1
|
Hung H, Lin J, Teng Y, Kao C, Wang P, Soong B, Tsai T. A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning. J Pathol 2025; 265:57-68. [PMID: 39562497 PMCID: PMC11638663 DOI: 10.1002/path.6368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
2
|
Zhao SS, Qian Q, Chen XX, Lu Q, Xing G, Qiao S, Li R, Zhang G. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication. J Virol 2024; 98:e0184223. [PMID: 38179942 PMCID: PMC10878038 DOI: 10.1128/jvi.01842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.
Collapse
|
3
|
Cara-Esteban M, Marín MP, Martínez-Alonso E, Martínez-Bellver S, Teruel-Martí V, Martínez-Menárguez JA, Tomás M. The Golgi complex of dopaminergic enteric neurons is fragmented in a hemiparkinsonian rat model. Microsc Res Tech 2024; 87:373-386. [PMID: 37855309 DOI: 10.1002/jemt.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.
Collapse
|
4
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
|
5
|
Skupien-Jaroszek A, Szczepankiewicz AA, Rysz A, Marchel A, Matyja E, Grajkowska W, Wilczynski GM, Dzwonek J. Morphological alterations of the neuronal Golgi apparatus upon seizures. Neuropathol Appl Neurobiol 2023; 49:e12940. [PMID: 37771048 DOI: 10.1111/nan.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
AIMS Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy. METHODS Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca2+ chelator BAPTA-AM in primary hippocampal neurons upon activation were performed. RESULTS We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM. CONCLUSIONS In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca2+ is indispensable for these KA-induced morphological alterations of GA in vitro.
Collapse
|
6
|
Li S, Xu Y, He S, Li X, Shi J, Zhang B, Zhu Y, Li X, Wang Y, Liu C, Ma Y, Dong S, Yu J. Tetramethylpyrazine ameliorates endotoxin-induced acute lung injury by relieving Golgi stress via the Nrf2/HO-1 signaling pathway. BMC Pulm Med 2023; 23:286. [PMID: 37550659 PMCID: PMC10408181 DOI: 10.1186/s12890-023-02585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway. METHODS AND RESULTS Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Additionally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi apparatus Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP. CONCLUSION Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress via the Nrf2/HO-1 signaling pathway in vivo and in vitro.
Collapse
|
7
|
Patel S, Wald AI, Bastaki JM, Chiosea SI, Singhi AD, Seethala RR. NKX3.1 Expression and Molecular Characterization of Secretory Myoepithelial Carcinoma (SMCA): Advancing the Case for a Salivary Mucous Acinar Phenotype. Head Neck Pathol 2023; 17:467-478. [PMID: 36746884 PMCID: PMC10293155 DOI: 10.1007/s12105-023-01524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Secretory myoepithelial carcinomas (SMCA) are rare, mucinous, signet ring predominant tumors with primitive myoepithelial features. While many mucinous salivary gland tumors have now been molecularly characterized, key drivers in SMCA have yet to be elucidated. Recently, NKX3.1, a homeodomain transcription factor implicated in salivary mucous acinar development was also shown in a subset of salivary mucinous neoplasms, salivary intraductal papillary mucinous neoplasms (SG-IPMN). To date, NKX3.1 expression has not been characterized in other mucinous salivary lesions. Here, we report molecular and extended immunophenotypic findings in SMCA and NKX3.1 expression in the context of other head and neck lesions. METHODS We retrieved 4 previously reported SMCA, performed additional immunohistochemical and targeted next-generation sequencing (NGS). We also investigated the use of NKX3.1 as a marker for SMCA in the context of its prevalence and extent (using H-score) in a mixed cohort of retrospectively and prospectively tested head and neck lesions (n = 223) and non-neoplastic tissues (n = 66). RESULTS NKX3.1 positivity was confirmed in normal mucous acini as well as in mucous acinar class of lesions (5/6, mean H-score: 136.7), including mucinous adenocarcinomas (3/4), SG-IPMN (1/1), and microsecretory adenocarcinoma (MSA) (1/1). All SMCA were positive. Fluorescence in situ hybridization for SS18 rearrangements were negative in all successfully tested cases (0/3). NGS was successful in two cases (cases 3 and 4). Case 3 demonstrated a PTEN c.655C>T p.Q219* mutation and a SEC16A::NOTCH1 fusion while case 4 (clinically aggressive) showed a PTEN c.1026+1G>A p.K342 splice site variant, aTP53 c.524G>A p.R175H mutation and a higher tumor mutation burden (29 per Mb). PTEN immunohistochemical loss was confirmed in both cases and a subset of tumor cells showed strong (extreme) staining for P53 in Case 4. CONCLUSION Despite a partial myoepithelial phenotype, SMCA, along with mucinous adenocarcinomas/SG-IPMN and MSA, provisionally constitute a mucous acinar class of tumors based on morphology and NKX3.1 expression. Like salivary mucinous adenocarcinomas/SG-IPMN, SMCA also show alterations of the PTEN/PI3K/AKT pathway and may show progressive molecular alterations. We document the first extramammary tumor with a SEC16A::NOTCH1 fusion.
