1
|
Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37:343-50. [PMID: 12540784 DOI: 10.1053/jhep.2003.50048] [Citation(s) in RCA: 698] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ob/ob mice, a model for nonalcoholic fatty liver disease (NAFLD), develop intestinal bacterial overgrowth and overexpress tumor necrosis factor alpha (TNF-alpha). In animal models for alcoholic fatty liver disease (AFLD), decontaminating the intestine or inhibiting TNF-alpha improves AFLD. Because AFLD and NAFLD may have a similar pathogenesis, treatment with a probiotic (to modify the intestinal flora) or anti-TNF antibodies (to inhibit TNF-alpha activity) may improve NAFLD in ob/ob mice. To evaluate this hypothesis, 48 ob/ob mice were given either a high-fat diet alone (ob/ob controls) or the same diet + VSL#3 probiotic or anti-TNF antibodies for 4 weeks. Twelve lean littermates fed a high-fat diet served as controls. Treatment with VSL#3 or anti-TNF antibodies improved liver histology, reduced hepatic total fatty acid content, and decreased serum alanine aminotransferase (ALT) levels. These benefits were associated with decreased hepatic expression of TNF-alpha messenger RNA (mRNA) in mice treated with anti-TNF antibodies but not in mice treated with VSL#3. Nevertheless, both treatments reduced activity of Jun N-terminal kinase (JNK), a TNF-regulated kinase that promotes insulin resistance, and decreased the DNA binding activity of nuclear factor kappaB (NF-kappaB), the target of IKKbeta, another TNF-regulated enzyme that causes insulin resistance. Consistent with treatment-related improvements in hepatic insulin resistance, fatty acid beta-oxidation and uncoupling protein (UCP)-2 expression decreased after treatment with VSL#3 or anti-TNF antibodies. In conclusion, these results support the concept that intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and NAFLD and suggest novel therapies for these common conditions.
Collapse
|
|
22 |
698 |
2
|
Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006; 6:1-28. [PMID: 16406828 DOI: 10.1016/j.mito.2005.10.004] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 02/07/2023]
Abstract
Calorie-enriched diet and lack of exercise are causing a worldwide surge of obesity, insulin resistance and lipid accretion in liver (i.e. hepatic steatosis), which can lead to steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs, including stavudine and zidovudine. There is accumulating evidence that mitochondrial dysfunction (more particularly respiratory chain deficiency) plays a key role in the physiopathology of NASH whatever its initial cause. In contrast, the mitochondrial beta-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, generation of reactive oxygen species (ROS) by the damaged respiratory chain can be augmented. ROS generation in an environment enriched in lipids in turn induces lipid peroxidation which releases highly reactive aldehydic derivatives (e.g. malondialdehyde) that have diverse detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS, reactive nitrogen species and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This consequently leads to the generation of more ROS and a vicious cycle occurs. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also increase the generation of several cytokines (TNF-alpha, TGF-beta, Fas ligand) playing a key role in cell death, inflammation and fibrosis. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. Interestingly, most of these drugs could exert their beneficial effects by improving directly or indirectly mitochondrial function in liver. Finding a drug, which could fully prevent oxidative stress and mitochondrial dysfunction in NASH is a major challenge for the next decade.
Collapse
|
Review |
19 |
555 |
3
|
Cooke GS, Andrieux-Meyer I, Applegate TL, Atun R, Burry JR, Cheinquer H, Dusheiko G, Feld JJ, Gore C, Griswold MG, Hamid S, Hellard ME, Hou J, Howell J, Jia J, Kravchenko N, Lazarus JV, Lemoine M, Lesi OA, Maistat L, McMahon BJ, Razavi H, Roberts T, Simmons B, Sonderup MW, Spearman CW, Taylor BE, Thomas DL, Waked I, Ward JW, Wiktor SZ. Accelerating the elimination of viral hepatitis: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol Hepatol 2019; 4:135-184. [PMID: 30647010 DOI: 10.1016/s2468-1253(18)30270-x] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
Abstract
Viral hepatitis is a major public health threat and a leading cause of death worldwide. Annual mortality from viral hepatitis is similar to that of other major infectious diseases such as HIV and tuberculosis. Highly effective prevention measures and treatments have made the global elimination of viral hepatitis a realistic goal, endorsed by all WHO member states. Ambitious targets call for a global reduction in hepatitis-related mortality of 65% and a 90% reduction in new infections by 2030. This Commission draws together a wide range of expertise to appraise the current global situation and to identify priorities globally, regionally, and nationally needed to accelerate progress. We identify 20 heavily burdened countries that account for over 75% of the global burden of viral hepatitis. Key recommendations include a greater focus on national progress towards elimination with support given, if necessary, through innovative financing measures to ensure elimination programmes are fully funded by 2020. In addition to further measures to improve access to vaccination and treatment, greater attention needs to be paid to access to affordable, high-quality diagnostics if testing is to reach the levels needed to achieve elimination goals. Simplified, decentralised models of care removing requirements for specialised prescribing will be required to reach those in need, together with sustained efforts to tackle stigma and discrimination. We identify key examples of the progress that has already been made in many countries throughout the world, demonstrating that sustained and coordinated efforts can be successful in achieving the WHO elimination goals.
