1
|
Abstract
The pharmacokinetics of the immunosuppressant mycophenolate mofetil have been investigated in healthy volunteers and mainly in recipients of renal allografts. Following oral administration, mycophenolate mofetil was rapidly and completely absorbed, and underwent extensive presystemic de-esterification. Systemic plasma clearance of intravenous mycophenolate mofetil was around 10 L/min in healthy individuals, and plasma mycophenolate mofetil concentrations fell below the quantitation limit (0.4 mg/L) within 10 minutes of the cessation of infusion. Similar plasma mycophenolate mofetil concentrations were seen after intravenous administration in patients with severe renal or hepatic impairment, implying that the de-esterification process had not been substantially affected. Mycophenolic acid, the active immunosuppressant species, is glucuronidated to a stable phenolic glucuronide (MPAG) which is not pharmacologically active. Over 90% of the administered dose is eventually excreted in the urine, mostly as MPAG. The magnitude of the MPAG renal clearance indicates that active tubular secretion of MPAG must occur. At clinically relevant concentrations, mycophenolic acid and MPAG are about 97% and 82% bound to albumin, respectively. MPAG at high (but clinically realisable) concentrations reduced the plasma binding of mycophenolic acid. The mean maximum plasma mycophenolic acid concentration (Cmax) after a mycophenolate mofetil 1 g dose in healthy individuals was around 25 mg/L, occurred at 0.8 hours postdose, decayed with a mean apparent half-life (t1/2) of around 16 hours, and generated a mean total area under the plasma concentration-time curve (AUC infinity) of around 64 mg.h/L. Intra- and interindividual coefficients of variation for the AUC infinity of the drug were estimated to be 25% and 10%, respectively. Intravenous and oral administration of mycophenolate mofetil showed statistically equivalent MPA AUC infinity values in healthy individuals. Compared with mycophenolic acid, MPAG showed a roughly similar Cmax about 1 hour after mycophenolic acid Cmax, with a similar t1/2 and an AUC infinity about 5-fold larger than that for mycophenolic acid. Secondary mycophenolic acid peaks represent a significant enterohepatic cycling process. Since MPAG was the sole material excreted in bile, entrohepatic cycling must involve colonic bacterial deconjugation of MPAG. An oral cholestyramine interaction study showed that the mean contribution of entrohepatic cycling to the AUC infinity of mycophenolic acid was around 40% with a range of 10 to 60%. The pharmacokinetics of patients with renal transplants (after 3 months or more) compared with those of healthy individuals were similar after oral mycophenolate mofetil. Immediately post-transplant, the mean Cmax and AUC infinity of mycophenolic acid were 30 to 50% of those in the 3-month post-transplant patients. These parameters rose slowly over the 3-month interval. Slow metabolic changes, rather than poor absorption, seem responsible for this nonstationarity, since intravenous and oral administration of mycophenolate mofetil in the immediate post-transplant period generated comparable MPA AUC infinity values. Renal impairment had no major effect on the pharmacokinetic of mycophenolic acid after single doses of mycophenolate mofetil, but there was a progressive decrease in MPAG clearance as glomerular filtration rate (GFR) declined. Compared to individuals with a normal GFR, patients with severe renal impairment (GFR 1.5 L/h/1.73m2) showed 3-to 6-fold higher MPAG AUC values. In rental transplant recipients during acute renal impairment in the early post-transplant period, the plasma MPA concentrations were comparable to those in patients without renal failure, whereas plasma MPAG concentrations were 2- to 3-fold higher. Haemodialysis had no major effect on plasma mycophenolic acid or MPAG. Dosage adjustments appear to not be necessary either in renal impairment or during dialysis. (ABSTRACT TRUN
Collapse
|
Review |
27 |
647 |
2
|
Qin Z, Blankenstein T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12:677-86. [PMID: 10894167 DOI: 10.1016/s1074-7613(00)80218-6] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunity against MHC class II tumors can be mediated by CD4+ T cells in the effector phase through an unknown mechanism. We show that this is IFN gamma dependent but does not require IFN gamma receptor (IFN gamma R) expression on tumor cells, T cells, or other hematopoietic cells and that IFN gamma R expression is not necessary in the priming phase. However, tumor immunity requires IFN gamma R expression on nonhematopoietic cells in the effector phase and involves inhibition of tumor-induced angiogenesis. This shows that an effective anti-tumor response involves communication between CD4+ T cells and nonhematopoietic cells, most likely within the tumor stroma, and that tumor immunity must not entirely rely on direct tumor cell killing.
