1
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29:313-26. [PMID: 19441883 PMCID: PMC2755091 DOI: 10.1089/jir.2008.0027] [Citation(s) in RCA: 2877] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 12/05/2008] [Indexed: 02/06/2023] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
2877 |
2
|
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526-9. [PMID: 14976262 DOI: 10.1126/science.1093620] [Citation(s) in RCA: 2856] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-stranded ribonucleic acid (dsRNA) serves as a danger signal associated with viral infection and leads to stimulation of innate immune cells. In contrast, the immunostimulatory potential of single-stranded RNA (ssRNA) is poorly understood and innate immune receptors for ssRNA are unknown. We report that guanosine (G)- and uridine (U)-rich ssRNA oligonucleotides derived from human immunodeficiency virus-1 (HIV-1) stimulate dendritic cells (DC) and macrophages to secrete interferon-alpha and proinflammatory, as well as regulatory, cytokines. By using Toll-like receptor (TLR)-deficient mice and genetic complementation, we show that murine TLR7 and human TLR8 mediate species-specific recognition of GU-rich ssRNA. These data suggest that ssRNA represents a physiological ligand for TLR7 and TLR8.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/metabolism
- Base Sequence
- Cytokines/biosynthesis
- Dendritic Cells/immunology
- Fatty Acids, Monounsaturated
- Genetic Complementation Test
- Guanosine/analysis
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Interferon-alpha/biosynthesis
- Leukocytes, Mononuclear/immunology
- Macrophages/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Myeloid Differentiation Factor 88
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/immunology
- Quaternary Ammonium Compounds
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Species Specificity
- Thionucleotides/chemistry
- Thionucleotides/immunology
- Toll-Like Receptor 7
- Toll-Like Receptor 8
- Toll-Like Receptors
- Transfection
- Uridine/analysis
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
2856 |
3
|
Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009; 361:2209-20. [PMID: 19843557 DOI: 10.1056/nejmoa0908492] [Citation(s) in RCA: 2386] [Impact Index Per Article: 149.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The development of a safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is critical to pandemic control. METHODS In a community-based, randomized, multicenter, double-blind, placebo-controlled efficacy trial, we evaluated four priming injections of a recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 subunit vaccine (AIDSVAX B/E). The vaccine and placebo injections were administered to 16,402 healthy men and women between the ages of 18 and 30 years in Rayong and Chon Buri provinces in Thailand. The volunteers, primarily at heterosexual risk for HIV infection, were monitored for the coprimary end points: HIV-1 infection and early HIV-1 viremia, at the end of the 6-month vaccination series and every 6 months thereafter for 3 years. RESULTS In the intention-to-treat analysis involving 16,402 subjects, there was a trend toward the prevention of HIV-1 infection among the vaccine recipients, with a vaccine efficacy of 26.4% (95% confidence interval [CI], -4.0 to 47.9; P=0.08). In the per-protocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, -13.3 to 51.9; P=0.16). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1; P=0.04). Vaccination did not affect the degree of viremia or the CD4+ T-cell count in subjects in whom HIV-1 infection was subsequently diagnosed. CONCLUSIONS This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)
Collapse
|
Multicenter Study |
16 |
2386 |
4
|
Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373:117-22. [PMID: 7529365 DOI: 10.1038/373117a0] [Citation(s) in RCA: 2299] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dynamics of HIV-1 replication in vivo are largely unknown yet they are critical to our understanding of disease pathogenesis. Experimental drugs that are potent inhibitors of viral replication can be used to show that the composite lifespan of plasma virus and virus-producing cells is remarkably short (half-life approximately 2 days). Almost complete replacement of wild-type virus in plasma by drug-resistant variants occurs after fourteen days, indicating that HIV-1 viraemia is sustained primarily by a dynamic process involving continuous rounds of de novo virus infection and replication and rapid cell turnover.
