1
|
Abstract
Vertebrates do not look like jellyfish because the bones of their skeletons are levers that allow movement and protect vital organs. Bones come in an enormous variety of shapes and sizes to accomplish these goals, but, with few exceptions, use one process--endochondral bone formation--to generate the skeleton. The past few years have seen an enormous increase in understanding of the signalling pathways and the transcription factors that control endochondral bone development.
Collapse
|
Review |
22 |
2067 |
2
|
Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93:411-22. [PMID: 9590175 PMCID: PMC2839071 DOI: 10.1016/s0092-8674(00)81169-1] [Citation(s) in RCA: 1331] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homozygous mice with a null mutation in the MMP-9/gelatinase B gene exhibit an abnormal pattern of skeletal growth plate vascularization and ossification. Although hypertrophic chondrocytes develop normally, apoptosis, vascularization, and ossification are delayed, resulting in progressive lengthening of the growth plate to about eight times normal. After 3 weeks postnatal, aberrant apoptosis, vascularization, and ossification compensate to remodel the enlarged growth plate and ultimately produce an axial skeleton of normal appearance. Transplantation of wild-type bone marrow cells rescues vascularization and ossification in gelatinase B-null growth plates, indicating that these processes are mediated by gelatinase B-expressing cells of bone marrow origin, designated chondroclasts. Growth plates from gelatinase B-null mice in culture show a delayed release of an angiogenic activator, establishing a role for this proteinase in controlling angiogenesis.
Collapse
|
research-article |
27 |
1331 |
3
|
Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 2000; 97:4052-7. [PMID: 10737763 PMCID: PMC18145 DOI: 10.1073/pnas.060037197] [Citation(s) in RCA: 607] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo.
Collapse
|
research-article |
25 |
607 |
4
|
Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, Krane SM. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 2004; 101:17192-7. [PMID: 15563592 PMCID: PMC535367 DOI: 10.1073/pnas.0407788101] [Citation(s) in RCA: 429] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Collagenase-3 (MMP13), a member of the matrix metalloproteinase (MMP) family of neutral endopeptidases, is expressed in the skeleton during embryonic development and is highly overexpressed in human carcinomas and in chondrocytes and synovial cells in rheumatoid arthritis and osteoarthritis. To determine the functional roles of Mmp13, we generated Mmp13-null mice that showed profound defects in growth plate cartilage with markedly increased hypertrophic domains as well as delay in endochondral ossification and formation and vascularization of primary ossification centers. Absence of Mmp13 resulted in significant interstitial collagen accumulation due, in part, to the lack of appropriate collagenase-mediated cleavage that normally occurs in growth plates and primary ossification centers. Cartilaginous growth plate abnormalities persisted in adult mice and phenocopied defects observed in human hereditary chondrodysplasias. Our findings demonstrate a unique role of Mmp13 in skeletal development.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
429 |
5
|
Isaksson OG, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr Rev 1987; 8:426-38. [PMID: 3319530 DOI: 10.1210/edrv-8-4-426] [Citation(s) in RCA: 354] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
Review |
38 |
354 |
6
|
Abstract
The growth plate is the final target organ for longitudinal growth and results from chondrocyte proliferation and differentiation. During the first year of life, longitudinal growth rates are high, followed by a decade of modest longitudinal growth. The age at onset of puberty and the growth rate during the pubertal growth spurt (which occurs under the influence of estrogens and GH) contribute to sex difference in final height between boys and girls. At the end of puberty, growth plates fuse, thereby ceasing longitudinal growth. It has been recognized that receptors for many hormones such as estrogen, GH, and glucocorticoids are present in or on growth plate chondrocytes, suggesting that these hormones may influence processes in the growth plate directly. Moreover, many growth factors, i.e., IGF-I, Indian hedgehog, PTHrP, fibroblast growth factors, bone morphogenetic proteins, and vascular endothelial growth factor, are now considered as crucial regulators of chondrocyte proliferation and differentiation. In this review, we present an update on the present perception of growth plate function and the regulation of chondrocyte proliferation and differentiation by systemic and local regulators of which most are now related to human growth disorders.