Collapse
MESH Headings
- Angiogenesis Inhibitors/physiology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell-Free System/physiology
- Female
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/physiopathology
- Growth Inhibitors/physiology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mice
- Mice, Knockout
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- T-Lymphocyte Subsets/immunology
- Tumor Cells, Cultured
- Interferon gamma Receptor
Collapse
|
|
25 |
402 |
3
|
Sato K, Balla J, Otterbein L, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH, Soares MP. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4185-94. [PMID: 11238670 DOI: 10.4049/jimmunol.166.6.4185] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mouse-to-rat cardiac transplants survive long term after transient complement depletion by cobra venom factor and T cell immunosuppression by cyclosporin A. Expression of heme oxygenase-1 (HO-1) by the graft vasculature is critical to achieve graft survival. In the present study, we asked whether this protective effect was attributable to the generation of one of the catabolic products of HO-1, carbon monoxide (CO). Our present data suggests that this is the case. Under the same immunosuppressive regimen that allows mouse-to-rat cardiac transplants to survive long term (i.e., cobra venom factor plus cyclosporin A), inhibition of HO-1 activity by tin protoporphyrin, caused graft rejection in 3--7 days. Rejection was associated with widespread platelet sequestration, thrombosis of coronary arterioles, myocardial infarction, and apoptosis of endothelial cells as well as cardiac myocytes. Under inhibition of HO-1 activity by tin protoporphyrin, exogenous CO suppressed graft rejection and restored long-term graft survival. This effect of CO was associated with inhibition of platelet aggregation, thrombosis, myocardial infarction, and apoptosis. We also found that expression of HO-1 by endothelial cells in vitro inhibits platelet aggregation and protects endothelial cells from apoptosis. Both these actions of HO-1 are mediated through the generation of CO. These data suggests that HO-1 suppresses the rejection of mouse-to-rat cardiac transplants through a mechanism that involves the generation of CO. Presumably CO suppresses graft rejection by inhibiting platelet aggregation that facilitates vascular thrombosis and myocardial infarction. Additional mechanisms by which CO overcomes graft rejection may involve its ability to suppress endothelial cell apoptosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis/immunology
- Carbon Monoxide/administration & dosage
- Carbon Monoxide/metabolism
- Carbon Monoxide/physiology
- Cell Line
- Cell Movement/immunology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Environmental Exposure
- Enzyme Activation/immunology
- Graft Rejection/enzymology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Graft Survival/drug effects
- Heart Transplantation/immunology
- Heart Transplantation/pathology
- Heme Oxygenase (Decyclizing)/biosynthesis
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase (Decyclizing)/physiology
- Heme Oxygenase-1
- Macrophages/pathology
- Male
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Monocytes/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Platelet Aggregation/immunology
- Rats
- Rats, Inbred Lew
- Thrombosis/pathology
- Thrombosis/prevention & control
- Transplantation, Heterologous/immunology
- Transplantation, Heterologous/pathology
- Up-Regulation/immunology
Collapse
|
|
24 |
372 |
4
|
Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci U S A 1998; 95:6349-54. [PMID: 9600968 PMCID: PMC27696 DOI: 10.1073/pnas.95.11.6349] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death.
Collapse
|
research-article |
27 |
370 |
5
|
Abstract
Cardiac allograft vasculopathy (CAV) remains a troublesome long-term complication of heart transplantation. It is manifested by a unique and unusually accelerated form of coronary disease affecting both intramural and epicardial coronary arteries and veins.CAV is characterized by vascular injury induced by a variety of noxious stimuli, including the immune system response to the allograft, ischemia-reperfusion injury, viral infection, immunosuppressive drugs, and classic risk factors such as hyperlipidemia, insulin resistance, and hypertension. The obstructive vascular lesions are thought to progress through repetitive endothelial injury followed by repair response. The role of major histocompatibility complex donor-recipient differences in the pathogenesis of CAV has not yet been completely elucidated. Intracoronary ultrasound studies reveal a dual morphology with donor-transmitted or de novo focal, noncircumferential plaques in proximal segments and/or a diffuse, concentric pattern observed in distal segments. A lack of correlation between microvascular and epicardial vessel disease suggests discordant manifestations and progression of CAV. Apoptosis and loss of functional vascular remodeling have to be considered as important mediators of clinically relevant CAV. Strategies for blocking T-cell costimulation and expression of adhesion molecules may help prevent chronic rejection in clinical transplantation. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and antiproliferative drugs may slow progression of CAV by various effects. Methods to augment endogenous nitric oxide bioavailability as well as newer immunosuppressive regimens may be protective. Balloon angioplasty has a limited role in the treatment of focal lesions. Experiences with coronary stenting, coronary artery bypass grafting, and transmyocardial laser revascularization are limited. Retransplantation has a worse outcome than initial transplantation.
Collapse
|
Review |
28 |
290 |
6
|
Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000; 103:491-500. [PMID: 11081635 DOI: 10.1016/s0092-8674(00)00140-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The serine proteinase granzyme B is crucial for the rapid induction of target cell apoptosis by cytotoxic T cells. Granzyme B was recently demonstrated to enter cells in a perforin-independent manner, thus predicting the existence of a cell surface receptor(s). We now present evidence that this receptor is the cation-independent mannose 6-phosphate/insulin-like growth factor receptor (CI-MPR). Inhibition of the granzyme B-CI-MPR interaction prevented granzyme B cell surface binding, uptake, and the induction of apoptosis. Significantly, expression of the CI-MPR was essential for cytotoxic T cell-mediated apoptosis of target cells in vitro and for the rejection of allogeneic cells in vivo. These results suggest a novel target for immunotherapy and a potential mechanism used by tumors for immune evasion.