Collapse
|
|
30 |
2299 |
5
|
Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86:367-77. [PMID: 8756719 DOI: 10.1016/s0092-8674(00)80110-5] [Citation(s) in RCA: 2191] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rare individuals have been multiply exposed to HIV-1 but remain uninfected. The CD4+ T-cells of two of these individuals, designated EU2 and EU3, are highly resistant in vitro to the entry of primary macrophagetropic virus but are readily infectable with transformed T-cell line adapted viruses. We report here on the genetic basis of this resistance. We found that EU2 and EU3 have a homozygous defect in CKR-5, the gene encoding the recently described coreceptor for primary HIV-1 isolates. These individuals appear to have inherited a defective CKR-5 allele that contains an internal 32 base pair deletion. The encoded protein is severely truncated and cannot be detected at the cell surface. Surprisingly, this defect has no obvious phenotype in the affected individuals. Thus, a CKR-5 allele present in the human population appears to protect homozygous individuals from sexual transmission of HIV-1. Heterozygous individuals are quite common (approximately 20%) in some populations. These findings indicate the importance of CKR-5 in HIV-1 transmission and suggest that targeting the HIV-1-CKR-5 interaction may provide a means of preventing or slowing disease progression.
Collapse
|
|
29 |
2191 |
6
|
Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270:1811-5. [PMID: 8525373 DOI: 10.1126/science.270.5243.1811] [Citation(s) in RCA: 2174] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Evidence suggests that CD8+ T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1 alpha, and MIP-1 beta were identified as the major HIV-SF produced by CD8+ T cells. Two active proteins purified from the culture supernatant of an immortalized CD8+ T cell clone revealed sequence identity with human RANTES and MIP-1 alpha. RANTES, MIP-1 alpha, and MIP-1 beta were released by both immortalized and primary CD8+ T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1 alpha, and MIP-1 beta. Recombinant human RANTES, MIP-1 alpha, and MIP-1 beta induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.
Collapse
|
|
30 |
2174 |
7
|
Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, Meehan MO, Lutalo T, Gray RH. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med 2000; 342:921-9. [PMID: 10738050 DOI: 10.1056/nejm200003303421303] [Citation(s) in RCA: 2144] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND METHODS We examined the influence of viral load in relation to other risk factors for the heterosexual transmission of human immunodeficiency virus type 1 (HIV-1). In a community-based study of 15,127 persons in a rural district of Uganda, we identified 415 couples in which one partner was HIV-1-positive and one was initially HIV-1-negative and followed them prospectively for up to 30 months. The incidence of HIV-1 infection per 100 person-years among the initially seronegative partners was examined in relation to behavioral and biologic variables. RESULTS The male partner was HIV-1-positive in 228 couples, and the female partner was HIV-1-positive in 187 couples. Ninety of the 415 initially HIV-1-negative partners seroconverted (incidence, 11.8 per 100 person-years). The rate of male-to-female transmission was not significantly different from the rate of female-to-male transmission (12.0 per 100 person-years vs. 11.6 per 100 person-years). The incidence of seroconversion was highest among the partners who were 15 to 19 years of age (15.3 per 100 person-years). The incidence was 16.7 per 100 person-years among 137 uncircumcised male partners, whereas there were no seroconversions among the 50 circumcised male partners (P<0.001). The mean serum HIV-1 RNA level was significantly higher among HIV-1-positive subjects whose partners seroconverted than among those whose partners did not seroconvert (90,254 copies per milliliter vs. 38,029 copies per milliliter, P=0.01). There were no instances of transmission among the 51 subjects with serum HIV-1 RNA levels of less than 1500 copies per milliliter; there was a significant dose-response relation of increased transmission with increasing viral load. In multivariate analyses of log-transformed HIV-1 RNA levels, each log increment in the viral load was associated with a rate ratio of 2.45 for seroconversion (95 percent confidence interval, 1.85 to 3.26). CONCLUSIONS The viral load is the chief predictor of the risk of heterosexual transmission of HIV-1, and transmission is rare among persons with levels of less than 1500 copies of HIV-1 RNA per milliliter.