Collapse
|
8
|
Ishida M, Otero MG, Freeman C, Sánchez-Lara PA, Guardia CM, Pierson TM, Bonifacino JS. A neurodevelopmental disorder associated with an activating de novo missense variant in ARF1. Hum Mol Genet 2023; 32:1162-1174. [PMID: 36345169 PMCID: PMC10026249 DOI: 10.1093/hmg/ddac279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.
Collapse
|
9
|
Deng C, Zhao X, Chen Y, Ai K, Zhang Y, Gong T, Zeng C, Lei G. Engineered Platelet Microparticle-Membrane Camouflaged Nanoparticles for Targeting the Golgi Apparatus of Synovial Fibroblasts to Attenuate Rheumatoid Arthritis. ACS NANO 2022; 16:18430-18447. [PMID: 36342327 DOI: 10.1021/acsnano.2c06584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synovial fibroblasts in rheumatoid arthritis (RA) joints mediate synovial hyperplasia, progressive joint destruction, and the potential spread of disease between joints by producing multiple pathogenic proteins. Here, we deliver all-trans retinoic acid (ATRA) to selectively down-regulate these pathogenic factors, with a Golgi-targeting platelet microparticle-mimetic nanoplatform (termed Gol-PMMNP) which comprises a nanoparticle core and a platelet microparticle membrane coating labeled with a Golgi apparatus-targeting peptide. Gol-PMMNPs are shown to target synovial fibroblasts derived from RA patients via integrin α2β1-mediated endocytosis and accumulate in the Golgi apparatus by retrograde transport. ATRA-loaded Gol-PMMNPs (ATRA-Gol-PMMNPs) cause structural disruption of the Golgi apparatus, leading to an efficient reduction of pathogenic protein secretion in RA synovial fibroblasts. In rats with collagen-induced arthritis, Gol-PMMNPs display an arthritic joint-specific distribution, and ATRA-Gol-PMMNPs effectively reduce concentrations of pathogenic factors therein, including inflammatory cytokines, chemokines, and matrix-degrading enzymes within these joints. Additionally, ATRA-Gol-PMMNP treatment results in inflammatory remission and decreased bone erosion in both arthritic and proximal joints. Furthermore, ATRA-Gol-PMMNPs induce negligible toxicity to major organs. Taken together, ATRA-Gol-PMMNPs inhibit the progression of RA through reducing the production of multiple pathogenic mediators by synovial fibroblasts.
Collapse
|
10
|
周 红, 李 少, 陈 丹, 赵 婷, 龚 涛, 李 佳. [Preliminary Study on Drug-Loaded Chondroitin Sulfate-Modified Micelles Targeting Golgi Apparatus in Tumor Cells for the Treatment of Tumor Metastasis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:619-625. [PMID: 35871732 PMCID: PMC10409471 DOI: 10.12182/20220760103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 06/15/2023]
Abstract
Objective To make preliminary exploration into the Golgi apparatus targeting of chondroitin sulfate-modified micelles (CSmicelles) co-loaded with pirarubicin (THP) and vinorelbine (VRL) in tumor cells, as well as their in vitro anti-tumor metastasis effect. Methods The cellular uptake efficiency and internalization mechanism of CSmicelles in 4T1 mouse breast cancer cell line were investigated by flow cytometry. Preliminary study of the Golgi apparatus targeting CSmicelles in tumor cells was conducted by co-localization experiment. Then, the effect of CSmicelles co-loaded with THP and VRL (THP+VTL-CSmicelles) on the structure of Golgi apparatus was investigated by GM130 immunofluorescence experiment. Finally, the i n vitro anti-tumor metastasis ability of THP+VTL-CSmicelles was evaluated by wound healing assay and Transwell migration/invasion assay. Results It was found that CSmicelles could significantly increase cellular uptake of drugs. CSmicelles were internalized into cells through clathrin-mediated and caveolin-mediated endocytosis, which was energy-dependent active transport and exhibited substantial ability of targeting Golgi apparatus in tumor cells. THP+VTL-CSmicelles could break down the structure of Golgi apparatus and significantly inhibit the migration and invasion of tumor cells. Conclusion THP+VTL-CSmicelles demonstrate high affinity towards Golgi apparatus in tumor cells, exert targeted effects and inhibit tumor cell metastasis, which provides a novel idea and method for the treatment of cancer metastasis.
