently used to eradicate cancer metastases.
Collapse
|
research-article |
44 |
192 |
22
|
Polt R, Porreca F, Szabò LZ, Bilsky EJ, Davis P, Abbruscato TJ, Davis TP, Harvath R, Yamamura HI, Hruby VJ. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci U S A 1994; 91:7114-8. [PMID: 8041755 PMCID: PMC44349 DOI: 10.1073/pnas.91.15.7114] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most peptides have not proved useful as neuroactive drugs because they are blocked by the blood-brain barrier and do not reach their receptors within the brain. Intraperitoneally administered L-serinyl beta-D-glucoside analogues of [Met5]enkephalin (glycopeptides) have been shown to be transported across the blood-brain barrier to bind with targeted mu- and delta-opioid receptors in the mouse brain. The opioid nature of the binding has been demonstrated with intracerebroventricularly administered naloxone. Paradoxically, glucosylation decreases the lipophilicity of the peptides while promoting transport across the lipophilic endothelial layer. It is suggested that glucose transporter GLUT-1 is responsible for the transport of the peptide message. Profound and long-lasting analgesia has been observed in mice (tail-flick and hot-plate assays) with two of the glycopeptide analogues when administered intraperitoneally.
Collapse
|
research-article |
31 |
177 |
23
|
Abstract
A critical processing step in endothelin biosynthesis is the conversion of the intermediate "big endothelin" to its biologically active product catalysed by endothelin converting enzyme (ECE). In this commentary we discuss critically the cellular location, structure, and activity of the isoforms of ECE. The current evidence supporting a metallopeptidase ECE as the physiological regulator of endothelin production is described. Its sensitivity to inhibition by the fungal metabolite phosphoramidon and subsequent cloning of the enzyme indicate it to be a type II integral membrane protein homologous with neural endopeptidase-24.11 (E-24.11), the major neuropeptide-degrading ectoenzyme in brain and other tissues. Unlike E-24.11, however, ECE exists as a disulphide-linked dimer of subunit M(r) 120-130 kDa and is not inhibited by other E-24.11 inhibitors such as thiorphan. Alternative splicing produces two forms of ECE with distinct N-terminal tails. These isoforms of ECE-1 show similar specificity converting big endothelin-1 (ET-1) to ET-1 but big ET-2 and big ET-3 are converted much less efficiently. This suggests that additional forms of ECE remain to be isolated. Immunocytochemical studies indicate a predominant cell-surface location for ECE-1, like E-24.11. This is consistent with the conversion of exogenous big ET-1 when administered in vivo and the inhibition of this event by phosphoramidon. However, mature ET-1 can be detected in intracellular vesicles in endothelial cells, suggesting that some processing occurs in the constitutive secretory pathway. This may be mediated by ECE-2, a recently cloned member of the E-24.11/ECE family which has an acidic pH optimum. Selective inhibitors of ECE may have therapeutic applications in cardiovascular and renal medicine.
Collapse
|
Review |
29 |
176 |
24
|
Johnson AP, Uttley AH, Woodford N, George RC. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 1990; 3:280-91. [PMID: 2143434 PMCID: PMC358160 DOI: 10.1128/cmr.3.3.280] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vancomycin and teicoplanin are glycopeptides active against a wide range of gram-positive bacteria. For 30 years following the discovery of vancomycin in 1956, vancomycin resistance was not detected among normally susceptible bacteria recovered from human specimens. Since 1986, however, bacteria resistant to vancomycin or teicoplanin or both have been described. Strains of the genera Leuconostoc, Lactobacillus, Pediococcus, and Erysipelothrix seem inherently resistant to glycopeptides. Species and strains of enterococci and coagulase-negative staphylococci appear to have acquired or developed resistance. There are at least two categories of glycopeptide resistance among enterococci, characterized by either high-level resistance to vancomycin (MIC, greater than or equal to 64 mg/liter) and teicoplanin (MIC, greater than or equal to 8 mg/liter) or lower-level vancomycin resistance (MIC, 32 to 64 mg/liter) and teicoplanin susceptibility (MIC, less than or equal to 1 mg/liter). The two categories appear to have similar resistance mechanisms, although genetic and biochemical studies indicate that they have arisen independently. Among coagulase-negative staphylococci, strains for which vancomycin MICs are up to 20 mg/liter or teicoplanin MICs are 16 to 32 mg/liter have been reported, but cross-resistance between these glycopeptides varies. The selective advantage accorded to glycopeptide-resistant bacteria and the observation that high-level resistance in enterococci is transferable suggest that such resistance may be expected to increase in incidence. Clinicians and microbiologists need to be aware of this emerging problem.
Collapse
|
research-article |
35 |
172 |
25
|
Liu W, Gao R, Yang C, Feng Z, Ou-Yang W, Pan X, Huang P, Zhang C, Kong D, Wang W. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. SCIENCE ADVANCES 2022; 8:eabn7006. [PMID: 35857459 PMCID: PMC9269894 DOI: 10.1126/sciadv.abn7006] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The treatment of difficult-to-heal wounds remains a substantial clinical challenge due to deteriorative tissue microenvironment including the loss of extracellular matrix (ECM), excessive inflammation, impaired angiogenesis, and bacterial infection. Inspired by the chemical components, fibrous structure, and biological function of natural ECM, antibacterial and tissue environment-responsive glycopeptide hybrid hydrogel was developed for chronic wound healing. The hydrogel can facilitate the cell proliferation and macrophage polarization to M2 phenotype, and show potent antibacterial efficacy against both Gram-negative and Gram-positive bacteria. Significantly, the glycopeptide hydrogel accelerated the reconstruction of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness diabetic and scalding skin by orchestrating a pro-regenerative response indicated by abundant M2-type macrophages, attenuated inflammation, and promoted angiogenesis. Collectively, ECM-mimetic and immunomodulatory glycopeptide hydrogel is a promising multifunctional dressing to reshape the damaged tissue environment without additional drugs, exogenous cytokines, or cells, providing an effective strategy for the repair and regeneration of chronic cutaneous wounds.
Collapse
|
research-article |
3 |
164 |