Collapse
|
|
25 |
2144 |
8
|
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722-5. [PMID: 8751444 DOI: 10.1038/382722a0] [Citation(s) in RCA: 2060] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HIV-1 and related viruses require co-receptors, in addition to CD4, to infect target cells. The chemokine receptor CCR-5 (ref.1) was recently demonstrated to be a co-receptor for macrophage-tropic (M-tropic) HIV-1 strains, and the orphan receptor LESTR (also called fusin) allows infection by strains adapted for growth in transformed T-cell lines (T-tropic strains). Here we show that a mutant allele of CCR-5 is present at a high frequency in caucasian populations (allele frequency, 0.092), but is absent in black populations from Western and Central Africa and Japanese populations. A 32-base-pair deletion within the coding region results in a frame shift, and generates a non-functional receptor that does not support membrane fusion or infection by macrophage- and dual-tropic HIV-1 strains. In a cohort of HIV-1 infected caucasian subjects, no individual homozygous for the mutation was found, and the frequency of heterozygotes was 35% lower than in the general population. White blood cells from an individual homozygous for the null allele were found to be highly resistant to infection by M-tropic HIV-1 viruses, confirming that CCR-5 is the major co-receptor for primary HIV-1 strains. The lower frequency of heterozygotes in seropositive patients may indicate partial resistance.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Cohort Studies
- DNA Primers
- Frameshift Mutation
- Gene Frequency
- Genotype
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Seropositivity/genetics
- HIV Seropositivity/immunology
- HIV-1/immunology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Membrane Fusion
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Conformation
- Receptors, CCR5
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, HIV/chemistry
- Receptors, HIV/genetics
- Receptors, HIV/immunology
- White People/genetics
Collapse
|
|
29 |
2060 |
9
|
Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM. Antibody neutralization and escape by HIV-1. Nature 2003; 422:307-12. [PMID: 12646921 DOI: 10.1038/nature01470] [Citation(s) in RCA: 1927] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 01/30/2003] [Indexed: 12/11/2022]
Abstract
Neutralizing antibodies (Nab) are a principal component of an effective human immune response to many pathogens, yet their role in HIV-1 infection is unclear. To gain a better understanding of this role, we examined plasma from patients with acute HIV infection. Here we report the detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies. The viral inhibitory activity of Nab resulted in complete replacement of neutralization-sensitive virus by successive populations of resistant virus. Escape virus contained mutations in the env gene that were unexpectedly sparse, did not map generally to known neutralization epitopes, and involved primarily changes in N-linked glycosylation. This pattern of escape, and the exceptional density of HIV-1 envelope glycosylation generally, led us to postulate an evolving 'glycan shield' mechanism of neutralization escape whereby selected changes in glycan packing prevent Nab binding but not receptor binding. Direct support for this model was obtained by mutational substitution showing that Nab-selected alterations in glycosylation conferred escape from both autologous antibody and epitope-specific monoclonal antibodies. The evolving glycan shield thus represents a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.