Collapse
|
11
|
Zhang X, Jiang J, Yu Q, Zhou P, Yang S, Xia J, Deng T, Yu C. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. NANOSCALE 2022; 14:8510-8524. [PMID: 35660835 DOI: 10.1039/d2nr02134j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The poor penetration of nanomaterials in solid tumours and difficulty in monitoring their penetration depth are major obstacles in their application for the treatment of solid tumours. Herein, pH-responsive carbon dots (ZCD) based on a zeolitic imidazolate framework (ZIF-8) were fabricated to achieve the deep delivery of the chemotherapeutic doxorubicin (DOX) via a hierarchical size/charge dual-transformation and transcytosis. The as-prepared ZCD accumulated in the solid tumour and the acidic tumour microenvironment further triggered its decomposition. Firstly, ZCD was decomposed by the weakly acidic extracellular microenvironment of the solid tumour, enabling it to transform into small and neutrally charged particles. Subsequently, these particles were endocytosed by lysosomes, and further disintegrated into smaller and positively charged particles, which could target the Golgi apparatus. Consequently, ZCD delivered DOX deep into the solid tumour via a size-shrinking strategy and Golgi-mediated transcytosis, thus significantly improving its antitumour efficacy. In addition, carbonization endowed ZCD with superior fluorescence property, which was enhanced in the acidic microenvironment, thus improving the sensitivity and accuracy of ex vivo monitoring of the penetration depth of the nanomedicine in real time. Collectively, our results confirmed that the carbon dots obtained via the direct carbonization of ZIF-8 simultaneously exhibited enhanced deep penetration into solid tumours and fluorescence, which could be monitored, and that the carbonization of functional materials is effective to enhance their fluorescence, and further broaden their applications.
Collapse
|
12
|
Ahat E, Song Y, Xia K, Reid W, Li J, Bui S, Zhang F, Linhardt RJ, Wang Y. GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cell Mol Life Sci 2022; 79:199. [PMID: 35312866 PMCID: PMC9164142 DOI: 10.1007/s00018-022-04223-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.
Collapse
|
13
|
Casey CA, Macke AJ, Gough RR, Pachikov AN, Morris ME, Thomes PG, Kubik JL, Holzapfel MS, Petrosyan A. Alcohol-Induced Liver Injury: Down-regulation and Redistribution of Rab3D Results in Atypical Protein Trafficking. Hepatol Commun 2022; 6:374-388. [PMID: 34494400 PMCID: PMC8793998 DOI: 10.1002/hep4.1811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
Previous work from our laboratories has identified multiple defects in endocytosis, protein trafficking, and secretion, along with altered Golgi function after alcohol administration. Manifestation of alcohol-associated liver disease (ALD) is associated with an aberrant function of several hepatic proteins, including asialoglycoprotein receptor (ASGP-R), their atypical distribution at the plasma membrane (PM), and secretion of their abnormally glycosylated forms into the bloodstream, but trafficking mechanism is unknown. Here we report that a small GTPase, Rab3D, known to be involved in exocytosis, secretion, and vesicle trafficking, shows ethanol (EtOH)-impaired function, which plays an important role in Golgi disorganization. We used multiple approaches and cellular/animal models of ALD, along with Rab3D knockout (KO) mice and human tissue from patients with ALD. We found that Rab3D resides primarily in trans- and cis-faces of Golgi; however, EtOH treatment results in Rab3D redistribution from trans-Golgi to cis-medial-Golgi. Cells lacking Rab3D demonstrate enlargement of Golgi, especially its distal compartments. We identified that Rab3D is required for coat protein I (COPI) vesiculation in Golgi, and conversely, COPI is critical for intra-Golgi distribution of Rab3D. Rab3D/COPI association was altered not only in the liver of patients with ALD but also in the donors consuming alcohol without steatosis. In Rab3D KO mice, hepatocytes experience endoplasmic reticulum (ER) stress, and EtOH administration activates apoptosis. Notably, in these cells, ASGP-R, despite incomplete glycosylation, can still reach cell surface through ER-PM junctions. This mimics the effects seen with EtOH-induced liver injury. Conclusion: We revealed that down-regulation of Rab3D contributes significantly to EtOH-induced Golgi disorganization, and abnormally glycosylated ASGP-R is excreted through ER-PM connections, bypassing canonical (ER→Golgi→PM) anterograde transportation. This suggests that ER-PM sites may be a therapeutic target for ALD.
