1
|
Abstract
Clinical metagenomic next-generation sequencing (mNGS), the comprehensive analysis of microbial and host genetic material (DNA and RNA) in samples from patients, is rapidly moving from research to clinical laboratories. This emerging approach is changing how physicians diagnose and treat infectious disease, with applications spanning a wide range of areas, including antimicrobial resistance, the microbiome, human host gene expression (transcriptomics) and oncology. Here, we focus on the challenges of implementing mNGS in the clinical laboratory and address potential solutions for maximizing its impact on patient care and public health.
Collapse
|
Review |
6 |
875 |
2
|
Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol 2004; 20:469-76. [PMID: 15363440 DOI: 10.1016/j.pt.2004.07.010] [Citation(s) in RCA: 568] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, there is no effective alternative to chemical control of parasitic helminths where livestock are grazed intensively. Resistance to anthelmintics has become a major problem in veterinary medicine, and threatens both agricultural income and animal welfare. The molecular and biochemical basis of this resistance is not well understood. The lack of reliable biological and molecular tests means that we are not able to follow the emergence and spread of resistance alleles and clinical resistance as well as we need. This review summarizes some of the recent findings on resistance mechanisms, puts forward some recommendations for limiting its impact and suggests some priorities for research in this area.
Collapse
|
|
21 |
568 |
3
|
Gasser RB, Chilton NB, Hoste H, Beveridge I. Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Res 1993; 21:2525-6. [PMID: 8506152 PMCID: PMC309567 DOI: 10.1093/nar/21.10.2525] [Citation(s) in RCA: 378] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
research-article |
32 |
378 |
4
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
320 |
5
|
Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, Weeraratna AT, Taub DD, Gorospe M, Mazan-Mamczarz K, Lakatta EG, Boheler KR, Xu X, Mattson MP, Falco G, Ko MSH, Schlessinger D, Firman J, Kummerfeld SK, Wood WH, Zonderman AB, Kim SK, Becker KG. AGEMAP: a gene expression database for aging in mice. PLoS Genet 2007; 3:e201. [PMID: 18081424 PMCID: PMC2098796 DOI: 10.1371/journal.pgen.0030201] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project) gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1) a pattern common to neural tissues, (2) a pattern for vascular tissues, and (3) a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
272 |
6
|
Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, Cox LM, Gundra UM, Cho I, Bonneau R, Blaser MJ, Chua KH, Loke P. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 2014; 8:e2880. [PMID: 24851867 PMCID: PMC4031128 DOI: 10.1371/journal.pntd.0002880] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/08/2014] [Indexed: 01/01/2023] Open
Abstract
Soil-transmitted helminths colonize more than 1.5 billion people worldwide, yet little is known about how they interact with bacterial communities in the gut microbiota. Differences in the gut microbiota between individuals living in developed and developing countries may be partly due to the presence of helminths, since they predominantly infect individuals from developing countries, such as the indigenous communities in Malaysia we examine in this work. We compared the composition and diversity of bacterial communities from the fecal microbiota of 51 people from two villages in Malaysia, of which 36 (70.6%) were infected by helminths. The 16S rRNA V4 region was sequenced at an average of nineteen thousand sequences per samples. Helminth-colonized individuals had greater species richness and number of observed OTUs with enrichment of Paraprevotellaceae, especially with Trichuris infection. We developed a new approach of combining centered log-ratio (clr) transformation for OTU relative abundances with sparse Partial Least Squares Discriminant Analysis (sPLS-DA) to enable more robust predictions of OTU interrelationships. These results suggest that helminths may have an impact on the diversity, bacterial community structure and function of the gut microbiota. Soil-transmitted helminths are carried by large numbers of people in developing countries. These parasites live in the gut and may interact with bacterial communities in the gut, also called the gut microbiota. To determine whether there are alterations to the gut microbiota that are associated with helminth infections, we examined the types of bacteria present in fecal samples from rural Malaysians, many of whom are helminth-positive and find it likely that helminth colonization alters the gut microbiota for rural Malaysians.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
262 |
7
|
Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP. Proteinases and associated genes of parasitic helminths. ADVANCES IN PARASITOLOGY 1999; 43:161-266. [PMID: 10214692 DOI: 10.1016/s0065-308x(08)60243-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many parasites have deployed proteinases to accomplish some of the tasks imposed by a parasitic life style, including tissue penetration, digestion of host tissue for nutrition and evasion of host immune responses. Information on proteinases from trematodes, cestodes and nematode parasites is reviewed, concentrating on those worms of major medical and economical importance. Their biochemical characterization is discussed, along with their putative biological roles and, where available, their associated genes. For example, proteinases expressed by the various stages of the schistosome life-cycle, in particular the well-characterized cercarial elastase which is involved in the penetration of the host skin and the variety of proteinases, such as cathepsin B (Sm31), cathepsin L1, cathepsin L2, cathepsin D, cathepsin C and legumain (Sm32), which are believed to be involved in the catabolism of host haemoglobin. The various endo- and exoproteinases of Fasciola hepatica, the causative agent of liver fluke disease, are reviewed, and recent reports of how these enzymes have been successfully employed in cocktail vaccines are discussed. The various proteinases of cestodes and of the diverse superfamilies of parasitic nematodes are detailed, with special attention being given to those parasites for which most is known, including species of Taenia, Echinococcus, Spirometra, Necator, Acylostoma and Haemonchus. By far the largest number of papers in the literature and entries to the sequence data bases dealing with proteinases of parasitic helminths report on enzymes belonging to the papain superfamily of cysteine proteinases. Accordingly, the final section of the review is devoted to a phylogenetic analysis of this superfamily using over 150 published sequences. This analysis shows that the papain superfamily can be divided into two major branches. Branch A contains the cathepin Bs, the cathepsin Cs and a novel family termed cathepsin Xs, while Branch B contains the cruzipains, cathepsin Ls, papain-like and aleurain/cathepsin H-like proteinases. The relationships of the helminth proteinases, and similar proteinases from protozoan parasites and other organisms, within these groups are discussed.
Collapse
|
Review |
26 |
209 |
8
|
Mallatt J, Giribet G. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 2006; 40:772-94. [PMID: 16781168 DOI: 10.1016/j.ympev.2006.04.021] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/28/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans, as is widely claimed, but grouped instead with an euphausiacean (krill). Within centipedes, Craterostigmus was the sister to all other pleurostigmophorans, contrary to the consensus view. Our trees also united myriapods (millipedes and centipedes) with chelicerates (horseshoe crabs, spiders, scorpions, and relatives) and united pycnogonids (sea spiders) with chelicerates, but with much less support than in the previous rRNA-gene study. Finally, kinorhynchs joined priapulans (penis worms) at the base of Ecdysozoa.
Collapse
|
|
19 |
183 |
9
|
Llewellyn S, Inpankaew T, Nery SV, Gray DJ, Verweij JJ, Clements ACA, Gomes SJ, Traub R, McCarthy JS. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial. PLoS Negl Trop Dis 2016; 10:e0004380. [PMID: 26820626 PMCID: PMC4731196 DOI: 10.1371/journal.pntd.0004380] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples exhibiting polyparasitism. The superior performance of multiplex PCR to detect polyparasitism and more accurately determine infection intensity suggests that it is a more appropriate technique for use in epidemiologic studies and for monitoring large-scale intervention trials. Gastrointestinal parasites including soil-transmitted helminths cause considerable morbidity worldwide, especially in resource-poor communities. Large-scale epidemiologic and treatment efficacy studies are regularly undertaken to determine the optimum ways to reduce or eliminate parasites from endemic communities, thereby reducing the burden of disease. Accurate and sensitive tests for detection of soil transmitted helminths and protozoa are of great importance to the success of such trials. Increasingly recognised is the importance of accurately determine the infection intensity, as morbidity and transmission pressure of helminth infections are directly related this and not just to prevalence. A vast majority of studies use standard microscopy methods which, although well accepted, may not be as accurate as more recently developed molecular techniques such as multiplex PCR. Therefore, there is need for further evaluation of multiplex PCR techniques and their ability to detect infections and provide infection intensity data. In the current study real-time PCR showed a higher sensitivity for the detection of intestinal helminths and protozoa especially in cases of mixed infections as well as more accurate determination of infection intensity compared to microscopy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
139 |
10
|
Geerts S, Gryseels B. Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000; 13:207-22. [PMID: 10755998 PMCID: PMC100151 DOI: 10.1128/cmr.13.2.207] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review the available reports on drug resistance in human helminths, particularly hookworms and schistosomes, are critically analyzed. The experiences with helminths of livestock are then reviewed, in particular the factors contributing to the development of anthelmintic resistance, the mechanisms and genetics of resistance to various anthelmintic classes, and the methods available for detection. These experiences appear to be worryingly similar and relevant to the potential development of drug resistance in human helminths. Recommendations to reduce its risks are suggested.