Collapse
|
|
22 |
1927 |
10
|
Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Sutthent R, Liao HX, DeVico AL, Lewis GK, Williams C, Pinter A, Fong Y, Janes H, DeCamp A, Huang Y, Rao M, Billings E, Karasavvas N, Robb ML, Ngauy V, de Souza MS, Paris R, Ferrari G, Bailer RT, Soderberg KA, Andrews C, Berman PW, Frahm N, De Rosa SC, Alpert MD, Yates NL, Shen X, Koup RA, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Michael NL, Kim JH. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366:1275-86. [PMID: 22475592 PMCID: PMC3371689 DOI: 10.1056/nejmoa1113425] [Citation(s) in RCA: 1556] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Collapse
|
Evaluation Study |
13 |
1556 |
11
|
Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O'Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329:856-61. [PMID: 20616233 PMCID: PMC2965066 DOI: 10.1126/science.1187659] [Citation(s) in RCA: 1455] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1-infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1-infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
1455 |
12
|
Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 1994; 68:6103-10. [PMID: 8057491 PMCID: PMC237022 DOI: 10.1128/jvi.68.9.6103-6110.1994] [Citation(s) in RCA: 1449] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Env-, Gag-, Pol-, Nef-, and Tat-specific cytotoxic T-lymphocyte (CTL) activities were quantitated temporally in five patients with symptomatic primary HIV-1 infection. A dominant CD8(+)-mediated, major histocompatibility complex class I-restricted CTL response to the HIV-1 envelope glycoprotein, gp160, was noted in four of the five patients studied. The level of HIV-1-specific CTL activity in the five patients paralleled the efficiency of control of primary viremia. Patients who mounted strong gp160-specific CTL responses showed rapid reduction of acute plasma viremia and antigenemia, while in contrast, primary viremia and antigenemia were poorly controlled in patients in whom virus-specific CTL activity was low or undetectable. These results suggest that HIV-1-specific CTL activity is a major component of the host immune response associated with the control of virus replication following primary HIV-1 infection and have important implications for the design of antiviral vaccines.
Collapse
|
research-article |
31 |
1449 |
13
|
Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Protocol G Principal Investigators, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326:285-9. [PMID: 19729618 PMCID: PMC3335270 DOI: 10.1126/science.1178746] [Citation(s) in RCA: 1445] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. This epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
1445 |
14
|
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM, Schacker TW, Hill BJ, Douek DC, Routy JP, Haddad EK, Sékaly RP. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15:893-900. [PMID: 19543283 PMCID: PMC2859814 DOI: 10.1038/nm.1972] [Citation(s) in RCA: 1428] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/29/2009] [Indexed: 12/15/2022]
Abstract
HIV persists in a reservoir of latently infected CD4(+) T cells in individuals treated with highly active antiretroviral therapy (HAART). Here we identify central memory (T(CM)) and transitional memory (T(TM)) CD4(+) T cells as the major cellular reservoirs for HIV and find that viral persistence is ensured by two different mechanisms. HIV primarily persists in T(CM) cells in subjects showing reconstitution of the CD4(+) compartment upon HAART. This reservoir is maintained through T cell survival and low-level antigen-driven proliferation and is slowly depleted with time. In contrast, proviral DNA is preferentially detected in T(TM) cells from aviremic individuals with low CD4(+) counts and higher amounts of interleukin-7-mediated homeostatic proliferation, a mechanism that ensures the persistence of these cells. Our results suggest that viral eradication might be achieved through the combined use of strategic interventions targeting viral replication and, as in cancer, drugs that interfere with the self renewal and persistence of proliferating memory T cells.
Collapse
|
Clinical Trial |
16 |
1428 |
15
|
Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, Walker BD. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278:1447-50. [PMID: 9367954 DOI: 10.1126/science.278.5342.1447] [Citation(s) in RCA: 1394] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Virus-specific CD4+ T helper lymphocytes are critical to the maintenance of effective immunity in a number of chronic viral infections, but are characteristically undetectable in chronic human immunodeficiency virus-type 1 (HIV-1) infection. In individuals who control viremia in the absence of antiviral therapy, polyclonal, persistent, and vigorous HIV-1-specific CD4+ T cell proliferative responses were present, resulting in the elaboration of interferon-gamma and antiviral beta chemokines. In persons with chronic infection, HIV-1-specific proliferative responses to p24 were inversely related to viral load. Strong HIV-1-specific proliferative responses were also detected following treatment of acutely infected persons with potent antiviral therapy. The HIV-1-specific helper cells are likely to be important in immunotherapeutic interventions and vaccine development.