Collapse
|
Review |
6 |
388 |
4
|
Fisher FM, Chui PC, Nasser IA, Popov Y, Cunniff JC, Lundasen T, Kharitonenkov A, Schuppan D, Flier JS, Maratos-Flier E. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014; 147:1073-83.e6. [PMID: 25083607 PMCID: PMC4570569 DOI: 10.1053/j.gastro.2014.07.044] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis. Circulating levels of fibroblast growth factor (FGF)21 increase in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis; therefore, we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency. METHODS C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on methionine- and choline-deficient (MCD), high-fat, or control diets for 8-16 weeks. Mice were weighed, and serum and liver tissues were collected and analyzed for histology, levels of malondialdehyde and liver enzymes, gene expression, and lipid content. RESULTS The MCD diet increased hepatic levels of FGF21 messenger RNA more than 50-fold and serum levels 16-fold, compared with the control diet. FGF21-KO mice had more severe steatosis, fibrosis, inflammation, and peroxidative damage than wild-type C57BL/6 mice. FGF21-KO mice had reduced hepatic fatty acid activation and β-oxidation, resulting in increased levels of free fatty acid. FGF21-KO mice given continuous subcutaneous infusions of FGF21 for 4 weeks while on an MCD diet had reduced steatosis and peroxidative damage, compared with mice not receiving FGF21. The expression of genes that regulate inflammation and fibrosis were reduced in FGF21-KO mice given FGF21, similar to those of wild-type mice. CONCLUSIONS FGF21 regulates fatty acid activation and oxidation in livers of mice. In the absence of FGF21, accumulation of inactivated fatty acids results in lipotoxic damage and increased steatosis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
209 |
5
|
Widjaja AA, Singh BK, Adami E, Viswanathan S, Dong J, D'Agostino GA, Ng B, Lim WW, Tan J, Paleja BS, Tripathi M, Lim SY, Shekeran SG, Chothani SP, Rabes A, Sombetzki M, Bruinstroop E, Min LP, Sinha RA, Albani S, Yen PM, Schafer S, Cook SA. Inhibiting Interleukin 11 Signaling Reduces Hepatocyte Death and Liver Fibrosis, Inflammation, and Steatosis in Mouse Models of Nonalcoholic Steatohepatitis. Gastroenterology 2019; 157:777-792.e14. [PMID: 31078624 DOI: 10.1053/j.gastro.2019.05.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.