Collapse
|
research-article |
25 |
137 |
11
|
Abstract
Anthelmintic resistance continues to increase in geographic range, in the number of species affected and the range of drugs involved. Several aspects of resistance have emerged as important issues. They include lack of genetic reversion, presence of side resistance and lack of universality. Furthermore, resistant isolates recovered from the field may have different characteristics to those selected in pen passage. Research into anthelmintic resistance has not progressed far beyond the stage of descriptive research. Some progress has been made in developing control strategies and in diagnosing resistance, especially in the development and adoption of in-vitro tests. However, these still need improvements in their ability to detect resistance to closantel and avermectin/milbemycin anthelmintics. Less progress into understanding the basis of resistance has occurred. Research priorities include improvement of diagnostic tests and the development of molecular tests, particularly for resistance to levamisole and the avermectin/milbemycins. Resistance itself, as a selectable marker for genetic transfection in parasites, is a potential tool for investigating parasite biology.
Collapse
|
Review |
26 |
126 |
12
|
Ortí G, Petry P, Porto JI, Jégu M, Meyer A. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. J Mol Evol 1996; 42:169-82. [PMID: 8919869 DOI: 10.1007/bf02198843] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The patterns and rates of nucleotide substitution in mitochondrial ribosomal RNA genes are described and applied in a phylogenetic analysis of fishes of the subfamily Serrasalminae (Teleostei, Characiformes, Characidae). Fragments of 345 bp of the 12S and 535 bp of the 16S genes were sequenced for 37 taxa representing all but three genera in the subfamily. Secondary-structure models based on comparative sequence analysis were derived to characterize the pattern of change among paired and unpaired nucleotides, forming stem and loop regions, respectively. Base compositional biases were in the direction of A-rich loops and G-rich stems. Ninety-five percent of substitutions in stem regions were compensatory mutations, suggesting that selection for maintenance of base pairing is strong and that independence among characters cannot be assumed in phylogenetic analyses of stem characters. The relative rate of nucleotide substitution was similar in both fragments sequenced but higher in loop than in stem regions. In both genes, C-T transitions were the most common type of change, and overall transitions outnumbered transversions by a factor of two in 16S and four in 12S. Phylogenetic analysis of the mitochondrial DNA sequences suggests that a clade formed by the genera Piaractus, Colossoma, and Mylossoma is the sister group to all other serrasalmins and that the genera Myleus, Serrasalmus, and Pristobrycon are paraphyletic. A previous hypothesis concerning relationships for the serrasalmins, based on morphological evidence, is not supported by the molecular data. However, phylogenetic analysis of host-specific helminth parasites and cytogenetic data support the phylogeny of the Serrasalminae obtained in this study and provide evidence for coevolution between helminth parasites and their fish hosts.