Collapse
|
|
28 |
1394 |
16
|
Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN, Step Study Protocol Team. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372:1881-1893. [PMID: 19012954 PMCID: PMC2721012 DOI: 10.1016/s0140-6736(08)61591-3] [Citation(s) in RCA: 1355] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Observational data and non-human primate challenge studies suggest that cell-mediated immune responses might provide control of HIV replication. The Step Study directly assessed the efficacy of a cell-mediated immunity vaccine to protect against HIV-1 infection or change in early plasma HIV-1 levels. METHODS We undertook a double-blind, phase II, test-of-concept study at 34 sites in North America, the Caribbean, South America, and Australia. We randomly assigned 3000 HIV-1-seronegative participants by computer-generated assignments to receive three injections of MRKAd5 HIV-1 gag/pol/nef vaccine (n=1494) or placebo (n=1506). Randomisation was prestratified by sex, adenovirus type 5 (Ad5) antibody titre at baseline, and study site. Primary objective was a reduction in HIV-1 acquisition rates (tested every 6 months) or a decrease in HIV-1 viral-load setpoint (early plasma HIV-1 RNA measured 3 months after HIV-1 diagnosis). Analyses were per protocol and modified intention to treat. The study was stopped early because it unexpectedly met the prespecified futility boundaries at the first interim analysis. This study is registered with ClinicalTrials.gov, number NCT00095576. FINDINGS In a prespecified interim analysis in participants with baseline Ad5 antibody titre 200 or less, 24 (3%) of 741 vaccine recipients became HIV-1 infected versus 21 (3%) of 762 placebo recipients (hazard ratio [HR] 1.2 [95% CI 0.6-2.2]). All but one infection occurred in men. The corresponding geometric mean plasma HIV-1 RNA was comparable in infected male vaccine and placebo recipients (4.61 vs 4.41 log(10) copies per mL, one tailed p value for potential benefit 0.66). The vaccine elicited interferon-gamma ELISPOT responses in 75% (267) of the 25% random sample of all vaccine recipients (including both low and high Ad5 antibody titres) on whose specimens this testing was done (n=354). In exploratory analyses of all study volunteers, irrespective of baseline Ad5 antibody titre, the HR of HIV-1 infection between vaccine and placebo recipients was higher in Ad5 seropositive men (HR 2.3 [95% CI 1.2-4.3]) and uncircumcised men (3.8 [1.5-9.3]), but was not increased in Ad5 seronegative (1.0 [0.5-1.9]) or circumcised (1.0 [0.6-1.7]) men. INTERPRETATION This cell-mediated immunity vaccine did not prevent HIV-1 infection or reduce early viral level. Mechanisms for insufficient efficacy of the vaccine and the increased HIV-1 infection rates in subgroups of vaccine recipients are being explored.
Collapse
|
Clinical Trial, Phase II |
17 |
1355 |
17
|
Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF. New use of BCG for recombinant vaccines. Nature 1991; 351:456-60. [PMID: 1904554 DOI: 10.1038/351456a0] [Citation(s) in RCA: 1230] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BCG, a live attenuated tubercle bacillus, is the most widely used vaccine in the world and is also a useful vaccine vehicle for delivering protective antigens of multiple pathogens. Extrachromosomal and integrative expression vectors carrying the regulatory sequences for major BCG heat-shock proteins have been developed to allow expression of foreign antigens in BCG. These recombinant BCG strains can elicit long-lasting humoral and cellular immune responses to foreign antigens in mice.
Collapse
MESH Headings
- Animals
- Antigens/genetics
- Antigens/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Base Sequence
- Cloning, Molecular
- Escherichia coli/genetics
- Gene Expression
- Genes, Bacterial
- Genetic Vectors
- HIV Antigens/genetics
- HIV-1/immunology
- Heat-Shock Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mycobacterium bovis/genetics
- Regulatory Sequences, Nucleic Acid
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- beta-Galactosidase/genetics
Collapse
|
|
34 |
1230 |
18
|
Abstract
The human immunodeficiency virus-type 1 (HIV-1) envelope glycoproteins interact with receptors on the target cell and mediate virus entry by fusing the viral and cell membranes. The structure of the envelope glycoproteins has evolved to fulfill these functions while evading the neutralizing antibody response. An understanding of the viral strategies for immune evasion should guide attempts to improve the immunogenicity of the HIV-1 envelope glycoproteins and, ultimately, aid in HIV-1 vaccine development.
