1
|
Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5791-802. [PMID: 18832739 PMCID: PMC2575748 DOI: 10.4049/jimmunol.181.8.5791] [Citation(s) in RCA: 1353] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase in the population of MDSC. Variability of MDSC expansion in vivo matched closely the effect of tumor cell condition medium in vitro. MDSC consists of two major subsets of Ly6G(+)Ly6C(low) granulocytic and Ly6G(-)Ly6C(high) monocytic cells. Granulocytic MDSC have increased level of reactive oxygen species and undetectable level of NO whereas monocytic MDSC had increased level of NO but undetectable levels of reactive oxygen species. However, their suppressive activity per cell basis was comparable. Almost all tumor models demonstrated a preferential expansion of granulocytic subset of MDSC. We performed a phenotypical and functional analysis of several surface molecules previously suggested to be involved in MDSC-mediated suppression of T cells: CD115, CD124, CD80, PD-L1, and PD-L2. Although substantial proportion of MDSC expressed those molecules no differences in the level of their expression or the proportion, positive cells were found between MDSC and cells from tumor-free mice that lack immune suppressive activity. The level of MDSC-mediated T cell suppression did not depend on the expression of these molecules. These data indicate that suppressive features of MDSC is caused not by expansion of a specific subset but more likely represent a functional state of these cells.
Collapse
|
Comparative Study |
17 |
1353 |
2
|
Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442:818-22. [PMID: 16862118 DOI: 10.1038/nature04980] [Citation(s) in RCA: 1126] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/14/2006] [Indexed: 12/23/2022]
Abstract
Leukaemias and other cancers possess a rare population of cells capable of the limitless self-renewal necessary for cancer initiation and maintenance. Eradication of these cancer stem cells is probably a critical part of any successful anti-cancer therapy, and may explain why conventional cancer therapies are often effective in reducing tumour burden, but are only rarely curative. Given that both normal and cancer stem cells are capable of self-renewal, the extent to which cancer stem cells resemble normal tissue stem cells is a critical issue if targeted therapies are to be developed. However, it remains unclear whether cancer stem cells must be phenotypically similar to normal tissue stem cells or whether they can retain the identity of committed progenitors. Here we show that leukaemia stem cells (LSC) can maintain the global identity of the progenitor from which they arose while activating a limited stem-cell- or self-renewal-associated programme. We isolated LSC from leukaemias initiated in committed granulocyte macrophage progenitors through introduction of the MLL-AF9 fusion protein encoded by the t(9;11)(p22;q23). The LSC were capable of transferring leukaemia to secondary recipient mice when only four cells were transferred, and possessed an immunophenotype and global gene expression profile very similar to that of normal granulocyte macrophage progenitors. However, a subset of genes highly expressed in normal haematopoietic stem cells was re-activated in LSC. LSC can thus be generated from committed progenitors without widespread reprogramming of gene expression, and a leukaemia self-renewal-associated signature is activated in the process. Our findings define progression from normal progenitor to cancer stem cell, and suggest that targeting a self-renewal programme expressed in an abnormal context may be possible.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
1126 |
3
|
Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27:263-70. [PMID: 11242107 DOI: 10.1038/85820] [Citation(s) in RCA: 697] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transcription factor C/EBPalpha (for CCAAT/enhancer binding protein-alpha; encoded by the gene CEBPA) is crucial for the differentiation of granulocytes. Conditional expression of C/EBPalpha triggers neutrophilic differentiation, and no mature granulocytes are observed in Cebpa-mutant mice. Here we identify heterozygous mutations in CEBPA in ten patients with acute myeloid leukemia (AML). We found that five mutations in the amino terminus truncate the full-length protein, but did not affect a 30-kD protein initiated further downstream. The mutant proteins block wild-type C/EBPalpha DNA binding and transactivation of granulocyte target genes in a dominant-negative manner, and fails to induce granulocytic differentiation. Ours is the first report of CEBPA mutations in human neoplasia, and such mutations are likely to induce the differentiation block found in AML.