Collapse
|
|
29 |
119 |
13
|
Geldhof P, Visser A, Clark D, Saunders G, Britton C, Gilleard J, Berriman M, Knox D. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 2007; 134:609-19. [PMID: 17201997 DOI: 10.1017/s0031182006002071] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) has become an invaluable tool for the functional analysis of genes in a wide variety of organisms including the free-living nematode Caenorhabditis elegans. Recently, attempts have been made to apply this technology to parasitic helminths of animals and plants with variable success. Gene knockdown has been reported for Schistosoma mansoni by soaking or electroporating different life-stages in dsRNA. Similar approaches have been tested on parasitic nematodes which clearly showed that, under certain conditions, it was possible to interfere with gene expression. However, despite these successes, the current utility of this technology in parasite research is questionable. First, problems have arisen with the specificity of RNAi. Treatment of the parasites with dsRNA resulted, in many cases, in non-specific effects. Second, the current RNAi methods have a limited efficiency and effects are sometimes difficult to reproduce. This was especially the case in strongylid parasites where only a small number of genes were susceptible to RNAi-mediated gene knockdown. The future application of RNAi in parasite functional genomics will greatly depend on how we can overcome these difficulties. Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges.
Collapse
|
Review |
18 |
118 |
14
|
Knopp S, Salim N, Schindler T, Karagiannis Voules DA, Rothen J, Lweno O, Mohammed AS, Singo R, Benninghoff M, Nsojo AA, Genton B, Daubenberger C. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania. Am J Trop Med Hyg 2014; 90:535-545. [PMID: 24445211 PMCID: PMC3945701 DOI: 10.4269/ajtmh.13-0268] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sensitive diagnostic tools are crucial for an accurate assessment of helminth infections in low-endemicity areas. We examined stool samples from Tanzanian individuals and compared the diagnostic accuracy of a real-time polymerase chain reaction (PCR) with the FLOTAC technique and the Kato-Katz method for hookworm and the Baermann method for Strongyloides stercoralis detection. Only FLOTAC had a higher sensitivity than the Kato-Katz method for hookworm diagnosis; the sensitivities of PCR and the Kato-Katz method were equal. PCR had a very low sensitivity for S. stercoralis detection. The cycle threshold values of the PCR were negatively correlated with the logarithm of hookworm egg and S. stercoralis larvae counts. The median larvae count was significantly lower in PCR false negatives than true positives. All methods failed to detect very low-intensity infections. New diagnostic approaches are needed for monitoring of progressing helminth control programs, confirmation of elimination, or surveillance of disease recrudescence.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
111 |
15
|
Prichard RK, Roulet A. ABC transporters and beta-tubulin in macrocyclic lactone resistance: prospects for marker development. Parasitology 2007; 134:1123-32. [PMID: 17608972 DOI: 10.1017/s0031182007000091] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Macrocyclic lactones (MLs) are highly lipophilic anthelmintics which are known to bind to and open ligand-gated ion channels. However, these anthelmintics, and particularly the avermectin members of the ML class of endectocides, are potent substrates for ABC transporters and these transporters may regulate drug concentration in both the host and the parasite. There is accumulating evidence that ivermectin (IVM), and to a lesser extent moxidectin (MOX), selects for certain alleles of P-glycoprotein and other ABC transporter genes, selects for constitutive overexpression of some of these gene products, and induces overexpression of some P-glycoproteins in nematodes. However, such mechanisms of ML resistance do not easily lend themselves to the identification of SNP markers for resistance because of the diversity of ABC transporters in nematodes, the apparent diversity of effects of different MLs, and because regulatory elements for ABC transporter gene expression are not well understood in nematodes. Another non ligand-gated ion channel gene which appears to be under IVM selection, at least in Onchocerca volvulus and Haemonchus contortus, is beta-tubulin, and a simple genetic test for this selection has been described in O. volvulus. However, further work is required to elucidate a reliable marker associated with this gene in H. contortus or other parasitic nematodes of livestock. The possible involvement of ABC transporter genes and beta-tubulin in ML resistance provides a start in developing our understanding of this phenotype and markers for its detection in field populations of parasitic nematodes. However, more work is required before these leads can provide practical SNP markers for ML resistance.