Collapse
|
Review |
27 |
1215 |
19
|
Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, Lewis MG. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 6:207-10. [PMID: 10655111 DOI: 10.1038/72318] [Citation(s) in RCA: 1032] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure. After controlling the macaque estrous cycle with progesterone, anti-HIV-1 neutralizing monoclonal antibodies 2F5 and 2G12, and HIV immune globulin were tested. Whereas all five control monkeys displayed high plasma viremia and rapid CD4 cell decline, 14 antibody-treated macaques were either completely protected against infection or against pathogenic manifestations of SHIV-infection. Infusion of all three antibodies together provided the greatest amount of protection, but a single monoclonal antibody, with modest virus neutralizing activity, was also protective. Compared with our previous intravenous challenge study with the same virus and antibodies, the data indicated that greater protection was achieved after vaginal challenge. This study demonstrates that antibodies can affect transmission and subsequent disease course after vaginal SHIV-challenge; the data begin to define the type of antibody response that could play a role in protection against mucosal transmission of HIV-1.
Collapse
|
|
25 |
1032 |
20
|
Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene KM, Bilska M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BH, Montefiori DC. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 2005; 79:10108-25. [PMID: 16051804 PMCID: PMC1182643 DOI: 10.1128/jvi.79.16.10108-10125.2005] [Citation(s) in RCA: 970] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/09/2005] [Indexed: 01/16/2023] Open
Abstract
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
970 |
21
|
Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, Xu Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415:331-5. [PMID: 11797011 DOI: 10.1038/415331a] [Citation(s) in RCA: 968] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.
Collapse
|
|
23 |
968 |
22
|
Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, Kwon YD, Scheid J, Shi W, Xu L, Yang Y, Zhu J, Nussenzweig MC, Sodroski J, Shapiro L, Nabel GJ, Mascola JR, Kwong PD. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 2010; 329:811-7. [PMID: 20616231 PMCID: PMC2981354 DOI: 10.1126/science.1192819] [Citation(s) in RCA: 966] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
966 |
23
|
Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998; 393:705-11. [PMID: 9641684 DOI: 10.1038/31514] [Citation(s) in RCA: 965] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.
Collapse
|
|
27 |
965 |
24
|
The International HIV Controllers Study, Writing team, Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, Walker BD, Analysis team, Jia X, McLaren PJ, Ripke S, Brumme CJ, Pulit SL, Telenti A, Carrington M, Kadie CM, Carlson JM, Heckerman D, de Bakker PI, Study design, Pereyra F, de Bakker PI, Graham RR, Plenge RM, Deeks SG, Walker BD, SNP genotyping, HLA typing, and sample management, Gianniny L, Crawford G, Sullivan J, Gonzalez E, Davies L, Camargo A, Moore JM, Beattie N, Gupta S, Crenshaw A, Burtt