Collapse
|
|
24 |
697 |
4
|
Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 2009; 69:1553-60. [PMID: 19201693 PMCID: PMC2900845 DOI: 10.1158/0008-5472.can-08-1921] [Citation(s) in RCA: 617] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) producing arginase I are increased in the peripheral blood of patients with renal cell carcinoma (RCC). MDSC inhibit T-cell function by reducing the availability of L-arginine and are therefore considered an important tumor escape mechanism. We aimed to determine the origin of arginase I-producing MDSC in RCC patients and to identify the mechanisms used to deplete extracellular L-arginine. The results show that human MDSC are a subpopulation of activated polymorphonuclear (PMN) cells expressing high levels of CD66b, CD11b, and VEGFR1 and low levels of CD62L and CD16. In contrast to murine MDSC, human MDSC do not deplete L-arginine by increasing its uptake but instead release arginase I into the circulation. Activation of normal PMN induces phenotypic and functional changes similar to MDSC and also promotes the release of arginase I from intracellular granules. Interestingly, although activation of normal PMN usually ends with apoptosis, MDSC showed no increase in apoptosis compared with autologous PMN or PMN obtained from normal controls. High levels of VEGF have been shown to increase suppressor immature myeloid dendritic cells in cancer patients. Treatment of RCC patients with anti-VEGF antibody bevacizumab, however, did not reduce the accumulation of MDSC in peripheral blood. In contrast, the addition of interleukin-2 to the treatment increased the number of MDSC in peripheral blood and the plasma levels of arginase I. These results may provide new insights on the mechanisms of tumor-induced anergy/tolerance and may help explain why some immunotherapies fail to induce an antitumor response.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
617 |
5
|
Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63:125-30. [PMID: 267431 DOI: 10.1016/0002-9343(77)90124-3] [Citation(s) in RCA: 569] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G-6-PD) isoenzymes types of granulocytes were determined in eight women with chronic myelocytic leukemia (CML). The patients were heterozygous at the X-linked G-6-PD locus for the common gene, GdB, and a variant, such as GdA, so that both B and A enzyme types were found in skin cells. In contrast to these normal cells, only one G-6-PD type was found in CML granulocytes. The fact that such single-enzyme phenotypes are found in CML granulocytes, but not in nonleukemic granulocytes, provides strong evidence that the disease has a clonal origin. Single-enzyme phenotypes were also found in erythrocytes, platelets and cultured blood macrophages indicating that these cells have a common stem cell which is the site of the abnormality in CML. In the one studied patient, no evidence was found for involvement of cultured marrow fibroblasts. Clonal origin of CML virtually excludes cell recruitment as a sole pathogenetic mechanism. Either the leukemia arises as a consequence of a rare initial event in a single cell, or a series of events occurs in a clone such that it evolves into CML, or both.
Collapse
|
|
48 |
569 |
6
|
Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, McCune WJ, Kaplan MJ. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3284-97. [PMID: 20164424 PMCID: PMC2929645 DOI: 10.4049/jimmunol.0902199] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients because of the presence of low-density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function, and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils, and healthy control neutrophils were compared with regard to their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile, and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-alpha, and IFN-gamma, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in systemic lupus erythematosus by simultaneously mediating enhanced vascular damage and inhibiting vascular repair.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
544 |
7
|
Abstract
The last few years have seen the accumulation of compelling evidence that apoptosis (programmed cell death) plays a major role in promoting resolution of the acute inflammatory response. Neutrophils are constitutively programmed to undergo apoptosis, which limits their pro-inflammatory potential and leads to rapid, specific, and non-phlogistic recognition by macrophages and semi-professional phagocytes. Similar mechanisms have been implicated in clearance of eosinophils, lymphocytes, and monocytes and apoptosis also plays a role in remodeling the inflamed site by deletion of myofibroblasts. A growing understanding of the mechanisms regulating leukocyte apoptosis and of the molecules mediating safe phagocytic clearance of dying cells may yield new insights into the pathogenesis and therapy of inflammatory diseases.