Collapse
|
Review |
22 |
351 |
7
|
Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A 1996; 93:10240-5. [PMID: 8816783 PMCID: PMC38368 DOI: 10.1073/pnas.93.19.10240] [Citation(s) in RCA: 314] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.
Collapse
|
research-article |
29 |
314 |
8
|
Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107:295-304. [PMID: 11160153 PMCID: PMC199199 DOI: 10.1172/jci11706] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vertebrate skeletogenesis requires a well-coordinated transition from chondrogenesis to osteogenesis. Hypertrophic chondrocytes in the growth plate play a pivotal role in this transition. Parathyroid hormone-related peptide (PTHrP), synthesized in the periarticular growth plate, regulates the site at which hypertrophy occurs. By comparing PTH/PTHrP receptor(-/-)/wild-type (PPR(-/-)/wild-type) chimeric mice with IHH(-/-);PPR(-/-)/wild-type chimeric and IHH(-/-)/wild-type chimeric mice, we provide in vivo evidence that Indian hedgehog (IHH), synthesized by prehypertrophic and hypertrophic chondrocytes, regulates the site of hypertrophic differentiation by signaling to the periarticular growth plate and also determines the site of bone collar formation in the adjacent perichondrium. By providing crucial local signals from prehypertrophic and hypertrophic chondrocytes to both chondrocytes and preosteoblasts, IHH couples chondrogenesis to osteogenesis in endochondral bone development.
Collapse
|
research-article |
24 |
295 |
9
|
Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(-/-) mice. J Clin Invest 1999; 104:895-901. [PMID: 10510330 PMCID: PMC408552 DOI: 10.1172/jci6730] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovariectomy in young, growing rodents results in decreased trabecular bone mineral density (BMD) and increased radial growth of the cortical bone. Both of these effects are reversed by treatment with estrogen. The aim of the present study was to determine the physiological role of estrogen receptor-beta (ERbeta) on bone structure and bone mineral content (BMC). The BMC was increased in adult (11 weeks old), but not prepubertal (4 weeks old), female ERbeta(-/-) mice compared with wild-type (WT) mice. This increase in BMC in females was not due to increased trabecular BMD, but to an increased cross-sectional cortical bone area associated with a radial bone growth. Male ERbeta(-/-) mice displayed no bone abnormalities compared with WT mice. Ovariectomy decreased the trabecular BMD to the same extent in adult female ERbeta(-/-) mice as in WT mice. The expression levels of osteoblast-associated genes - alpha1(I) collagen, alkaline phosphatase, and osteocalcin mRNAs - were elevated in bone from adult ERbeta(-/-) females compared with WT mice. These observations provide a possible explanation for the increased radial bone growth seen in female mutants, suggesting a repressive function for ERbeta in the regulation of bone growth during female adolescence. In summary, ERbeta is essential for the pubertal feminization of the cortical bone in female mice but is not required for the protective effect of estrogens on trabecular BMD.
Collapse
|
research-article |
26 |
295 |
10
|
Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998; 125:4977-88. [PMID: 9811582 DOI: 10.1242/dev.125.24.4977] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal growth and activating mutations in Fgfr3 cause achondroplasia, the most common genetic form of dwarfism in humans. Little is known about the mechanism by which FGFR3 inhibits bone growth and how FGFR3 signaling interacts with other signaling pathways that regulate endochondral ossification. To understand these mechanisms, we targeted the expression of an activated FGFR3 to growth plate cartilage in mice using regulatory elements from the collagen II gene. As with humans carrying the achondroplasia mutation, the resulting transgenic mice are dwarfed, with axial, appendicular and craniofacial skeletal hypoplasia. We found that FGFR3 inhibited endochondral bone growth by markedly inhibiting chondrocyte proliferation and by slowing chondrocyte differentiation. Significantly, FGFR3 downregulated the Indian hedgehog (Ihh) signaling pathway and Bmp4 expression in both growth plate chondrocytes and in the perichondrium. Conversely, Bmp4 expression is upregulated in the perichondrium of Fgfr3−/− mice. These data support a model in which Fgfr3 is an upstream negative regulator of the hedgehog (Hh) signaling pathway. Additionally, Fgfr3 may coordinate the growth and differentiation of chondrocytes with the growth and differentiation of osteoprogenitor cells by simultaneously modulating Bmp4 and patched expression in both growth plate cartilage and in the perichondrium.