Collapse
|
|
25 |
274 |
7
|
Abstract
Serum amyloid A (SAA) proteins comprise a family of apolipoproteins synthesized in response to cytokines released by activated monocytes/macrophages. Acute-phase protein concentrations have been advocated as objective biochemical indices of disease activity in a number of different inflammatory processes. Clinical studies in large groups of patients with a variety of disorders confirmed the rapid production and exceptionally wide dynamic range of the SAA response. It is as sensitive a marker for the acute-phase as C-reactive protein (CRP). Recent studies indicate that SAA is the most sensitive non-invasive biochemical marker for allograft rejection. Further studies comparing the measurement of SAA to CRP could reveal other indications for its specific use. These studies are now more feasible given newer assays to measure this acute-phase reactant. Observations that the acutephase response is tightly coupled to lipoprotein abnormalities and the fact that acute-SAA proteins are mainly associated with plasma lipoproteins of the high density range suggested a possible role of this apolipoprotein (apo SAA) in the development of atherosclerosis. The expression of SAA mRNA in human atherosclerotic lesions and the induction of acute-phase SAA by oxidized low-density lipoproteins strengthen the hypothesis that SAA might play a role in vascular injury and atherogenesis.
Collapse
|
Review |
29 |
269 |
8
|
Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar AM. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant 2013; 13:2805-2818. [PMID: 24103001 DOI: 10.1111/ajt.12447] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/12/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
Kidney transplant injury occurs with ischemia and alloimmunity. Members of the receptor interacting protein kinase family (RIPK1,3) are key regulators of "necroptosis," a newly recognized, regulated form of necrosis. Necroptosis and apoptosis death appear to be counterbalanced as caspase-8 inhibition can divert death from apoptosis to necrosis. Inhibition of necroptosis in donor organs to limit injury has not been studied in transplant models. In this study, necroptosis was triggered in caspase inhibited tubular epithelial cells (TEC) exposed to tumor necrosis factor alpha in vitro, while RIPK1 inhibition with necrostatin-1 or use of RIPK3(-/-) TEC, prevented necroptosis. In vivo, short hairpin RNA silencing of caspase-8 in donor B6 mouse kidneys increased necroptosis, enhanced high-mobility group box 1 release, reduced renal function and accelerated rejection when transplanted into BALB/c recipients. Using ethidium homodimer perfusion to assess necrosis in vivo, necrosis was abrogated in RIPK3(-/-) kidneys postischemia. Following transplantation, recipients receiving RIPK3(-/-) kidneys had longer survival (p = 0.002) and improved renal function (p = 0.03) when compared to controls. In summary, we show for the first time that RIPK3-mediated necroptosis in donor kidneys can promote inflammatory injury, and has a major impact on renal ischemia-reperfusion injury and transplant survival. We suggest inhibition of necroptosis in donor organs may similarly provide a major clinical benefit.
Collapse
|
|
12 |
260 |
9
|
Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T. Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol 2004; 24:34-40. [PMID: 12969992 DOI: 10.1161/01.atv.0000095360.62479.1f] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fractalkine (now also called CX3CL1) is a unique chemokine that functions not only as a chemoattractant but also as an adhesion molecule and is expressed on endothelial cells activated by proinflammatory cytokines, such as interferon-gamma and tumor necrosis factor-alpha. The fractalkine receptor, CX3CR1, is expressed on cytotoxic effector lymphocytes, including natural killer (NK) cells and cytotoxic T lymphocytes, which contain high levels of intracellular perforin and granzyme B, and on macrophages. Soluble fractalkine causes migration of NK cells, cytotoxic T lymphocytes, and macrophages, whereas the membrane-bound form captures and enhances the subsequent migration of these cells in response to secondary stimulation with other chemokines. Furthermore, stimulation through membrane-bound fractalkine activates NK cells, leading to increased cytotoxicity and interferon-gamma production. Recently, accumulating evidence has shown that fractalkine is involved in the pathogenesis of various clinical disease states or processes, such as atherosclerosis, glomerulonephritis, cardiac allograft rejection, and rheumatoid arthritis. In addition, polymorphisms in CX3CR1, which reduce its binding activity to fractalkine, have been reported to increase the risk of HIV disease and to reduce the risk of coronary artery disease. This review will examine new concepts underlying fractalkine-mediated leukocyte migration and tissue damage, focusing primarily on the pathophysiological roles of fractalkine in various clinical conditions, especially in atherosclerosis and vascular injury.