Collapse
|
Review |
28 |
479 |
8
|
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007; 150:963-76. [PMID: 17339843 PMCID: PMC2013918 DOI: 10.1038/sj.bjp.0707167] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the elderly, although a small proportion of PD patients develop the illness at a much younger age. In the former group, idiopathic PD patients, the causes of the illness have been the subject of longstanding debate with environmental toxins, mitochondrial dysfunction, abnormal protein handling and oxidative stress being suggested. One problem has been that the epidemiology of PD has offered few clues to provide evidence for a single major causative factor. Comparatively recently it has been found that in both patients and experimental models of PD in animals neuroinflammation appears to be a ubiquitous finding. These cases present with all of the classical features of inflammation including phagocyte activation, increased synthesis and release of proinflammatory cytokines and complement activation. Although this process is vital for normal function and protection in both the CNS, as in the periphery, it is postulated that in the aetiology of PD this process may spiral out of control with over activation of microglia, over production of cytokines and other proinflammatory mediators as well as the release of destructive molecules such as reactive oxygen species. Given that dopaminergic neurons in the substantia nigra are relatively vulnerable to 'stress' and the region has a large population of microglia in comparison to other CNS structures, these events may easily trigger neurodegeneration. These factors are examined in this review along with a consideration of the possible use of anti-inflammatory drugs in PD.
Collapse
|
Review |
18 |
479 |
9
|
Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2004; 17:3029-35. [PMID: 14701873 PMCID: PMC305255 DOI: 10.1101/gad.1143403] [Citation(s) in RCA: 477] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have used the hematopoietic system as a model to investigate whether acute myeloid leukemia arises exclusively from self-renewing stem cells or also from short-lived myeloid progenitors. When transduced with a leukemogenic MLL fusion gene, prospectively isolated stem cells and myeloid progenitor populations with granulocyte/macrophage differentiation potential are efficiently immortalized in vitro and result in the rapid onset of acute myeloid leukemia with similar latencies following transplantation in vivo. Regardless of initiating cell, leukemias displayed immunophenotypes and gene expression profiles characteristic of maturation arrest at an identical late stage of myelomonocytic differentiation, putatively a monopotent monocytic progenitor stage. Our findings unequivocally establish the ability of transient repopulating progenitors to initiate myeloid leukemias in response to an MLL oncogene, and support the existence of cancer stem cells that do not necessarily overlap with multipotent stem cells of the tissue of origin.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
477 |
10
|
Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW, Conway SJ, Aronow BJ, Robbins J, Molkentin JD. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 2007; 101:313-21. [PMID: 17569887 PMCID: PMC2680305 DOI: 10.1161/circresaha.107.149047] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
418 |
11
|
Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 1992; 257:548-51. [PMID: 1636093 DOI: 10.1126/science.1636093] [Citation(s) in RCA: 400] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Murine interleukin-4 (IL-4) exhibits potent antitumor activity when present at the site of tumor cell challenge. Associated with tumor cell death is the appearance of an inflammatory infiltrate comprised predominantly of eosinophils and macrophages, but with few lymphocytes. Antibodies that specifically block the accumulation of granulocytes at the site of inflammation were injected in vivo to define the cell type responsible for the antitumor action of IL-4. These studies implicate eosinophils in IL-4-mediated tumor cytotoxicity. The lymphoid-independent nature of IL-4 action is supported by the analysis of mutant mouse strains with defined lymphocyte immunodeficiencies. The observed regression of established tumor masses by localized IL-4 action provides a rationale for exploring IL-4-mediated tumor killing as a potential therapy for human malignant disorders.
Collapse
|
|
33 |
400 |
12
|
Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 1999; 160:S5-11. [PMID: 10556161 DOI: 10.1164/ajrccm.160.supplement_1.4] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elucidation of the poorly understood mechanisms by which acute inflammation normally resolves is likely to provide new insights into the pathogenesis of persistent inflammatory states that characterize inflammatory disease and generate new therapeutic targets. We have concentrated on the mechanisms by which granulocytes and their histotoxic contents are cleared from inflamed sites during resolution. Although it had been assumed that extravasated neutrophils disintegrated (undergo necrosis) in situ, we have demonstrated an alternative fate, whereby the cell undergoes apoptosis, a process that has different implications for the control of inflammation. During apoptosis the neutrophil retains its granule contents and loses the ability to secrete them in response to secretagogues. In contrast to necrotic neutrophils, apoptotic neutrophils are ingested by inflammatory macrophages employing novel phagocytic recognition mechanisms that fail to provoke a macrophage proinflammatory response. These recognition mechanisms can be modulated by a number of environmental factors and may represent a pivotal point in the control of inflammation, since if apoptotic granulocytes are not rapidly cleared they undergo secondary necrosis with all the detrimental consequences entailed. The apoptotic clearance pathway is also available to eosinophil granulocytes, but our work suggests that the internal controls may be different from those in neutrophils. For example, corticosteroids delay neutrophil apoptosis but greatly accelerate eosinophil apoptosis, in what may represent a previously unsuspected beneficial mechanism of steroid action in allergic diseases such as bronchial asthma. Furthermore, such differences may lead to novel therapies based on the specific induction of eosinophil apoptosis. Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation.