NP, Guiducci C, Gupta N, Carrington M, Gao X, Qi Y, Yuki Y, HIV controllers recruitment and sample management, Pereyra F, Piechocka-Trocha A, Cutrell E, Rosenberg R, Moss KL, Lemay P, O’Leary J, Schaefer T, Verma P, Toth I, Block B, Baker B, Rothchild A, Lian J, Proudfoot J, Alvino DML, Vine S, Addo MM, Allen TM, Altfeld M, Henn MR, Le Gall S, Streeck H, Walker BD, AIDS Clinical Trials Group, Haas DW, Kuritzkes DR, Robbins GK, Shafer RW, Gulick RM, Shikuma CM, Haubrich R, Riddler S, Sax PE, Daar ES, Ribaudo HJ, HIV controllers referral team, Agan B, Agarwal S, Ahern RL, Allen BL, Altidor S, Altschuler EL, Ambardar S, Anastos K, Anderson B, Anderson V, Andrady U, Antoniskis D, Bangsberg D, Barbaro D, Barrie W, Bartczak J, Barton S, et alThe International HIV Controllers Study, Writing team, Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, Walker BD, Analysis team, Jia X, McLaren PJ, Ripke S, Brumme CJ, Pulit SL, Telenti A, Carrington M, Kadie CM, Carlson JM, Heckerman D, de Bakker PI, Study design, Pereyra F, de Bakker PI, Graham RR, Plenge RM, Deeks SG, Walker BD, SNP genotyping, HLA typing, and sample management, Gianniny L, Crawford G, Sullivan J, Gonzalez E, Davies L, Camargo A, Moore JM, Beattie N, Gupta S, Crenshaw A, Burtt NP, Guiducci C, Gupta N, Carrington M, Gao X, Qi Y, Yuki Y, HIV controllers recruitment and sample management, Pereyra F, Piechocka-Trocha A, Cutrell E, Rosenberg R, Moss KL, Lemay P, O’Leary J, Schaefer T, Verma P, Toth I, Block B, Baker B, Rothchild A, Lian J, Proudfoot J, Alvino DML, Vine S, Addo MM, Allen TM, Altfeld M, Henn MR, Le Gall S, Streeck H, Walker BD, AIDS Clinical Trials Group, Haas DW, Kuritzkes DR, Robbins GK, Shafer RW, Gulick RM, Shikuma CM, Haubrich R, Riddler S, Sax PE, Daar ES, Ribaudo HJ, HIV controllers referral team, Agan B, Agarwal S, Ahern RL, Allen BL, Altidor S, Altschuler EL, Ambardar S, Anastos K, Anderson B, Anderson V, Andrady U, Antoniskis D, Bangsberg D, Barbaro D, Barrie W, Bartczak J, Barton S, Basden P, Basgoz N, Bazner S, Bellos NC, Benson AM, Berger J, Bernard NF, Bernard AM, Birch C, Bodner SJ, Bolan RK, Boudreaux ET, Bradley M, Braun JF, Brndjar JE, Brown SJ, Brown K, Brown ST, Burack J, Bush LM, Cafaro V, Campbell O, Campbell J, Carlson RH, Carmichael JK, Casey KK, Cavacuiti C, Celestin G, Chambers ST, Chez N, Chirch LM, Cimoch PJ, Cohen D, Cohn LE, Conway B, Cooper DA, Cornelson B, Cox DT, Cristofano MV, Cuchural G, Czartoski JL, Dahman JM, Daly JS, Davis BT, Davis K, Davod SM, Deeks SG, DeJesus E, Dietz CA, Dunham E, Dunn ME, Ellerin TB, Eron JJ, Fangman JJ, Farel CE, Ferlazzo H, Fidler S, Fleenor-Ford A, Frankel R, Freedberg KA, French NK, Fuchs JD, Fuller JD, Gaberman J, Gallant JE, Gandhi RT, Garcia E, Garmon D, Gathe JC, Gaultier CR, Gebre W, Gilman FD, Gilson I, Goepfert PA, Gottlieb MS, Goulston C, Groger RK, Gurley TD, Haber S, Hardwicke R, Hardy WD, Harrigan PR, Hawkins TN, Heath S, Hecht FM, Henry WK, Hladek M, Hoffman RP, Horton JM, Hsu RK, Huhn GD, Hunt P, Hupert MJ, Illeman ML, Jaeger H, Jellinger RM, John M, Johnson JA, Johnson KL, Johnson H, Johnson K, Joly J, Jordan WC, Kauffman CA, Khanlou H, Killian RK, Kim AY, Kim DD, Kinder