Collapse
|
Review |
21 |
246 |
10
|
Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 1999; 107:489-506. [PMID: 10569305 DOI: 10.1016/s0002-9343(99)00259-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
Review |
26 |
224 |
11
|
Kahan BD, Welsh M, Schoenberg L, Rutzky LP, Katz SM, Urbauer DL, Van Buren CT. Variable oral absorption of cyclosporine. A biopharmaceutical risk factor for chronic renal allograft rejection. Transplantation 1996; 62:599-606. [PMID: 8830822 DOI: 10.1097/00007890-199609150-00010] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inter- and intrapatient variability in cyclosporine (CsA) pharmacokinetics obfuscates the relationship between therapeutic outcome and administered dose, thereby impeding the development of secure algorithms for CsA therapy. In an attempt to understand these variabilities, we previously performed serial pharmacokinetic profiles on 160 renal transplant recipients during the first 3 posttransplant months. Drug exposure was estimated by the average CsA concentration (Cav), which was defined as a time-corrected (tau, hours) expression of the area under the concentration-time curve (AUC), i.e., Cav = (AUC/tau). Low Cav values correlated with an increased occurrence of acute rejection episodes and 1-year rate of renal transplant loss. The present study examines the results of serial pharmacokinetic profiling of a cohort of 204 patients treated for up to 5 years with CsA doses selected to achieve target Cav values. Multivariate analyses correlated demographic factors, laboratory values, clinical parameters, and CsA pharmacokinetic parameters with the occurrence of chronic rejection. The factors that predisposed to chronic rejection included a previous acute rejection episode, initial acute tubular necrosis, diastolic blood pressure above 85 mmHg, and African-American race. Once regression models were adjusted to account for the impact of these factors, we examined the association between the incidence of chronic rejection and individual pharmacokinetic parameters, including the mean values of the absolute and dose-corrected trough, peak, and Cav concentrations, as well as the percent coefficient of variation of each of these values. Receiver operating characteristic curves documented that 27% of the total risk for the occurrence of chronic rejection was attributable to a greater than 20% coefficient of variation of the dose-corrected Cav, namely, AUC/(tau.mg). This study suggests that variable oral bioavailability of CsA represents a biopharmaceutical risk factor for the occurrence of chronic rejection.
Collapse
|
Clinical Trial |
29 |
222 |
12
|
Lila N, Amrein C, Guillemain R, Chevalier P, Latremouille C, Fabiani JN, Dausset J, Carosella ED, Carpentier A. Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation 2002; 105:1949-54. [PMID: 11997282 DOI: 10.1161/01.cir.0000015075.89984.46] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-G, a nonclassic major histocompatibility complex class I molecule expressed in the extravillous cytotrophoblast at the feto-maternal interface, is known to protect the fetus from maternal cellular immunity. In a preliminary study, we showed that HLA-G is expressed in the hearts of some patients after heart transplantation. METHODS AND RESULTS In the present study, a larger number of patients was investigated to confirm this finding and to look for possible correlations between HLA-G expression and the number and types of rejection. Expression of HLA-G in endomyocardial biopsy specimens was investigated by immunohistochemical analysis, and detection of the soluble HLA-G in the serum was performed by immunoprecipitation followed by Western blot analysis. HLA-G was detected in the biopsy specimens and serum of 9 of 51 patients (18%). The number of episodes of acute rejection was significantly lower in HLA-G-positive patients (1.2+/-1.1) as compared with HLA-G-negative patients (4.5+/-2.8) (P<0.001). No chronic rejection was observed in HLA-G-positive patients, whereas 15 HLA-G-negative patients had chronic rejection (P<0.032). A longitudinal study of these patients reveals that the status of HLA-G expression was maintained after 6 months both in serum and in biopsy specimens. During this period, HLA-G-positive patients did not have chronic rejection. CONCLUSIONS There is a significant correlation between rejection and HLA-G expression in the heart after transplantation. HLA-G expression and its effect in reducing the incidence and severity of rejection seem to be stable throughout the evolution.
Collapse
|
Clinical Trial |
23 |
198 |
13
|
Agostini C, Calabrese F, Rea F, Facco M, Tosoni A, Loy M, Binotto G, Valente M, Trentin L, Semenzato G. Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1703-11. [PMID: 11337368 PMCID: PMC1891930 DOI: 10.1016/s0002-9440(10)64126-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The attraction of T lymphocytes into the pulmonary parenchyma represents an essential step in mechanisms ultimately leading to lung allograft rejection. In this study we evaluated whether IP-10 (CXCL10), a chemokine that is induced by interferon-gamma and stimulates the directional migration of activated T cells, plays a role in regulating the trafficking of effector T cells during lung allograft rejection episodes. Immunohistochemical examination showed that areas characterized by acute cellular rejection (grades 1 to 4) and active obliterative bronchiolitis (chronic rejection, Ca) were infiltrated by T cells expressing CXCR3, i.e., the specific receptor for CXCL10. In parallel, T cells accumulating in the bronchoalveolar lavage of lung transplant recipients with rejection episodes were CXCR3+ and exhibited a strong in vitro migratory capability in response to CXCL10. In lung biopsies, CXCL10 was abundantly expressed by graft-infiltrating macrophages and occasionally by epithelial cells. Alveolar macrophages expressed and secreted definite levels of CXCL10 capable of inducing chemotaxis of the CXCR3+ T-cell line 300-19; the secretory capability of alveolar macrophages was up-regulated by preincubation with interferon-gamma. Interestingly, striking levels of CXCR3 ligands could be demonstrated in the fluid component of the bronchoalveolar lavage in individuals with rejection episodes. These data indicate the role of the CXCR3/CXCL10 interactions in the recruitment of lymphocytes at sites of lung rejection and provide a rationale for the use of agents that block the CXCR3/CXCL10 axis in the treatment of lung allograft rejection.