Collapse
|
14
|
Meng JF, Luo MJ. CRABP2 involvement in a mechanism of Golgi stress and tumor dry matter in non-small cell lung cancer cells via ER dependent Hippo pathway. Acta Biochim Pol 2021; 69:31-36. [PMID: 34932899 DOI: 10.18388/abp.2020_5543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/02/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The paper aimed to explore the mechanism of cellular retinoic acid binding protein 2 (CRABP2) involvement in Golgi stress and tumor dryness in non-small cell lung cancer (NSCLC) cells through the estrogen receptor (ER) dependent Hippo pathway. METHODS Human NSCLC cell line A549 was purchased from ATCC andcultured in RPMI-1640 with 10% FBS. Attractene reagent was used for plasmid transfection. ER (sh) RNA was designed using RNAi Designer. Seventy-six hours after infection, stable cells were obtained after treated with puromycin for 3 weeks. ER silencing cells (with inhibited ER expression) were compared to the control cells (normal cultured NSCLC cell line A549, CRABP2 normal expression). CRABP2 and ER expression levels were detected by RT-PCR. MTT assay was used to detect cell proliferation, and the cell localization of ER and Golgi was observed by confocal microscopy. The invasion and metastasis of cells were analyzed by Boden chamber invasion and migration assays. Western blotting assays was used for detecting the protein expression of E-cadherin, vimentin, ZO-1 protein and epithelial-mesenchymal transition (EMT) related factors. RESULTS The lower expression level of mRNA was detected in the ER-silencing group compared to the control group (P<0.05). We also found a higher proliferation level of cells, the number of invading and metastatic cells, the expression of vimentin, p-Lats1T1079, Lats1 and p-YAPS127 mRNA in the control group compared to the ER silencing group (P<0.05). And the expression level of protein kinase RNA-like endoplasmic reticulum kinase (PERK), phosphorylate eukaryotic initiation factor 2 (p-eIF2 alpha), activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) in the control group was higher than that in the ER silencing group (P<0.05). Adversely, a lower expression level of E-cadherin and ZO-1 protein was found in the control group compared to the ER silencing group (P<0.05). CONCLUSION The expression of CRABP2 in NSCLC cells was regulated by ER, and cell proliferation and invasion were regulated by the Hippo pathway. At the same time, it was found that decreased expression of CRABP2 enhanced endoplasmic reticulum/Golgi stress response.
Collapse
|
15
|
Kim SW, Kim B, Mok J, Kim ES, Park J. Dysregulation of the Acrosome Formation Network by 8-oxoguanine (8-oxoG) in Infertile Sperm: A Case Report with Advanced Techniques. Int J Mol Sci 2021; 22:5857. [PMID: 34070710 PMCID: PMC8199233 DOI: 10.3390/ijms22115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
8-Hydroxyguanine (8-oxoG) is the most common oxidative DNA lesion and unrepaired 8-oxoG is associated with DNA fragmentation in sperm. However, the molecular effects of 8-oxoG on spermatogenesis are not entirely understood. Here, we identified one infertile bull (C14) due to asthenoteratozoospermia. We compared the global concentration of 8-oxoG by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), the genomic distribution of 8-oxoG by next-generation sequencing (OG-seq), and the expression of sperm proteins by 2-dimensional polyacrylamide gel electrophoresis followed by peptide mass fingerprinting (2D-PAGE/PMF) in the sperm of C14 with those of a fertile bull (C13). We found that the average levels of 8-oxoG in C13 and C14 sperm were 0.027% and 0.044% of the total dG and it was significantly greater in infertile sperm DNA (p = 0.0028). Over 81% of the 8-oxoG loci were distributed around the transcription start site (TSS) and 165 genes harboring 8-oxoG were exclusive to infertile sperm. Functional enrichment and network analysis revealed that the Golgi apparatus was significantly enriched with the products from 8-oxoG genes of infertile sperm (q = 2.2 × 10-7). Proteomic analysis verified that acrosome-related proteins, including acrosin-binding protein (ACRBP), were downregulated in infertile sperm. These preliminary results suggest that 8-oxoG formation during spermatogenesis dysregulated the acrosome-related gene network, causing structural and functional defects of sperm and leading to infertility.