Collapse
|
|
6 |
197 |
6
|
Halder RC, Aguilera C, Maricic I, Kumar V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 2007; 117:2302-12. [PMID: 17641782 PMCID: PMC1913490 DOI: 10.1172/jci31602] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/08/2007] [Indexed: 01/26/2023] Open
Abstract
Because of the paucity of known self lipid-reactive ligands for NKT cells, interactions among distinct NKT cell subsets as well as immune consequences following recognition of self glycolipids have not previously been investigated. Here we examined cellular interactions and subsequent immune regulatory mechanism following recognition of sulfatide, a self-glycolipid ligand for a subset of CD1d-restricted type II NKT cells. Using glycolipid/CD1d tetramers and cytokine responses, we showed that activation of sulfatide-reactive type II NKT cells and plasmacytoid DCs caused IL-12- and MIP-2-dependent recruitment of type I, or invariant, NKT (iNKT) cells into mouse livers. These recruited iNKT cells were anergic and prevented concanavalin A-induced (ConA-induced) hepatitis by specifically blocking effector pathways, including the cytokine burst and neutrophil recruitment that follow ConA injection. Hepatic DCs from IL-12(+/+) mice, but not IL-12(-/-) mice, adoptively transferred anergy in recipients; thus, IL-12 secretion by DCs enables them to induce anergy in iNKT cells. Our data reveal what we believe to be a novel mechanism in which interactions among type II NKT cells and hepatic DCs result in regulation of iNKT cell activity that can be exploited for intervention in inflammatory diseases, including autoimmunity and asthma.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
192 |
7
|
Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S, Liedtke C, Prinz I, Lira SA, Luedde T, Roskams T, Trautwein C, Heymann F, Tacke F. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59:630-642. [PMID: 23959575 PMCID: PMC4139146 DOI: 10.1002/hep.26697] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic liver injury promotes hepatic inflammation, representing a prerequisite for organ fibrosis. We hypothesized a contribution of chemokine receptor CCR6 and its ligand, CCL20, which may regulate migration of T-helper (Th)17, regulatory, and gamma-delta (γδ) T cells. CCR6 and CCL20 expression was intrahepatically up-regulated in patients with chronic liver diseases (n = 50), compared to control liver (n = 5). Immunohistochemistry revealed the periportal accumulation of CCR6(+) mononuclear cells and CCL20 induction by hepatic parenchymal cells in liver disease patients. Similarly, in murine livers, CCR6 was expressed by macrophages, CD4 and γδ T-cells, and up-regulated in fibrosis, whereas primary hepatocytes induced CCL20 upon experimental injury. In two murine models of chronic liver injury (CCl4 and methionine-choline-deficient diet), Ccr6(-/-) mice developed more severe fibrosis with strongly enhanced hepatic immune cell infiltration, compared to wild-type (WT) mice. Although CCR6 did not affect hepatic Th-cell subtype composition, CCR6 was explicitly required by the subset of interleukin (IL)-17- and IL-22-expressing γδ T cells for accumulation in injured liver. The adoptive transfer of WT γδ, but not CD4 T cells, into Ccr6(-/-) mice reduced hepatic inflammation and fibrosis in chronic injury to WT level. The anti-inflammatory function of hepatic γδ T cells was independent of IL-17, as evidenced by transfer of Il-17(-/-) cells. Instead, hepatic γδ T cells colocalized with hepatic stellate cells (HSCs) in vivo and promoted apoptosis of primary murine HSCs in a cell-cell contact-dependent manner, involving Fas-ligand (CD95L). Consistent with γδ T-cell-induced HSC apoptosis, activated myofibroblasts were more frequent in fibrotic livers of Ccr6(-/-) than in WT mice. CONCLUSION γδ T cells are recruited to the liver by CCR6 upon chronic injury and protect the liver from excessive inflammation and fibrosis by inhibiting HSCs.