Collapse
|
|
27 |
273 |
11
|
Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci U S A 2000; 97:5474-9. [PMID: 10805804 PMCID: PMC25853 DOI: 10.1073/pnas.97.10.5474] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgens may regulate the male skeleton directly through a stimulation of androgen receptors or indirectly through aromatization of androgens into estrogen and, thereafter, through stimulation of estrogen receptors (ERs). The relative importance of ER subtypes in the regulation of the male skeleton was studied in ERalpha-knockout (ERKO), ERbeta-knockout (BERKO), and double ERalpha/beta-knockout (DERKO) mice. ERKO and DERKO, but not BERKO, demonstrated decreased longitudinal as well as radial skeletal growth associated with decreased serum levels of insulin-like growth factor I. Therefore, ERalpha, but not ERbeta, mediates important effects of estrogen in the skeleton of male mice during growth and maturation.
Collapse
|
research-article |
25 |
257 |
12
|
Maeda Y, Nakamura E, Nguyen MT, Suva LJ, Swain FL, Razzaque MS, Mackem S, Lanske B. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci U S A 2007; 104:6382-7. [PMID: 17409191 PMCID: PMC1851055 DOI: 10.1073/pnas.0608449104] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Indexed: 11/18/2022] Open
Abstract
Indian hedgehog (Ihh) is essential for chondrocyte and osteoblast proliferation/differentiation during prenatal endochondral bone formation. The early lethality of various Ihh-ablated mutant mice, however, prevented further analysis of its role in postnatal bone growth and development. In this study, we describe the generation and characterization of a mouse model in which the Ihh gene was successfully ablated from postnatal chondrocytes in a temporal/spatial-specific manner; postnatal deletion of Ihh resulted in loss of columnar structure, premature vascular invasion, and formation of ectopic hypertrophic chondrocytes in the growth plate. Furthermore, destruction of the articular surface in long bones and premature fusion of growth plates of various endochondral bones was evident, resulting in dwarfism in mutant mice. More importantly, these mutant mice exhibited continuous loss of trabecular bone over time, which was accompanied by reduced Wnt signaling in the osteoblastic cells. These results demonstrate, for the first time, that postnatal chondrocyte-derived Ihh is essential for maintaining the growth plate and articular surface and is required for sustaining trabecular bone and skeletal growth.
Collapse
|
Comparative Study |
18 |
211 |
13
|
Nilsson A, Isgaard J, Lindahl A, Dahlström A, Skottner A, Isaksson OG. Regulation by growth hormone of number of chondrocytes containing IGF-I in rat growth plate. Science 1986; 233:571-4. [PMID: 3523759 DOI: 10.1126/science.3523759] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Whether growth hormone stimulates longitudinal bone growth by a direct effect at the site of the growth plate or indirectly by increasing the concentration of circulating somatomedins (insulin-like growth factors) has been the subject of controversy. Immunohistochemical methods were used to explore the localization and distribution of insulin-like growth factor I (IGF-I) immunoreactivity in the epiphyseal growth plate of the proximal tibia of male rats. Cells in the proliferative zone of the growth plate of normal rats exhibited a bright immunofluorescence, whereas cells in the germinal and hypertrophic zones stained only weakly. In rats subjected to hypophysectomy, the number of fluorescent cells was markedly reduced. When the hypophysectomized rats were treated with growth hormone, either systemically or at the site of the growth plate, the number of IGF-I-immunoreactive cells in the proliferative zone was increased. The results show that IGF-I is produced in proliferative chondrocytes in the growth plate and that the number of IGF-I-containing cells is directly regulated by growth hormone. These findings suggest that IGF-I has a specific role in the clonal expansion of differentiated chondrocytes and exerts its function locally through autocrine or paracrine mechanisms.