Collapse
|
research-article |
24 |
172 |
14
|
Melter M, Exeni A, Reinders ME, Fang JC, McMahon G, Ganz P, Hancock WW, Briscoe DM. Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 2001; 104:2558-64. [PMID: 11714650 DOI: 10.1161/hc4601.098010] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Chemokines play an essential role in regulating the infiltration of leukocytes into allografts in experimental models. Little is known of their expression or function after human cardiac transplantation. METHODS AND RESULTS We analyzed 169 sequential human endomyocardial biopsies by immunocytochemistry for infiltration by CD3(+) T cells and the expression of the chemokine receptors CCR1, CCR3, CCR5, and CXCR3. In both cross-sectional and longitudinal analyses, the expression of each of the chemokine receptors correlated with the degree of CD3(+) T-cell infiltration. In particular, the expression of CXCR3 was temporally and spatially associated with CD3(+) T-cell infiltrates and correlated with the histopathological diagnosis of acute rejection (OR, 11.73 and 4.05, respectively; P<0.001). Of 7 patients followed up longitudinally for 1 year, 4 with consecutive biopsies developed intimal thickening by intravascular ultrasound. In these patients, there was a trend for persistent expression of CD3- and CXCR3-expressing infiltrates in the later part of the first posttransplant year. The chemokines eotaxin, IP-10, lymphotactin, MCP-1, Mig, RANTES, and SDF-1 were examined in an additional 35 biopsies by RT-PCR. Eotaxin, lymphotactin, MCP-1, Mig, and SDF-1 were present in both normal and rejecting biopsies. However, the CXCR3 ligand IP-10, which was rarely expressed in normal biopsies, was markedly induced in acute rejection (OR, 19.43; P=0.01). CONCLUSIONS The presence of CXCR3(+) T cells and the CXCR3 ligand IP-10 within endomyocardial biopsies is strongly associated with acute rejection. The CXCR3-IP-10 interaction warrants consideration as a therapeutic target in the management of cardiac allograft recipients.
Collapse
|
|
24 |
168 |
15
|
Herzenberg AM, Gill JS, Djurdjev O, Magil AB. C4d deposition in acute rejection: an independent long-term prognostic factor. J Am Soc Nephrol 2002; 13:234-241. [PMID: 11752043 DOI: 10.1681/asn.v131234] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Peritubular capillary deposition of C4d has been demonstrated to be associated with both acute humoral and vascular rejection and increased graft loss. Whether it is an independent predictor of long-term graft survival rates is uncertain. The biopsies (n = 126) from all patients (n = 93) with a tissue diagnosis of acute rejection that were performed between July 1, 1995, and December 31, 1997, were classified according to Cooperative Clinical Trials in Transplantation (CCTT) criteria. Fresh frozen tissue was immunostained for C4d. There were 58 patients with CCTT type I (interstitial) rejection and 35 with CCTT type II (vascular) rejection. For 34 patients, at least one biopsy exhibited peritubular C4d deposition (C4d+ group). The C4d+ group had proportionately more female patients (P = 0.003), more patients with high (>30%) panel-reactive antibody levels (P = 0.024), more patients with resistance to conventional antirejection therapy (P = 0.010), and fewer patients with postrejection hypertension (P = 0.021) and exhibited a greater rate of graft loss (38 versus 7%, P = 0.001). Peritubular C4d deposition was associated with significantly lower graft survival rates in the CCTT type I rejection group (P = 0.003) and the CCTT type II rejection group (P = 0.003). Multivariate analyses demonstrated that peritubular C4d deposition (P = 0.0002), donor age (P = 0.0002), cold ischemic time (P = 0.0211), and HLA matches (P = 0.0460) were significant independent determinants of graft survival rates. Peritubular C4d deposition is a significant predictor of graft survival rates and is independent of histologic rejection type and a variety of clinical prognostic factors.