Collapse
|
Review |
26 |
377 |
13
|
Tan C, Huang Y, Shi F, Tan K, Ma Q, Chen Y, Jiang X, Li X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol 2020; 92:856-862. [PMID: 32281668 PMCID: PMC7262341 DOI: 10.1002/jmv.25871] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
COVID-19 has developed into a worldwide pandemic; early identification of severe illness is critical for controlling it and improving the prognosis of patients with limited medical resources. The present study aimed to analyze the characteristics of severe COVID-19 and identify biomarkers for differential diagnosis and prognosis prediction. In total, 27 consecutive patients with COVID-19 and 75 patients with flu were retrospectively enrolled. Clinical parameters were collected from electronic medical records. The disease course was divided into four stages: initial, progression, peak, and recovery stages, according to computed tomography (CT) progress. to mild COVID-19, the lymphocytes in the severe COVID-19 progressively decreased at the progression and the peak stages, but rebound in the recovery stage. The levels of C-reactive protein (CRP) in the severe group at the initial and progression stages were higher than those in the mild group. Correlation analysis showed that CRP (R = .62; P < .01), erythrocyte sedimentation rate (R = .55; P < .01) and granulocyte/lymphocyte ratio (R = .49; P < .01) were positively associated with the CT severity scores. In contrast, the number of lymphocytes (R = -.37; P < .01) was negatively correlated with the CT severity scores. The receiver-operating characteristic analysis demonstrated that area under the curve of CRP on the first visit for predicting severe COVID-19 was 0.87 (95% CI 0.10-1.00) at 20.42 mg/L cut-off, with sensitivity and specificity 83% and 91%, respectively. CRP in severe COVID-19 patients increased significantly at the initial stage, before CT findings. Importantly, CRP, which was associated with disease development, predicted early severe COVID-19.
Collapse
|
research-article |
5 |
347 |
14
|
Koeffler HP, Golde DW. Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science 1978; 200:1153-4. [PMID: 306682 DOI: 10.1126/science.306682] [Citation(s) in RCA: 345] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A permanent human cell line that maintains the granulocytic characteristics of acute myelogenous leukemia cells has been established. The cells of this line form myeloid colonies in soft gel culture in the presence of human colony-stimulating activity. The cell line may be useful for studying human acute myelogenous leukemia and the mechanism of response to colony-stimulating activity.
Collapse
|
|
47 |
345 |
15
|
Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 2015; 74:1417-24. [PMID: 24570026 PMCID: PMC4143484 DOI: 10.1136/annrheumdis-2013-204837] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE The structural and functional integrity of the endothelium is crucial in maintaining vascular homeostasis and preventing atherosclerosis. Patients with systemic lupus erythematosus (SLE) have an increased risk of developing endothelial dysfunction and premature cardiovascular disease. Neutrophil extracellular trap (NET) formation is increased in SLE and has been proposed to contribute to endothelial damage, but the mechanism remains unclear. OBJECTIVE To determine the mechanism by which enhanced NET formation by low-density granulocytes (LDGs) in SLE contributes to endothelial damage and disrupts the endothelium. RESULTS The putative role of NET-externalised matrix metalloproteinases (MMPs) in altering the functional integrity of the endothelium was examined. MMP-9 externalised by lupus LDGs during NET formation specifically impaired murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Endothelial dysfunction correlated with the activation of endothelial MMP-2 by MMP-9 present in NETs, while inhibition of MMP-2 activation restored endothelium-dependent function and decreased NET-induced vascular cytotoxicity. Moreover, immunogenic complexes composed of MMP-9 and anti-MMP-9 were identified in SLE sera. These complexes, as well as anti-MMP-9 autoantibodies, induced NETosis and enhanced MMP-9 activity. CONCLUSIONS These observations implicate activation of endothelial MMP-2 by MMP-9 contained in NETs as an important player in endothelial dysfunction, and MMP-9 as a novel self-antigen in SLE. These results further support that aberrant NET formation plays pathogenic roles in SLE.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Arthritis, Rheumatoid
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Cells, Cultured
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Extracellular Traps/metabolism
- Female
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/physiopathology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/immunology
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Animal
- Umbilical Veins/pathology
- Up-Regulation
Collapse
|
Research Support, N.I.H., Extramural |
10 |
343 |
16
|