Collapse
|
Journal Article |
18 |
108 |
16
|
Abstract
There is evidence that the incidence of anthelmintic resistance is increasing in livestock in countries throughout the world including the United Kingdom. Early detection of emerging drug resistance is important since reversion to susceptibility appears not to occur in highly selected homozygous strains. Because the current in vivo and in vitro assays, which generally determine the degree of disruption of normal physiological function of different parasite stages, are relatively insensitive, effort is being made to develop more direct genetic and biochemical diagnostic assays. Studies on the selection and genetics of resistance suggest that resistance is normally polygenic and arises from within the normal phenotypic range and that there are three phases in the selection process. An initial susceptible phase is followed by an intermediate one in which heterozygous resistant individuals are common within the population and finally homozygous resistant individuals predominate within the population. For these reasons low efficacy treatments, which enable the survival of heterozygous resistant individuals, and suppressive regimes, which only allow homozygous resistant individuals to survive, increase the rate of development of drug resistance. Strategies to delay the onset of resistance and control resistant strains usually incorporate minimal chemoprophylaxis, seek to maximize drug efficacy, and if possible include a 'slow' drug rotation and seek to limit host parasite contact by manipulation of the grazing environment. Although multi-species mathematical models of anthelmintic resistance appear to offer a means of assessing the long term impact of these and other control strategies, current models are limited by a lack of detailed biological knowledge. In particular, more information on the status and numbers of alleles associated with resistance to specific drugs, their frequencies within populations of different species and the fitness of resistant and susceptible populations is required. Anthelmintic resistance provides an example of the adaptability of metazoan parasites under intensive selection and suggests that sustainable control strategies will require an integrated approach in which both chemotherapy and immunotherapy, together with environmental management are used to control nematodoses.
Collapse
|
Review |
32 |
107 |
17
|
Abstract
We briefly review reports on drug resistance in human helminths and compare the factors which contribute to the development of anthelmintic resistance in livestock and man, i.e. high treatment frequency, single-drug regimens, targeting and timing of mass treatments and underdosing. Conclusions are drawn from the mistakes in the treatment and control of livestock helminths. The advantages and inconveniences of current methods for the detection of drug resistance in helminths of livestock are discussed and some suggestions are put forward to standardize the tests for the detection of resistance in human helminths. Finally, based on veterinary experience, some recommendations are made to reduce the risks of development of drug resistance in human helminths. The dramatic and rapid spread of resistance to all major classes of veterinary anthelmintics should be a warning against too strong a reliance on drugs in helminth control programmes.
Collapse
|
Review |
24 |
105 |
18
|
Brophy PM, Pritchard DI. Parasitic helminth glutathione S-transferases: an update on their potential as targets for immuno- and chemotherapy. Exp Parasitol 1994; 79:89-96. [PMID: 8050531 DOI: 10.1006/expr.1994.1067] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
Review |
31 |
101 |
19
|
Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G. P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. Int J Antimicrob Agents 2003; 22:332-46. [PMID: 13678840 DOI: 10.1016/s0924-8579(03)00221-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infestation with parasitic helminths is a common problem in human populations of third world countries and is ubiquitous in livestock and other domestic animals. The cell-membrane efflux pump, P-glycoprotein (Pgp), appears to contribute to anthelmintic resistance. Pgp have been identified from both phyla of parasitic helminths, Platyhelmintha and Nematoda, and alterations in expression levels and allele frequencies of Pgp in anthelmintic-resistant populations have been observed in nematodes. Localisation of Pgp has been studied in the free-living nematode Caenorhabditis elegans and in the sheep parasite Haemonchus contortus using specific monoclonal antibodies or lectins. Reversing agents used in human studies, such as the calcium-channel blocker verapamil (VPL), appear to have similar effects in helminths as they do in human cancer cells: the efficacy of drug treatment is increased in drug-resistant parasites when reversing agents are co-administered with the anthelmintic. The functional role of the Pgp glycosylation was also studied using a lectin specific for the alpha-mannosyl residues and showed that resistance can be associated with a decreased affinity of the lectin for Pgp sites and that up to 50% reversion in the resistance to benzimidazoles (BZ) can be obtained using this lectin. Furthermore, the current knowledge on the role of Pgp in molecular mechanisms of drug resistance in the parasitic protozoan genus Trypanosoma is discussed. In some Trypanosoma species it was shown that drug resistance was associated with reduced uptake and in other ones with increased efflux. Several trypanosome Pgp-coding sequences have been described. In contrast to earlier data, most recent observations, based on experimentally overexpressed Pgp in Trypanosoma brucei, indicate a possible involvement in the mechanism of drug resistance in this parasite.