Collapse
|
16
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
|
17
|
D'Souza Z, Taher FS, Lupashin VV. Golgi inCOGnito: From vesicle tethering to human disease. Biochim Biophys Acta Gen Subj 2020; 1864:129694. [PMID: 32730773 PMCID: PMC7384418 DOI: 10.1016/j.bbagen.2020.129694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The Conserved Oligomeric Golgi (COG) complex, a multi-subunit vesicle tethering complex of the CATCHR (Complexes Associated with Tethering Containing Helical Rods) family, controls several aspects of cellular homeostasis by orchestrating retrograde vesicle traffic within the Golgi. The COG complex interacts with all key players regulating intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. In cells, COG deficiencies result in the accumulation of non-tethered COG-complex dependent (CCD) vesicles, dramatic morphological and functional abnormalities of the Golgi and endosomes, severe defects in N- and O- glycosylation, Golgi retrograde trafficking, sorting and protein secretion. In humans, COG mutations lead to severe multi-systemic diseases known as COG-Congenital Disorders of Glycosylation (COG-CDG). In this report, we review the current knowledge of the COG complex and analyze COG-related trafficking and glycosylation defects in COG-CDG patients.
Collapse
|
18
|
Uzquiano A, Cifuentes-Diaz C, Jabali A, Romero DM, Houllier A, Dingli F, Maillard C, Boland A, Deleuze JF, Loew D, Mancini GMS, Bahi-Buisson N, Ladewig J, Francis F. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep 2020; 28:1596-1611.e10. [PMID: 31390572 DOI: 10.1016/j.celrep.2019.06.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Apical radial glia (aRGs) are predominant progenitors during corticogenesis. Perturbing their function leads to cortical malformations, including subcortical heterotopia (SH), characterized by the presence of neurons below the cortex. EML1/Eml1 mutations lead to SH in patients, as well as to heterotopic cortex (HeCo) mutant mice. In HeCo mice, some aRGs are abnormally positioned away from the ventricular zone (VZ). Thus, unraveling EML1/Eml1 function will clarify mechanisms maintaining aRGs in the VZ. We pinpoint an unknown EML1/Eml1 function in primary cilium formation. In HeCo aRGs, cilia are shorter, less numerous, and often found aberrantly oriented within vesicles. Patient fibroblasts and human cortical progenitors show similar defects. EML1 interacts with RPGRIP1L, a ciliary protein, and RPGRIP1L mutations were revealed in a heterotopia patient. We also identify Golgi apparatus abnormalities in EML1/Eml1 mutant cells, potentially upstream of the cilia phenotype. We thus reveal primary cilia mechanisms impacting aRG dynamics in physiological and pathological conditions.
Collapse
|
19
|
Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Bicciato S, Tripodo C, Mantovani F, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun 2020; 11:3945. [PMID: 32770028 PMCID: PMC7414119 DOI: 10.1038/s41467-020-17596-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Collapse
|
20
|
Peng W, Mo X, Li L, Lu T, Hu Z. PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells. J Mol Histol 2020; 51:307-315. [PMID: 32448978 DOI: 10.1007/s10735-020-09881-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia-reperfusion injury is pivotal in the development of multiple-subcellular organelle and tissue injury after acute ischemic stroke. Recently, the Golgi apparatus (GA) has been shown to be a key subcellular organelle that plays an important role in neuroprotection against oxygen-glucose deprivation/reperfusion (OGD/R) injury. PAQR3, a scaffold protein exclusively localized in the GA, was originally discovered as a potential tumor suppressor protein. PAQR3 acts as a spatial regulator of Raf-1 that binds Raf-1 and sequesters it to the GA, where it negatively modulates the Ras/Raf/MEK/ERK signaling pathway in tumor models. Studies suggest that suppression of the ERK pathway can alleviate OGD/R-induced cell apoptosis. However, whether PAQR3 has potential effects on ischemic stroke and the underlying mechanism(s) remain unexplored. The current study is the first to show that PAQR3 was significantly downregulated in mouse neuroblastoma (N2A) cells upon OGD/R exposure, both at the mRNA and protein levels. Compared to that in controls, the mRNA level of PAQR3 began to decline at 0 h (0 h) after reperfusion, while the protein level began to decline at 4 h. Furthermore, overexpression of PAQR3 reduced OGD/R-induced apoptosis. The mRNA and protein levels of total ERK1 and ERK2 were unaltered, while activated p-ERK1 and p-ERK2 were decreased in N2A cells transfected with a PAQR3 expression vector after OGD for 4 h plus 24 h of reperfusion. Collectively, these data indicated that increased PAQR3 expression protected against OGD/R-induced apoptosis possibly by inhibiting the ERK signaling pathway. Therefore, PAQR3 might be a new attractive target in the treatment of OGD/R insult, and the underlying mechanism will pave the way for its potential experimental and clinical application.