O'Sullivan M, Clayton N, Breslin NP, Harman I, Bountra C, McLaren A, O'Morain CA. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil 2000; 12:449-57. [PMID: 11012945 DOI: 10.1046/j.1365-2982.2000.00221.x] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells (MC) release potent mediators which alter enteric nerve and smooth muscle function and may play a role in the pathogenesis of the irritable bowel syndrome (IBS). The aim of this study was to determine if MC were increased in the colon of IBS patients compared to controls. Biopsy specimens were obtained from the caecum, ascending colon, descending colon and rectum of 28 patients: 14 IBS (Rome criteria); seven normal; and seven inflammatory controls. Tissue was stained immunohistochemically using a monoclonal mouse antibody for human mast cell tryptase (AA1). Tissue area occupied by tryptase-positive MC (volume density of mast cells) was quantified by image analysis. The number of plasma cells, lymphocytes, eosinophils, neutrophils and macrophages were each graded semiquantitatively (0-4) in haematoxylin and eosin stained sections. Mast cell volume density was significantly (P < 0.05) higher in IBS (0.91 +/- 0.18; CI 0.79; 1.0) than normal controls (0.55 +/- 0.14; CI 0.40; 0.69) in the caecum but not at other sites. Apart from MC, there was no evidence of increased cellular infiltrate in the IBS group. MC were significantly increased in the caecum of IBS patients compared to controls. The multiple effects of the intestinal mast cell alone, or as a participant of a persistent inflammatory response, may be fundamental to the pathogenesis of IBS.
Collapse
|
|
25 |
339 |
17
|
Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 2011; 9:e1001162. [PMID: 21980263 PMCID: PMC3181226 DOI: 10.1371/journal.pbio.1001162] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/19/2011] [Indexed: 12/26/2022] Open
Abstract
In order to metastasize, cancer cells need to acquire a motile phenotype. Previously, development of this phenotype was thought to rely on the acquisition of selected, random mutations and thus would occur late in cancer progression. However, recent studies show that cancer cells disseminate early, implying the existence of a different, faster route to the metastatic motile phenotype. Using a spontaneous murine model of melanoma, we show that a subset of bone marrow-derived immune cells (myeloid-derived suppressor cells or MDSC) preferentially infiltrates the primary tumor and actively promotes cancer cell dissemination by inducing epithelial-mesenchymal transition (EMT). CXCL5 is the main chemokine attracting MDSC to the primary tumor. In vitro assay using purified MDSC showed that TGF-β, EGF, and HGF signaling pathways are all used by MDSC to induce EMT in cancer cells. These findings explain how cancer cells acquire a motile phenotype so early and provide a mechanistic explanation for the long recognized link between inflammation and cancer progression. Cancer progression has been depicted as a linear process, during which the incipient cancer cell sequentially accumulates mutations that confer the ability to metastasize. However, recent studies show that cancer cells disseminate early, before such mutations can accumulate, implying the existence of a different, faster route to the metastatic phenotype. Using a mouse model of melanoma, we show that the primary tumor attracts a subset of immune cells that actively promote cancer cell motility, dissemination, and metastasis. These tumor-infiltrating immune cells do so by reactivating a cellular program (mesenchymal transition) used by melanocytes during their development to colonize the skin, and also believed to be an essential step in cancer cell dissemination and metastasis. Once the melanoma cells migrate out of the primary tumor, they can lapse back to their original phenotype and lose their migratory potential. This transient phenotypic switch may accelerate carcinogenesis and participate in the plasticity of cancer. It explains how cancer cells might spread to other organs even before the original tumor is detected. In addition to the evidence gleaned from our mouse melanoma model, we show that these immune cells induce typical features of epithelial-mesechymal transition in both melanoma and bladder human cell lines when examined in culture dishes. These findings provide an underlying mechanism for the long-recognized link between inflammation and cancer progression.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
288 |
18
|
Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci U S A 1997; 94:3943-7. [PMID: 9108084 PMCID: PMC20547 DOI: 10.1073/pnas.94.8.3943] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Binding of CD95 (Fas/APO-1) by its ligand (CD95L) commonly induces apoptosis. Apoptosis of activated T cells, induced by CD95L expressed in the rodent testis, has been proposed to be the mechanism of immune privilege [Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A. & Duke, R. C. (1995) Nature (London) 377, 630-632]. To test whether CD95L could protect pancreatic islet grafts from rejection, we made transgenic mice expressing murine CD95L on their islet beta cells and transplanted fetal pancreata under the kidney capsules of allogeneic animals. Expression of CD95L failed to protect the grafts from rejection. However, transgenic mice developed a granulocytic infiltration in their pancreata. These results demonstrate a pro-inflammatory function of CD95L and suggest that expression of CD95L may not be sufficient to protect organ allografts.