CA, Kirchner JT, Kogelman L, Kojic EM, Korthuis PT, Kurisu W, Kwon DS, LaMar M, Lampiris H, Lanzafame M, Lederman MM, Lee DM, Lee JM, Lee MJ, Lee ET, Lemoine J, Levy JA, Llibre JM, Liguori MA, Little SJ, Liu AY, Lopez AJ, Loutfy MR, Loy D, Mohammed DY, Man A, Mansour MK, Marconi VC, Markowitz M, Marques R, Martin JN, Martin HL, Mayer KH, McElrath MJ, McGhee TA, McGovern BH, McGowan K, McIntyre D, Mcleod GX, Menezes P, Mesa G, Metroka CE, Meyer-Olson D, Miller AO, Montgomery K, Mounzer KC, Nagami EH, Nagin I, Nahass RG, Nelson MO, Nielsen C, Norene DL, O’Connor DH, Ojikutu BO, Okulicz J, Oladehin OO, Oldfield EC, Olender SA, Ostrowski M, Owen WF, Pae E, Parsonnet J, Pavlatos AM, Perlmutter AM, Pierce MN, Pincus JM, Pisani L, Price LJ, Proia L, Prokesch RC, Pujet HC, Ramgopal M, Rathod A, Rausch M, Ravishankar J, Rhame FS, Richards CS, Richman DD, Robbins GK, Rodes B, Rodriguez M, Rose RC, Rosenberg ES, Rosenthal D, Ross PE, Rubin DS, Rumbaugh E, Saenz L, Salvaggio MR, Sanchez WC, Sanjana VM, Santiago S, Schmidt W, Schuitemaker H, Sestak PM, Shalit P, Shay W, Shirvani VN, Silebi VI, Sizemore JM, Skolnik PR, Sokol-Anderson M, Sosman JM, Stabile P, Stapleton JT, Starrett S, Stein F, Stellbrink HJ, Sterman FL, Stone VE, Stone DR, Tambussi G, Taplitz RA, Tedaldi EM, Telenti A, Theisen W, Torres R, Tosiello L, Tremblay C, Tribble MA, Trinh PD, Tsao A, Ueda P, Vaccaro A, Valadas E, Vanig TJ, Vecino I, Vega VM, Veikley W, Wade BH, Walworth C, Wanidworanun C, Ward DJ, Warner DA, Weber RD, Webster D, Weis S, Wheeler DA, White DJ, Wilkins E, Winston A, Wlodaver CG, Wout AV, Wright DP, Yang OO, Yurdin DL, Zabukovic BW, Zachary KC, Zeeman B, Zhao M. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010; 330:1551-7. [PMID: 21051598 PMCID: PMC3235490 DOI: 10.1126/science.1195271] [Show More Authors] [Citation(s) in RCA: 952] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
952 |
25
|
Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, Meyers H, Nelson JA, Gairin JE, Hahn BH, Oldstone MB, Shaw GM. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3:205-11. [PMID: 9018240 DOI: 10.1038/nm0297-205] [Citation(s) in RCA: 946] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HIV-1-specific cytotoxic T lymphocyte (CTL) response is temporally associated with the decline in viremia during primary HIV-1 infection, but definitive evidence that it is of importance in virus containment has been lacking. Here we show that in a patient whose early CTL response was focused on a highly immunodominant epitope in gp 160, there was rapid elimination of the transmitted virus strain and selection for a virus population bearing amino acid changes at a single residue within this epitope, which conferred escape from recognition by epitope-specific CTL. The magnitude (> 100-fold), kinetics (30-72 days from onset of symptoms) and genetic pathways of virus escape from CTL pressure were comparable to virus escape from antiretroviral therapy, indicating the biological significance of the CTL response in vivo. One aim of HIV-1 vaccines should thus be to elicit strong CTL responses against multiple codominant viral epitopes.
Collapse
|
|
28 |
946 |