Collapse
|
|
23 |
165 |
16
|
Pavlosky A, Lau A, Su Y, Lian D, Huang X, Yin Z, Haig A, Jevnikar AM, Zhang ZX. RIPK3-mediated necroptosis regulates cardiac allograft rejection. Am J Transplant 2014; 14:1778-1790. [PMID: 24984764 DOI: 10.1111/ajt.12779] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/25/2023]
Abstract
Cell death results in tissue damage and ultimately donor graft rejection and can occur as an active molecular process through apoptotic, necrotic and newly identified receptor interacting protein 1 and 3 kinase (RIPK1/3)-mediated necroptotic pathways. Necroptosis leads to the release of inflammatory molecules which can activate host immune cells. This pathway has yet to be studied in heart transplantation. We have found that necroptosis was induced in murine cardiac microvascular endothelial cell (MVEC) under anti-apoptotic condition following tumor necrosis factor alpha treatment. Necroptotic cell death and release of the danger molecule high mobility group box 1 (HMGB1) were inhibited by the RIPK1 inhibiting molecule necrostatin-1 and by genetic deletion of RIPK3. In addition, tissue necrosis, release of HMGB1 and graft cell infiltrate were attenuated in RIPK3 null heart allografts following transplantation. Finally, a brief sirolimus treatment markedly prolonged RIPK3 null cardiac allograft survival in allogeneic BALB/c recipients as compared to WT C57BL/6 donor grafts (95 ± 5.8 vs. 24 ± 2.6 days, p < 0.05). This study has demonstrated that RIPK1/3 contributes to MVEC death and cardiac allograft survival through necroptotic death and the release of danger molecules. Our results suggest that targeting RIPK-mediated necroptosis may be an important therapeutic strategy in transplantation.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
156 |
17
|
Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 2007; 27:1259-68. [PMID: 17395854 DOI: 10.1161/atvbaha.106.137851] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arteries are composed of 3 concentric tissue layers which exhibit different structures and properties. Because arterial injury is generally initiated at the interface with circulating blood, most studies performed to unravel the mechanisms involved in injury-induced arterial responses have focused on the innermost layer (intima) rather than on the outermost adventitial layer. In the present review, we focus on the involvement of the adventitia in response to various types of arterial injury leading to vascular remodeling. Physiologically, soluble vascular mediators are centrifugally conveyed by mass transport toward the adventitia. Moreover, in pathological conditions, neomediators and antigens can be generated within the arterial wall, whose outward conveyance triggers different patterns of local adventitial response. Adventitial angiogenesis, immunoinflammation, and fibrosis sequentially interact and their net balance defines the participation of the adventitial response in arterial pathology. In the present review we discuss 4 pathological entities in which the adventitial response to arterial wall injury participates in arterial wall remodeling. Hence, the adventitial adaptive immune response predominates in chronic rejection. Inflammatory phagocytic cell recruitment and initiation of a shift from innate to adaptive immunity characterize the adventitial response to products of proteolysis in abdominal aortic aneurysm. Adventitial sprouting of neovessels, leading to intraplaque hemorrhages, predominates in atherothrombosis. Adventitial fibrosis characterizes the response to mechanical stress and is responsible for the constrictive remodeling of arterial segments and initiating interstitial fibrosis in perivascular tissues. These adventitial events, therefore, have an impact not only on the vessel wall biology but also on the surrounding tissue.
Collapse
|
Review |
18 |
154 |
18
|
Hricik DE, Rodriguez V, Riley J, Bryan K, Tary-Lehmann M, Greenspan N, Dejelo C, Schulak JA, Heeger PS. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am J Transplant 2003; 3:878-84. [PMID: 12814480 DOI: 10.1034/j.1600-6143.2003.00132.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-transplant monitoring of cellular immunity might be useful in predicting long-term outcomes of kidney transplant recipients. We used an enzyme linked immunoabsorbent spot (ELISPOT) assay to serially measure the frequency of peripheral blood lymphocytes producing interferon-gamma in response to stimulator cells from donors or third parties in 55 primary kidney transplant recipients. Mean frequencies measured during the first 6 months after transplantation correlated significantly with the serum creatinine concentration at both 6 and 12 months following transplantation. The mean frequencies were higher in patients with acute rejection than in those without acute rejection. Multiple regression analyses indicated that the correlations between the early ELISPOT measurements of interferon-gamma and serum creatinine were independent of acute rejection, delayed graft function, or the presence of panel reactive antibodies before transplantation. Patients with low mean frequencies of interferon-producing cells in the early post-transplant period were generally free from acute rejection and exhibited excellent renal function at 6 and 12 months post-transplant. In conclusion, using the ELISPOT assay, we show an independent correlation between early cellular alloreactivity and long-term renal function. Increased levels of early alloreactivity measured with this assay may serve as a surrogate for chronic allograft dysfunction.