Collapse
|
research-article |
28 |
278 |
19
|
Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams GK, Kreutner W, Egan RW, Chapman RW. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 1995; 152:467-72. [PMID: 7633694 DOI: 10.1164/ajrccm.152.2.7633694] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To investigate the role of interleukin-5 (IL-5) on airway hyperreactivity and pulmonary inflammation in nonhuman primate airways, the effect of a neutralizing monoclonal antibody to murine IL-5 (TRFK-5) was investigated in a cynomolgus monkey model of allergic asthma. Anesthetized Ascaris-sensitive monkeys underwent bronchoalveolar lavage (BAL) to assess the granulocyte content of this fluid before and 24 h after aerosolized Ascaris suum extract inhalation. Airway reactivity was assessed by the concentration of inhaled histamine required to produce a 40% reduction in dynamic lung compliance (Cdyn40). Exposure to A. suum extract produced an increase in airway reactivity (Cdyn40 = 0.065 +/- 0.024% before Ascaris; Cdyn40 = 0.014 +/- 0.004% after Ascaris) and an inflammatory reaction in the airways characterized by an increase in BAL eosinophils (0.05 +/- 0.03 x 10(3) cells/ml before Ascaris; 176 +/- 76 x 10(3) cells/ml after Ascaris) and neutrophils (3 +/- 1 x 10(3) cells/ml before Ascaris; 406 +/- 211 x 10(3) cells/ml after Ascaris). In contrast, only small nonsignificant changes in airway reactivity and granulocyte influx into the BAL occurred after aerosolized saline as a sham challenge. When the monkeys were treated 1 h before Ascaris challenge with the TRFK-5 antibody (0.3 mg/kg, intravenously), there was no increase in airway reactivity after Ascaris challenge (Cdyn40 = 0.032 +/- 0.016% before Ascaris; Cdyn40 = 0.217 +/- 0.196% after Ascaris) and there were only small increases in the number of eosinophils and neutrophils in the BAL after Ascaris challenge. The inhibition of this pulmonary eosinophilia and bronchial hyperresponsiveness by TRFK-5 was seen for up to 3 mo after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
264 |
20
|
Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of Tie-2 by Human Monocytes and Their Responses to Angiopoietin-2. THE JOURNAL OF IMMUNOLOGY 2007; 178:7405-11. [PMID: 17513791 DOI: 10.4049/jimmunol.178.11.7405] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiopoietins 1 and 2 bind to Tie-2 expressed on endothelial cells and regulate vessel stabilization and angiogenesis. Tie-2(+) monocytes have been shown to be recruited to experimental tumors where they promote tumor angiogenesis. In this study, we show that 20% of CD14(+) human blood monocytes express Tie-2, and that these cells coexpress CD16 (FcgammaRIII) and are predominantly CD34 negative. Ang-2 is up-regulated by endothelial cells in malignant tumors and inflamed tissues, so our finding that Ang-2 is a chemoattractant for human Tie-2(+) monocytes and macrophages, suggests that it may help to recruit and regulate their distribution in such tissues. Ang-2 was also found to markedly inhibit release of the important proinflammatory cytokine, TNF-alpha, by monocytes in vitro. Following extravasation of monocytes, and their differentiation into macrophages, many accumulate in the hypoxic areas of inflamed and malignant tissues. Ang-2 is known to be up-regulated by hypoxia and we show that monocytes and macrophages up-regulate Tie-2 when exposed to hypoxia. Furthermore, hypoxia augmented the inhibitory effect of Ang-2 on the release of the anti-angiogenic cytokine, IL-12 by monocytes. In sum, our data indicate that Ang-2 may recruit Tie-2(+) monocytes to tumors and sites of inflammation, modulate their release of important cytokines and stimulate them to express a proangiogenic phenotype.