Collapse
|
|
22 |
99 |
20
|
Abstract
Currently, there is no single method to collect, process, and analyze a water sample for all pathogenic microorganisms of interest. Some of the difficulties in developing a universal method include the physical differences between the major pathogen groups (viruses, bacteria, protozoa), efficiently concentrating large volume water samples to detect low target concentrations of certain pathogen groups, removing co-concentrated inhibitors from the sample, and standardizing a culture-independent endpoint detection method. Integrating the disparate technologies into a single, universal, simple method and detection system would represent a significant advance in public health and microbiological water quality analysis. Recent advances in sample collection, on-line sample processing and purification, and DNA microarray technologies may form the basis of a universal method to detect known and emerging waterborne pathogens. This review discusses some of the challenges in developing a universal pathogen detection method, current technology that may be employed to overcome these challenges, and the remaining needs for developing an integrated pathogen detection and monitoring system for source or finished water.
Collapse
|
Review |
22 |
95 |
21
|
Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action. Int J Parasitol 2006; 36:261-76. [PMID: 16443228 DOI: 10.1016/j.ijpara.2005.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
Immunophilin is the collective name given to the cyclophilin and FK506-binding protein families. As the name suggests, these include the major binding proteins of certain immunosuppressive drugs: cyclophilins for the cyclic peptide cyclosporin A and FK506-binding proteins for the macrolactones FK506 and rapamycin. Both families, although dissimilar in sequence, possess peptidyl-prolyl cis-trans isomerase activity in vitro and can play roles in protein folding and transport, RNA splicing and the regulation of multi-protein complexes in cells. In addition to enzymic activity, many immunophilins act as molecular chaperones. This property may be conferred by the isomerase domain and/or by additional domains. Recent years have seen a great increase in the number of known immunophilin genes in parasitic protozoa and helminths and in many cases their products have been characterised biochemically and their temporal and spatial expression patterns have been examined. Some of these genes represent novel types: one example is a Toxoplasma gondii gene encoding a protein with both cyclophilin and FK506-binding protein domains. Likely roles in protein folding and oligomerisation, RNA splicing and sexual differentiation have been suggested for parasite immunophilins. In addition, unexpected roles in parasite virulence (Mip FK506-binding protein of Trypanosoma cruzi) and host immuno-modulation (e.g. 18-kDa cyclophilin of T. gondii) have been established. Furthermore, in view of the potent antiparasitic activities of cyclosporins, macrolactones and non-immunosuppressive derivatives of these compounds, immunophilins may mediate drug action and/or may themselves represent potential drug targets. Investigation of the mechanisms of action of these agents may lead to the design of potent and selective antimalarial and other antiparasitic drugs. This review discusses the properties of immunophilins in parasites and the 'animal model'Caenorhabditis elegans and relates these to our understanding of the roles of these proteins in cellular biochemistry, host-parasite interaction and the antiparasitic mechanisms of the drugs that bind to them.
Collapse
|
Review |
19 |
93 |
22
|
Abstract
Palaeomicrobiology is an emerging field that is devoted to the detection, identification and characterization of microorganisms in ancient remains. Data indicate that host-associated microbial DNA can survive for almost 20,000 years, and environmental bacterial DNA preserved in permafrost samples has been dated to 400,000-600,000 years. In addition to frozen and mummified soft tissues, bone and dental pulp can also be used to search for microbial pathogens. Various techniques, including microscopy and immunodetection, can be used in palaeomicrobiology, but most data have been obtained using PCR-based molecular techniques. Infections caused by bacteria, viruses and parasites have all been diagnosed using palaeomicrobiological techniques. Additionally, molecular typing of ancient pathogens could help to reconstruct the epidemiology of past epidemics and could feed into current models of emerging infections, therefore contributing to the development of appropriate preventative measures.