Collapse
|
|
22 |
153 |
19
|
Kim MJ, Romero R, Kim CJ, Tarca AL, Chhauy S, LaJeunesse C, Lee DC, Draghici S, Gotsch F, Kusanovic JP, Hassan SS, Kim JS. Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3919-27. [PMID: 19265171 PMCID: PMC2754231 DOI: 10.4049/jimmunol.0803834] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The co-presence of histoincompatible fetal and maternal cells is a characteristic of human placental inflammation. Villitis of unknown etiology (VUE), a destructive inflammatory lesion of villous placenta, is characterized by participation of Hofbauer cells (placental macrophages) and maternal T cells. In contrast to acute chorioamnionitis of infection-related origin, the fundamental immunopathology of VUE is unknown. This study was performed to investigate the placental transcriptome of VUE and to determine whether VUE is associated with systemic maternal and/or fetal inflammatory response(s). Comparison of the transcriptome between term placentas without and with VUE revealed differential expression of 206 genes associated with pathways related to immune response. The mRNA expression of a subset of chemokines and their receptors (CXCL9, CXCL10, CXCL11, CXCL13, CCL4, CCL5, CXCR3, CCR5) was higher in VUE placentas than in normal placentas (p < 0.05). Analysis of blood cell mRNA showed a higher expression of CXCL9 and CXCL13 in the mother, and CXCL11 and CXCL13 in the fetus of VUE cases (p < 0.05). The median concentrations of CXCL9, CXCL10, and CXCL11 in maternal and fetal plasma were higher in VUE (p < 0.05). Comparison of preterm cases without and with acute chorioamnionitis revealed elevated CXCL9, CXCL10, CXCL11, and CXCL13 concentrations in fetal plasma (p < 0.05), but not in maternal plasma with chorioamnionitis. We report for the first time the placental transcriptome of VUE. A systemic derangement of CXC chemokines in maternal and fetal circulation distinguishes VUE from acute chorioamnionitis. We propose that VUE be a unique state combining maternal allograft rejection and maternal antifetal graft-vs-host disease mechanisms.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
152 |
20
|
Robinson LA, Nataraj C, Thomas DW, Howell DN, Griffiths R, Bautch V, Patel DD, Feng L, Coffman TM. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6067-72. [PMID: 11086038 DOI: 10.4049/jimmunol.165.11.6067] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX(3)CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-alpha-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX(3)CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX(3)CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX(3)CR1 Ab. Treatment with the anti-CX(3)CR1 Ab significantly prolonged allograft survival from 7 +/- 1 to 49 +/- 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.
Collapse
MESH Headings
- Animals
- Cell Adhesion/immunology
- Cells, Cultured
- Chemokine CX3CL1
- Chemokines, CX3C
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Graft Survival/immunology
- Heart Transplantation/immunology
- Heart Transplantation/pathology
- Immune Sera/administration & dosage
- Injections, Intraperitoneal
- Leukocytes, Mononuclear/physiology
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Receptors, CXCR3
- Receptors, Chemokine/immunology
- Receptors, Chemokine/physiology
- Transplantation, Homologous
- Tumor Cells, Cultured
Collapse
|
|
25 |
138 |
21
|
Segerer S, MacK M, Regele H, Kerjaschki D, Schlöndorff D. Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int 1999; 56:52-64. [PMID: 10411679 DOI: 10.1046/j.1523-1755.1999.00544.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chemokines are proteins that contribute to the migration of leukocytes to sites of tissue injury. CCR5 is a receptor for the C-C chemokine RANTES, which is expressed in inflammatory kidney diseases and transplant rejection. METHODS In order to study the distribution of CCR5, we developed a series of monoclonal antibodies against human CCR5. These antibodies were then evaluated by flow cytometry, Western blot, and immunohistochemistry on formalin-fixed, paraffin-embedded tonsils. Eighty biopsies from patients with membranous glomerulonephritis (N = 9), IgA nephropathy (N = 10), lupus nephritis (N = 10), membranoproliferative glomerulonephritis (N = 10), acute interstitial nephritis (N = 13), chronic interstitial nephritis (N = 10), acute transplant rejection (N = 9), and chronic transplant rejection (N = 9) were stained for CCR5 and CD3 expression in parallel sections. RESULTS One monoclonal antibody (MC-5) showed a single protein band of approximately 38 kD corresponding to CCR5 in Western blot. By indirect immunohistochemistry, a cell membrane signal was detected exclusively on mononuclear inflammatory cells. All control stainings with an isotype-matched mouse IgG2a were negative. CCR5-positive cells were identified in areas of interstitial infiltration in biopsies of chronic glomerulonephritis, interstitial nephritis, and transplant rejection. The staining of CCR5 showed the same distribution as CD3-positive T cells. In patients with impaired renal function, a significantly higher number of CCR5-positive cells were found as compared with patients with normal renal function. In contrast to the prominence of CCR5-positive cells in the interstitial infiltrate, the number of CCR5-positive cells within the glomeruli was low, even in cases with proliferative glomerulonephritis. No CCR5 expression could be detected on intrinsic cells of glomerular, tubular, or vascular structures. CONCLUSIONS The pattern of CCR5 and CD3 cell infiltration suggests that CCR5-positive T cells may play a role in interstitial processes leading to fibrosis. Further studies are required to define the pathophysiological relevance of these cells in progressive renal diseases.