Collapse
|
|
39 |
204 |
14
|
Woods A, Wang G, Beier F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 2007; 213:1-8. [PMID: 17492773 DOI: 10.1002/jcp.21110] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chondrocyte differentiation is a multi-step process characterized by successive changes in cell morphology and gene expression. In addition to tight regulation by numerous soluble factors, these processes are controlled by adhesive events. During the early phase of the chondrocyte life cycle, cell-cell adhesion through molecules such as N-cadherin and neural cell adhesion molecule (N-CAM) is required for differentiation of mesenchymal precursor cells to chondrocytes. At later stages, for example in growth plate chondrocytes, adhesion signaling from extracellular matrix (ECM) proteins through integrins and other ECM receptors such as the discoidin domain receptor (DDR) 2 (a collagen receptor) and Annexin V is necessary for normal chondrocyte proliferation and hypertrophy. Cell-matrix interactions are also important for chondrogenesis, for example through the activity of CD44, a receptor for Hyaluronan and collagens. The roles of several signaling molecules involved in adhesive signaling, such as integrin-linked kinase (ILK) and Rho GTPases, during chondrocyte differentiation are beginning to be understood, and the actin cytoskeleton has been identified as a common target of these adhesive pathways. Complete elucidation of the pathways connecting adhesion receptors to downstream effectors and the mechanisms integrating adhesion signaling with growth factor- and hormone-induced pathways is required for a better understanding of physiological and pathological skeletal development.
Collapse
|
Review |
18 |
202 |
15
|
Kobayashi T, Soegiarto DW, Yang Y, Lanske B, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest 2005; 115:1734-42. [PMID: 15951842 PMCID: PMC1143590 DOI: 10.1172/jci24397] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/05/2005] [Indexed: 11/17/2022] Open
Abstract
In the developing growth plate, periarticular chondrocytes proliferate, differentiate into columnar chondrocytes, and then further differentiate into postmitotic hypertrophic chondrocytes. Parathyroid hormone-related (PTH-related) protein (PTHrP), regulated by Indian hedgehog (Ihh), prevents premature hypertrophic differentiation, thereby maintaining the length of columns. Ihh regulates cartilage development through PTHrP-independent pathways as well. Here we show that Ihh stimulates differentiation of periarticular to columnar chondrocytes (periarticular chondrocyte differentiation) and thereby regulates the length of columns independently of PTHrP. Mosaic ablation of the PTH/PTHrP receptor in the growth plate caused upregulation of Ihh action, PTHrP upregulation, acceleration of periarticular chondrocyte differentiation, and elongation of the columnar region. Decreasing Ihh action in these mice reduced elongation of columns, whereas decreasing PTHrP showed only a modest effect on column length. Overexpression of Ihh caused PTHrP upregulation, elongation of columns, and acceleration of periarticular chondrocyte differentiation. PTHrP heterozygosity in this model had a minimal effect on the elongation of columns. Moreover, the elongation of columns and stimulation of periarticular chondrocyte differentiation in these models were still observed when PTHrP signaling was maintained so that it remained constant. These results demonstrate that Ihh acts on periarticular chondrocytes to stimulate their differentiation, thereby regulating the columnar cell mass independently of PTHrP.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Chondrocytes/cytology
- Chondrocytes/physiology
- Female
- Growth Plate/cytology
- Growth Plate/growth & development
- Hedgehog Proteins
- Heterozygote
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Mosaicism
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/physiology
- Phenotype
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/physiology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/physiology
- Up-Regulation
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
188 |
16
|