Collapse
|
21
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
|
22
|
Bräuer S, Günther R, Sterneckert J, Glaß H, Hermann A. Human Spinal Motor Neurons Are Particularly Vulnerable to Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2020; 21:ijms21103564. [PMID: 32443559 PMCID: PMC7278966 DOI: 10.3390/ijms21103564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation—a typical finding in lower organism models and human postmortem tissue—was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks—including pathological protein aggregation—were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.
Collapse
|
23
|
Ma X, Sun J, Zhong L, Wang Y, Huang Q, Liu X, Jin S, Zhang J, Liang XJ. Evaluation of Turning-Sized Gold Nanoparticles on Cellular Adhesion by Golgi Disruption in Vitro and in Vivo. NANO LETTERS 2019; 19:8476-8487. [PMID: 31711283 DOI: 10.1021/acs.nanolett.9b02826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences in vitro and in vivo, which has important implications for the biological applications of nanomaterials.
Collapse
|
24
|
Kokubun H, Jin H, Aoe T. Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex. Int J Mol Sci 2019; 20:ijms20225614. [PMID: 31717602 PMCID: PMC6888596 DOI: 10.3390/ijms20225614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular activities, such as growth and secretion, are dependent on correct protein folding and intracellular protein transport. Injury, like ischemia, malnutrition, and invasion of toxic substances, affect the folding environment in the endoplasmic reticulum (ER). The ER senses this information, following which cells adapt their response to varied situations through the unfolded protein response. Activation of the KDEL receptor, resulting from the secretion from the ER of chaperones containing the KDEL sequence, plays an important role in this adaptation. The KDEL receptor was initially shown to be necessary for the retention of KDEL sequence-containing proteins in the ER. However, it has become clear that the activated KDEL receptor also regulates bidirectional transport between the ER and the Golgi complex, as well as from the Golgi to the secretory pathway. In addition, it has been suggested that the signal for KDEL receptor activation may also affect several other cellular activities. In this review, we discuss KDEL receptor-mediated bidirectional transport and signaling and describe disease models and human diseases related to KDEL receptor dysfunction.
Collapse
|
25
|
Li H, Zhang P, Luo J, Hu D, Huang Y, Zhang ZR, Fu Y, Gong T. Chondroitin Sulfate-Linked Prodrug Nanoparticles Target the Golgi Apparatus for Cancer Metastasis Treatment. ACS NANO 2019; 13:9386-9396. [PMID: 31375027 DOI: 10.1021/acsnano.9b04166] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metastasis is a multistep biological process regulated by multiple signaling pathways. The integrity of the Golgi apparatus plays an important role in these signaling pathways. Inspired by the mechanism and our previous finding about accumulation of chondroitin sulfate in Golgi apparatus in hepatic stellate cells, we developed a Golgi apparatus-targeting prodrug nanoparticle system by synthesizing retinoic acid (RA)-conjugated chondroitin sulfate (CS) (CS-RA). The prodrug nanoparticles appeared to accumulate in the Golgi apparatus in cancer cells and realized RA release under an acidic environment. We confirmed that CS-RA exhibited successful inhibition of multiple metastasis-associated proteins expression in vitro and in vivo by disruption of the Golgi apparatus structure. Following loading with paclitaxel (PTX), the CS-RA based nanoformulation (PTX-CS-RA) inhibited migration, invasion, and angiogenesis in vitro and suppressed tumor growth and metastasis in 4T1-Luc bearing mice. This multistep targeted nanoparticle system potentially enhanced the effect of antimetastasis combined with chemotherapy.
Collapse
|