Collapse
|
|
26 |
129 |
22
|
Rosen SD. Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1013-20. [PMID: 10514381 PMCID: PMC1867022 DOI: 10.1016/s0002-9440(10)65201-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
editorial |
26 |
125 |
23
|
McCarl CA, Khalil S, Ma J, Oh-hora M, Yamashita M, Roether J, Kawasaki T, Jairaman A, Sasaki Y, Prakriya M, Feske S. Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5845-58. [PMID: 20956344 PMCID: PMC2974040 DOI: 10.4049/jimmunol.1001796] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ORAI1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel, which is responsible for store-operated Ca(2+) entry in lymphocytes. A role for ORAI1 in T cell function in vivo has been inferred from in vitro studies of T cells from human immunodeficient patients with mutations in ORAI1 and Orai1(-/-) mice, but a detailed analysis of T cell-mediated immune responses in vivo in mice lacking functional ORAI1 has been missing. We therefore generated Orai1 knock-in mice (Orai1(KI/KI)) expressing a nonfunctional ORAI1-R93W protein. Homozygosity for the equivalent ORAI1-R91W mutation abolishes CRAC channel function in human T cells resulting in severe immunodeficiency. Homozygous Orai1(KI/KI) mice die neonatally, but Orai1(KI/KI) fetal liver chimeric mice are viable and show normal lymphocyte development. T and B cells from Orai1(KI/KI) mice display severely impaired store-operated Ca(2+) entry and CRAC channel function resulting in a strongly reduced expression of several key cytokines including IL-2, IL-4, IL-17, IFN-γ, and TNF-α in CD4(+) and CD8(+) T cells. Cell-mediated immune responses in vivo that depend on Th1, Th2, and Th17 cell function were severely attenuated in ORAI1-deficient mice. Orai1(KI/KI) mice lacked detectable contact hypersensitivity responses and tolerated skin allografts significantly longer than wild-type mice. In addition, T cells from Orai1(KI/KI) mice failed to induce colitis in an adoptive transfer model of inflammatory bowel disease. These findings reaffirm the critical role of ORAI1 for T cell function and provide important insights into the in vivo functions of CRAC channels for T cell-mediated immunity.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
124 |
24
|
Abstract
Antigens, provided by the allograft, trigger the activation and proliferation of allospecific T cells. As a consequence of this response, effector elements are generated that mediate graft injury and are responsible for the clinical manifestations of allograft rejection. Donor-specific CD8+ cytotoxic T lymphocytes play a major role in this process. Likewise, CD4+ T cells mediate delayed-type hypersensitivity responses via the production of soluble mediators that function to further activate and guide immune cells to the site of injury. In addition, these mediators may directly alter graft function by modulating vascular tone and permeability or by promoting platelet aggregation. Allospecific CD4+ T cells also promote B-cell maturation and differentiation into antibody-secreting plasma cells via CD40-CD40 ligand interactions. Alloantibodies that are produced by these B cells exert most of their detrimental effects on the graft by activating the complement cascade. Alternatively, antibodies can bind Fc receptors on natural killer cells or macrophages and cause target cell lysis via antibody-dependent cell-mediated cytotoxicity. In this review, we discuss these major effector pathways, focusing on their role in the pathogenesis of allograft rejection.
Collapse
|
Review |
21 |
122 |
25
|
Kuwaki K, Knosalla C, Dor FJMF, Gollackner B, Tseng YL, Houser S, Mueller N, Prabharasuth D, Alt A, Moran K, Cheng J, Behdad A, Sachs DH, Fishman JA, Schuurman HJ, Awwad M, Cooper DKC. Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. Am J Transplant 2004; 4:363-72. [PMID: 14961988 DOI: 10.1111/j.1600-6143.2004.00353.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Natural and elicited antipig antibodies (Abs) lead to acute humoral xenograft rejection (AHXR). Ten baboons underwent heterotopic heart transplantation (Tx) from human decay-accelerating factor (hDAF) pigs. Depletion of anti-Galalpha1, 3Gal (Gal) Abs was achieved by the infusion of a Gal glycoconjugate from day-1. Immunosuppression included induction of antithymocyte globulin, thymic irradiation, and cobra venom factor, and maintenance with a human antihuman CD154 mAb, mycophenolate mofetil, and methylprednisolone; heparin and prophylactic ganciclovir were also administered. Pig heart survival ranged from 4 to 139 (mean 37, median 27) days, with three functioning for >50 days. Graft failure (n = 8) was from classical AHXR [4], thrombotic microangiopathy [3], or intragraft thrombosis [1], with death (n = 2) from pneumonia [1], or possible drug toxicity (with features of thrombotic microangiopathy) [1]. Anti-Gal Abs (in microg/mL) were depleted by Gal glycoconjugate before graft implantation from means of 41.3 to 6.3 (IgM) and 12.4-4.6 (IgG), respectively, and at graft excision were 6.3 and 1.7 microg/mL, respectively. No elicited Abs developed, and no cellular infiltration was seen. The treatment regimen was effective in maintaining low anti-Gal Ab levels and in delaying or preventing AHXR. The combination of costimulatory blockade and heparin with Tx of a Gal-negative pig organ may prolong graft survival further.
Collapse
|
|
21 |
121 |