Breur GJ, VanEnkevort BA, Farnum CE, Wilsman NJ. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res 1991; 9:348-59. [PMID: 2010838 DOI: 10.1002/jor.1100090306] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we tested the hypothesis that hypertrophic cell volume varies directly with the rate of longitudinal bone growth. The volume of hypertrophic chondrocytes (using stereological techniques) and longitudinal bone growth per 24 h (using oxytetracycline labeling techniques) were measured in the proximal and distal radial growth plates and the proximal and distal tibial growth plates of 21- and 35-day-old hooded rats and 21- and 35-day-old Yucatan pigs. We demonstrated a high coefficient of correlation (rats 0.98, pigs 0.83) between the final volume of hypertrophic chondrocytes and the rate of longitudinal bone growth over a wide range of growth rates and volumes of hypertrophic chondrocytes. In addition, we demonstrated a positive linear relationship between the rate of longitudinal bone growth and the final volume of hypertrophic chondrocytes. The slope of the regression line was different for rats than for pigs. The relationship was independent of the location of the growth plate in the animal and the age of the animal. The data suggest that mechanisms regulating volume changes in hypertrophic chondrocytes may exist and that chondrocytic volume increase is a major determinant of the rate of longitudinal bone growth. However, the relative contribution of cellular hypertrophy to longitudinal bone growth may be different in rats than in pigs.
Collapse
|
Comparative Study |
34 |
173 |
17
|
Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med 1994; 22:48-54. [PMID: 8129110 DOI: 10.1177/036354659402200109] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to evaluate anterior cruciate ligament allograft reconstruction in skeletally immature athletes. Eight patients (mean age, 13 years, 6 months; range, 10 to 15 years) with radiographic documentation of open growth plates had anterior cruciate ligament repair and reconstruction with fascia lata or Achilles tendon allograft tissue. A 7-mm graft was centrally placed across the tibial physes and in an over-the-top position on the femur. All patients returned for followup a mean of 58 months (range, 22 to 94) postoperatively. All had an immediate knee motion and rehabilitation exercise program. The results were rated on a comprehensive rating system that assessed 20 variables. At followup, all patients showed closure of the growth plates. The difference in lower limb length, measured on scanograms, was not clinically significant. On KT-1000 arthrometer testing, 5 patients had less than 3 mm of increased anterior-posterior displacement (normal knee minus reconstructed knee) and 3 patients had between 3 and 5 mm. The final overall ratings were 6 excellent, 1 good, and 1 fair. The procedure is infrequently used, but appears to have merit in select, skeletally immature athletes who desire not to modify athletic activity or when associated meniscal repairs warrant consideration for reconstruction.
Collapse
|
Case Reports |
31 |
173 |
18
|
Wang Y, Spatz MK, Kannan K, Hayk H, Avivi A, Gorivodsky M, Pines M, Yayon A, Lonai P, Givol D. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A 1999; 96:4455-60. [PMID: 10200283 PMCID: PMC16353 DOI: 10.1073/pnas.96.8.4455] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Achondroplasia, the most common form of dwarfism in man, is a dominant genetic disorder caused by a point mutation (G380R) in the transmembrane region of fibroblast growth factor receptor 3 (FGFR3). We used gene targeting to introduce the human achondroplasia mutation into the murine FGFR3 gene. Heterozygotes for this point mutation that carried the neo cassette were normal whereas neo+ homozygotes had a phenotype similar to FGFR3-deficient mice, exhibiting bone overgrowth. This was because of interference with mRNA processing in the presence of the neo cassette. Removal of the neo selection marker by Cre/loxP recombination yielded a dominant dwarf phenotype. These mice are distinguished by their small size, shortened craniofacial area, hypoplasia of the midface with protruding incisors, distorted brain case with anteriorly shifted foramen magnum, kyphosis, and narrowed and distorted growth plates in the long bones, vertebrae, and ribs. These experiments demonstrate that achondroplasia results from a gain-of-FGFR3-function leading to inhibition of chondrocyte proliferation. These achondroplastic dwarf mice represent a reliable and useful model for developing drugs for potential treatment of the human disease.