Collapse
|
Review |
20 |
92 |
23
|
Biron DG, Marché L, Ponton F, Loxdale HD, Galéotti N, Renault L, Joly C, Thomas F. Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proc Biol Sci 2006; 272:2117-26. [PMID: 16191624 PMCID: PMC1559948 DOI: 10.1098/rspb.2005.3213] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The parasitic Nematomorph hairworm, Spinochordodes tellinii (Camerano) develops inside the terrestrial grasshopper, Meconema thalassinum (De Geer) (Orthoptera: Tettigoniidae), changing the insect's responses to water. The resulting aberrant behaviour makes infected insects more likely to jump into an aquatic environment where the adult parasite reproduces. We used proteomics tools (i.e. two-dimensional gel electrophoresis (2-DE), computer assisted comparative analysis of host and parasite protein spots and MALDI-TOF mass spectrometry) to identify these proteins and to explore the mechanisms underlying this subtle behavioural modification. We characterized simultaneously the host (brain) and the parasite proteomes at three stages of the manipulative process, i.e. before, during and after manipulation. For the host, there was a differential proteomic expression in relation to different effects such as the circadian cycle, the parasitic status, the manipulative period itself, and worm emergence. For the parasite, a differential proteomics expression allowed characterization of the parasitic and the free-living stages, the manipulative period and the emergence of the worm from the host. The findings suggest that the adult worm alters the normal functions of the grasshopper's central nervous system (CNS) by producing certain 'effective' molecules. In addition, in the brain of manipulated insects, there was found to be a differential expression of proteins specifically linked to neurotransmitter activities. The evidence obtained also suggested that the parasite produces molecules from the family Wnt acting directly on the development of the CNS. These proteins show important similarities with those known in other insects, suggesting a case of molecular mimicry. Finally, we found many proteins in the host's CNS as well as in the parasite for which the function(s) are still unknown in the published literature (www) protein databases. These results support the hypothesis that host behavioural changes are mediated by a mix of direct and indirect chemical manipulation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
89 |
24
|
Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, Gilleard JS. Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology 2011; 138:160-74. [PMID: 20825689 PMCID: PMC3064440 DOI: 10.1017/s0031182010001198] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Consortium for Anthelmintic Resistance and Susceptibility (CARS) brings together researchers worldwide, with a focus of advancing knowledge of resistance and providing information on detection methods and treatment strategies. Advances in this field suggest mechanisms and features of resistance that are shared among different classes of anthelmintic. Benzimidazole resistance is characterized by specific amino acid substitutions in beta-tubulin. If present, these substitutions increase in frequency upon drug treatment and lead to treatment failure. In the laboratory, sequence substitutions in ion-channels can contribute to macrocyclic lactone resistance, but there is little evidence that they are significant in the field. Changes in gene expression are associated with resistance to several different classes of anthelmintic. Increased P-glycoprotein expression may prevent drug access to its site of action. Decreased expression of ion-channel subunits and the loss of specific receptors may remove the drug target. Tools for the identification and genetic analysis of parasitic nematodes and a new online database will help to coordinate research efforts in this area. Resistance may result from a loss of sensitivity as well as the appearance of resistance. A focus on the presence of anthelmintic susceptibility may be as important as the detection of resistance.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
79 |
25
|
Laha T, Pinlaor P, Mulvenna J, Sripa B, Sripa M, Smout MJ, Gasser RB, Brindley PJ, Loukas A. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini. BMC Genomics 2007; 8:189. [PMID: 17587442 PMCID: PMC1913519 DOI: 10.1186/1471-2164-8-189] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/22/2007] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA)--cancer of the bile ducts--is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. RESULTS Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum) than to free-living (Schmidtea mediterranea) flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. CONCLUSION This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions, drugs and vaccines, to control O. viverrini and related flukes.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
77 |