Collapse
MESH Headings
- Angiopoietin-2/physiology
- Animals
- Cell Hypoxia/immunology
- Cell Membrane/enzymology
- Cell Membrane/immunology
- Cell Membrane/pathology
- Cells, Cultured
- Chemotaxis, Leukocyte/immunology
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Gene Expression Regulation/immunology
- Granulocytes/enzymology
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Inflammation Mediators/physiology
- Lymphocyte Subsets/enzymology
- Lymphocyte Subsets/metabolism
- Lymphocyte Subsets/pathology
- Macrophages/enzymology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Monocytes/enzymology
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/immunology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, TIE-2/biosynthesis
- Receptor, TIE-2/genetics
- Receptor, TIE-2/physiology
- Up-Regulation/immunology
Collapse
|
|
18 |
240 |
21
|
Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 2006; 26:4701-13. [PMID: 16641251 PMCID: PMC6674063 DOI: 10.1523/jneurosci.5516-05.2006] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesio-temporal lobe epilepsy (MTLE) is often accompanied by granule cell dispersion (GCD), a widening of the granule cell layer. The molecular determinants of GCD are poorly understood. Here, we used an animal model to study whether GCD results from an increased dentate neurogenesis associated with an abnormal migration of the newly generated granule cells. Adult mice were given intrahippocampal injections of kainate (KA) known to induce focal epileptic seizures and GCD, comparable to the changes observed in human MTLE. Ipsilateral GCD progressively developed after KA injection and was paralleled by a gradual decrease in the expression of doublecortin, a marker of newly generated granule cells, in the dentate subgranular layer. Staining with Fluoro-Jade B revealed little cell degeneration in the subgranular layer on the KA-injected side. Labeling with bromodeoxyuridine showed an early, transient increase in mitotic activity in the dentate gyrus of the KA-injected hippocampus that gave rise to microglial cells and astrocytes but not to new neurons. Moreover, at later time points, there was a virtually complete cessation of mitotic activity in the injected hippocampus (where GCD continued to develop), but not on the contralateral side (where no GCD was observed). Finally, a significant decrease in reelin mRNA synthesis in the injected hippocampus paralleled the development of GCD, and neutralization of reelin by application of the CR-50 antibody induced GCD. These results show that GCD does not result from increased neurogenesis but reflects a displacement of mature granule cells, most likely caused by a local reelin deficiency.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
239 |
22
|
Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B, Karl H, Kaps R, Müller D, Vayá A, Aznar J, Ware RE, Sotelo Cruz N, Lindner TH, Herrmann H, Reis A, Sperling K. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet 2002; 31:410-4. [PMID: 12118250 DOI: 10.1038/ng925] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pelger-Huët anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41-43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope-heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.
Collapse
|
|
23 |
239 |
23
|
Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 2002; 103:208-14. [PMID: 11922736 DOI: 10.1006/jsre.2002.6358] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The surgical therapy of hernias is increasingly based on reinforcement with alloplastic material, in particular surgical meshes. The biological response to these foreign bodies largely depends on the selected material and its structure. In comparison to the physiological scar process following a simple abdominal wall incision, the chronic inflammation at the interface to the polymers lead to specific morphological alterations. MATERIALS AND METHODS In the present study two meshes with different pore sizes were implanted into rats: a heavy-weight and small-pore-sized mesh (hw-mesh) made of nonabsorbable polypropylene monofilaments and a low-weight large-pore-sized mesh consisting of polypropylene and of absorbable polyglactin multifilaments (lw-mesh). A suture repair of a laparotomy served as control. After 7, 14, 21, and 90 days the mesh area was analyzed with regard to tissue and cellular response. RESULTS Over the whole observation period morphometric analysis indicated an improved integration of the lw-mesh with reduction of both inflammation and fibrosis, whereas the hw-mesh induced an intense chronic inflammation concomitant with an intensified bridging scar reaction. On the cellular level these findings correspond to an elevated cell turnover, characterized by increased rates of apoptotic and proliferating cells. In contrast, the tissue reaction to the lw-mesh achieved levels almost similar to those of the physiological scaring process in the control group. CONCLUSION In conclusion, the present data confirm the development of a chronic inflammatory foreign body reaction at the interface to both hw-meshes and lw-meshes; however, the use of lw-meshes showed superior tissue integration. With regard to the quite similar polymer surface the pore size appears to be of major importance in tissue reaction and for the biocompatibility of mesh structures.