Collapse
|
research-article |
26 |
168 |
19
|
Leung VYL, Gao B, Leung KKH, Melhado IG, Wynn SL, Au TYK, Dung NWF, Lau JYB, Mak ACY, Chan D, Cheah KSE. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 2011; 7:e1002356. [PMID: 22072985 PMCID: PMC3207907 DOI: 10.1371/journal.pgen.1002356] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 09/10/2011] [Indexed: 01/18/2023] Open
Abstract
Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
164 |
20
|
Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 2006; 133:4667-78. [PMID: 17065231 DOI: 10.1242/dev.02680] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic protein (BMP) signaling pathways are essential regulators of chondrogenesis. However, the roles of these pathways in vivo are not well understood. Limb-culture studies have provided a number of essential insights, including the demonstration that BMP pathways are required for chondrocyte proliferation and differentiation. However, limb-culture studies have yielded contradictory results; some studies indicate that BMPs exert stimulatory effects on differentiation, whereas others support inhibitory effects. Therefore, we characterized the skeletal phenotypes of mice lacking Bmpr1a in chondrocytes (Bmpr1a(CKO)) and Bmpr1a(CKO);Bmpr1b+/- (Bmpr1a(CKO);1b+/-) in order to test the roles of BMP pathways in the growth plate in vivo. These mice reveal requirements for BMP signaling in multiple aspects of chondrogenesis. They also demonstrate that the balance between signaling outputs from BMP and fibroblast growth factor (FGF) pathways plays a crucial role in the growth plate. These studies indicate that BMP signaling is required to promote Ihh expression, and to inhibit activation of STAT and ERK1/2 MAPK, key effectors of FGF signaling. BMP pathways inhibit FGF signaling, at least in part, by inhibiting the expression of FGFR1. These results provide a genetic in vivo demonstration that the progression of chondrocytes through the growth plate is controlled by antagonistic BMP and FGF signaling pathways.
Collapse
|
Journal Article |
19 |
151 |
21
|
Song B, Haycraft CJ, Seo HS, Yoder BK, Serra R. Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol 2007; 305:202-16. [PMID: 17359961 PMCID: PMC1931410 DOI: 10.1016/j.ydbio.2007.02.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 11/25/2022]
Abstract
In the post-natal growth plate, chondrocytes are arranged in columns parallel to the long axis of the bone. Chondrocytes divide perpendicular to this axis and then move into position one on top of another in a process called "rotation" that maintains columnar organization. Primary cilia are non-motile microtubule base appendages extending from the surface of almost all vertebrate cells. Primary cilia were described on chondrocytes almost 40 years ago but the function of these structures in cartilage biology is not known. Intraflagellar transport (IFT) is the process by which primary cilia are generated and maintained. This study tested the hypothesis that IFT plays an important role in post-natal skeletal development. Kif3a, a subunit of the Kinesin II motor complex, that is required for intraflagellar transport and the formation of cilia, was deleted in mouse chondrocytes via Col2a-Cre-mediated recombination. Disruption of IFT resulted in subsequent depletion of cilia and post-natal dwarfism due to premature loss of the growth plate likely a result of reduced proliferation and accelerated hypertrophic differentiation of chondrocytes. Cell shape and columnar orientation in the growth plate were also disrupted suggesting a defect in the process of rotation. Alterations in chondrocyte rotation were accompanied by disruption of the actin cytoskeleton and alterations in the localization of activated FAK to focal adhesion-like structures on chondrocytes. This is the first report indicating a role for IFT and primary cilia in the development of the post-natal growth plate. The results suggest a model in which IFT/cilia act to maintain the columnar organization of the growth plate via the process of chondrocyte rotation.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
137 |
22
|
Roach HI, Mehta G, Oreffo ROC, Clarke NMP, Cooper C. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis. J Histochem Cytochem 2003; 51:373-83. [PMID: 12588965 DOI: 10.1177/002215540305100312] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Despite the continued presence of growth plates in aged rats, longitudinal growth no longer occurs. The aims of this study were to understand the reasons for the cessation of growth. We studied the growth plates of femurs and tibiae in Wistar rats aged 62-80 weeks and compared these with the corresponding growth plates from rats aged 2-16 weeks. During skeletal growth, the heights of the plates, especially that of the hypertrophic zone, reflected the rate of bone growth. During the period of decelerating growth, it was the loss of large hydrated chondrocytes that contributed most to the overall decrease in the heights of the growth plates. In the old rats we identified four categories of growth plate morphology that were not present in the growth plates of younger rats: (a). formation of a bone band parallel to the metaphyseal edge of the growth plate, which effectively sealed that edge; (b). extensive areas of acellularity, which were resistant to resorption and/or remodeling; (c). extensive remodeling and bone formation within cellular regions of the growth plate; and (d). direct bone formation by former growth plate chondrocytes. These processes, together with a loss of synchrony across the plate, would prevent further longitudinal expansion of the growth plate despite continued sporadic proliferation of chondrocytes.
Collapse
|
|
22 |
130 |
23
|
|
|
41 |
130 |
24
|
Mäkelä EA, Vainionpää S, Vihtonen K, Mero M, Rokkanen P. The effect of trauma to the lower femoral epiphyseal plate. An experimental study in rabbits. THE JOURNAL OF BONE AND JOINT SURGERY. BRITISH VOLUME 1988; 70:187-91. [PMID: 3346285 DOI: 10.1302/0301-620x.70b2.3346285] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Forty-four rabbits were operated on when five weeks old; in one group a 2 mm drill-hole was made in the intercondylar portion of the right femur across the central portion of the growth plate up to the diaphysis, while in the other group a similar drill-hole of 3.2 mm was made. At 3, 6, 12 and 24 weeks after operation, specimens from the growth plates of both femora were analysed using radiographic, microradiographic, histological and histomorphometric techniques. It was found that destruction of 7% of the cross-sectional area of the growth plate caused permanent growth disturbance and shortening of the femur.
Collapse
|
|
37 |
116 |
25
|
Stokes IAF, Aronsson DD, Dimock AN, Cortright V, Beck S. Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 2006; 24:1327-34. [PMID: 16705695 PMCID: PMC1513139 DOI: 10.1002/jor.20189] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustained mechanical loading alters longitudinal growth of bones, and this growth sensitivity to load has been implicated in progression of skeletal deformities during growth. The objective of this study was to quantify the relationship between altered growth and different magnitudes of sustained altered stress in a diverse set of nonhuman growth plates. The sensitivity of endochondral growth to differing magnitudes of sustained compression or distraction stress was measured in growth plates of three species of immature animals (rats, rabbits, calves) at two anatomical locations (caudal vertebra and proximal tibia) with two different ages of rats and rabbits. An external loading apparatus was applied for 8 days, and growth was measured as the distance between fluorescent markers administered 24 and 48 h prior to euthanasia. An apparently linear relationship between stress and percentage growth modulation (percent difference between loaded and control growth plates) was found, with distraction accelerating growth and compression slowing growth. The growth-rate sensitivity to stress was between 9.2 and 23.9% per 0.1 MPa for different growth plates and averaged 17.1% per 0.1 MPa. The growth-rate sensitivity to stress differed between vertebrae and the proximal tibia (15 and 18.6% per 0.1 MPa, respectively). The range of control growth rates of different growth plates was large (30 microns/day for rat vertebrae to 366 microns/day for rabbit proximal tibia). The relatively small differences in growth-rate sensitivity to stress for a diverse set of growth plates suggest that these results might be generalized to other growth plates, including human. These data may be applicable to planning the management of progressive deformities in patients having residual growth.
Collapse
|
research-article |
19 |
112 |