Collapse
|
Comparative Study |
23 |
234 |
24
|
DuPre' SA, Hunter KW. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol 2006; 82:12-24. [PMID: 16919266 DOI: 10.1016/j.yexmp.2006.06.007] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/07/2006] [Accepted: 06/12/2006] [Indexed: 11/25/2022]
Abstract
A leukemoid reaction with granulocytosis and splenomegaly has been observed in animals and humans with a variety of tumors. We have employed four color flow cytometry to characterize the leukemoid reaction induced by the transplantable mouse mammary carcinoma 4T1 in female BALB/c mice. Gr-1(+) myeloid cells with the morphology of granulocytes increased in peripheral blood from <15% pre-transplant to nearly 80% of total CD45(+) leukocytes at four weeks post-transplant. Though the granulocyte:lymphocyte ratio increased markedly, the absolute numbers of CD19(+) B lymphocytes, CD4(+) and CD8(+) T lymphocytes, and the CD4/CD8 ratio in peripheral blood did not change significantly. Femurs from tumor-bearing mice showed myeloid hyperplasia of the fatty marrow. There was a notable increase in cells with a Gr-1(dim)/CD11b(bright) immature granulocyte phenotype, and these cells were also found in peripheral blood and spleen. Spleen weights had increased 8.5-fold by four weeks post-tumor transplant, mainly due to granulocytic hyperplasia. Cultured 4T1 tumor cells constitutively expressed mRNA for the myeloid colony-stimulating factors G-CSF and GM-CSF, and IFN-gamma-inducible M-CSF transcripts were also detected. Tumors excised from mice had transcripts for G-CSF and GM-CSF, but only G-CSF protein was found in high levels in serum of tumor-bearing mice. These data demonstrate that 4T1 tumor-bearing mice exhibit a leukemoid reaction that apparently is caused by the production of colony-stimulating factors produced by the tumor. The 4T1 tumor may serve as an excellent model for the study of this reaction.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
225 |
25
|
Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJP, Erber WN, Kusec R, Larsen TS, Giraudier S, Le Bousse-Kerdilès MC, Griesshammer M, Reilly JT, Cheung BY, Harrison CN, Green AR. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108:3548-55. [PMID: 16873677 DOI: 10.1182/blood-2005-12-013748] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identification of an acquired mutation of JAK2 in patients with myeloproliferative disorders has raised questions about the relationship between mutation-positive and mutation-negative subtypes, timing of the JAK2 mutation, and molecular mechanisms of disease progression. Here we demonstrate that patients with V617F(-) essential thrombocythemia do not commonly progress to become V617F(+). Consistent with the concept of distinct pathogenetic mechanisms, we show that patients with and without the JAK2 mutation have different patterns of cytogenetic abnormality, with virtually all patients carrying the 20q deletion or trisomy 9 being V617F(+). We also investigated the existence of a "pre-JAK2" phase by comparing the proportion of clonally derived granulocytes, estimated from X-chromosome inactivation patterns (XCIPs), with the proportion of V617F(+) granulocytes. Our results demonstrate that inherent XCIP variability between granulocytes and T cells produces a systematically biased pattern of results that may be misinterpreted as evidence for an excess of clonally derived granulocytes, an observation that limits the utility of XCIP analysis in this context. Lastly, we studied 4 patients with V617F(+) myeloproliferative disorders who subsequently developed acute myeloid leukemia. In 3 patients the leukemic cells were V617F(-), suggesting that in these patients the leukemia arose in a V617F(-) cell.
Collapse
|
|
19 |
222 |