Collapse
MESH Headings
- Animals
- Apoptosis
- Case-Control Studies
- Cell Movement
- Chemokine CCL20/metabolism
- Disease Models, Animal
- Female
- Hepatitis/metabolism
- Hepatitis/pathology
- Hepatitis/prevention & control
- Humans
- Interleukin-17/metabolism
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis/prevention & control
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CCR6/deficiency
- Receptors, CCR6/genetics
- Receptors, CCR6/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/metabolism
- Th17 Cells/pathology
- Up-Regulation
Collapse
|
research-article |
11 |
153 |
8
|
Jiang W, Sun R, Wei H, Tian Z. Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci U S A 2005; 102:17077-82. [PMID: 16287979 PMCID: PMC1287976 DOI: 10.1073/pnas.0504570102] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study demonstrates that pretreatment with polyinosinic-polycytidylic acid (poly I:C) significantly decreased the mortality and liver injury caused by injection of lipopolysaccharide (LPS) in the presence of d-galactosamine (d-GalN) in C57BL/6 mice. Depletion of natural killer, natural killer T, and T cells did not change the protective effect of poly I:C on LPS/d-GalN-induced liver injury in vivo. However, depletion of macrophages abolished LPS/d-GalN-induced fulminant hepatitis, which could be restored by adoptive transfer of macrophages but not by transfer of poly I:C-treated macrophages. Treatment with poly I:C down-regulated the expression of the toll-like receptor 4 (TLR4) on macrophages and reduced the sensitivity of macrophages (Kupffer cells and peritoneal macrophages from C57BL/6 mice, or RAW264.7 cells) to LPS stimulation. Poly I:C pretreatment also impaired the signaling of mitogen-activated protein kinases and NF-kappaB induced by LPS in RAW264.7 cells. Blockade of TLR3 with a TLR3 antibody abolished poly I:C down-regulation of TLR4 expression and LPS stimulation of TNF-alpha production in RAW264.7 cells. Taken together, our findings suggest that activation of TLR3 by its ligand, poly I:C, induced LPS tolerance by down-regulation of TLR4 expression on macrophages.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
129 |
9
|
Ma WL, Lai HC, Yeh S, Cai X, Chang C. Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and hepatitis. Endocr Relat Cancer 2014; 21:R165-82. [PMID: 24424503 PMCID: PMC4165608 DOI: 10.1530/erc-13-0283] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays important roles in normal liver function and in progression of liver diseases. In studies of noncancerous liver diseases, AR knockout mouse models of liver disease have revealed that androgen/AR signaling suppresses the development of steatosis, virus-related hepatitis, and cirrhosis. In addition, studies have shown that targeting AR in bone marrow-derived mesenchymal stem cells (BM-MSCs) improves their self-renewal and migration potentials, thereby increasing the efficacy of BM-MSC transplantation as a way to control the progression of cirrhosis. Androgen/AR signaling is known to be involved in the initiation of carcinogen- or hepatitis B virus-related hepatocellular carcinoma (HCC). However, studies have demonstrated that AR, rather than androgen, plays the dominant role in cancer initiation. Therefore, targeting AR might be an appropriate therapy for patients with early-stage HCC. In contrast, androgen/AR signaling has been shown to suppress metastasis of HCC in patients with late-stage disease. In addition, there is evidence that therapy comprising Sorafenib and agents that enhance the functional expression of AR may suppress the progression of late-stage HCC.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
125 |
10
|
Tan WSD, Liao W, Zhou S, Wong WSF. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem Pharmacol 2017; 139:71-81. [PMID: 28377280 DOI: 10.1016/j.bcp.2017.03.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022]
Abstract
Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/prevention & control
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/prevention & control
- Dermatitis/drug therapy
- Dermatitis/immunology
- Dermatitis/metabolism
- Dermatitis/prevention & control
- Diterpenes/adverse effects
- Diterpenes/chemistry
- Diterpenes/pharmacology
- Diterpenes/therapeutic use
- Drug Design
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Hepatitis/drug therapy
- Hepatitis/immunology
- Hepatitis/metabolism
- Hepatitis/prevention & control
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/immunology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/prevention & control
- Models, Biological
- NF-E2-Related Factor 2/agonists
- NF-E2-Related Factor 2/metabolism
- NF-kappa B p50 Subunit/antagonists & inhibitors
- NF-kappa B p50 Subunit/chemistry
- NF-kappa B p50 Subunit/metabolism
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/prevention & control
- Oxidative Stress/drug effects
- Pneumonia/drug therapy
- Pneumonia/immunology
- Pneumonia/metabolism
- Protective Agents/chemistry
- Protective Agents/metabolism
- Protective Agents/therapeutic use
- Signal Transduction/drug effects
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
124 |
11
|
Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 2014; 63:693-701. [PMID: 24629563 DOI: 10.1016/j.metabol.2014.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/06/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Resveratrol (RSV) regulates NAD bioavailability and sirtuin-related metabolism, which relates to aging, metabolic syndrome and non-alcoholic fatty liver disease. The purpose of this study was to investigate the effects of resveratrol on hepatic metaflammation in a rodent model of high-fat (HF) diet-induced obesity (DIO). MATERIALS/METHODS DIO was induced in a subset of mice given an HF diet (45% kcal fat). After 6weeks of HF diet feeding, RSV was delivered via an osmotic pump for 4weeks. The experimental groups were as follows: 1) lean control fed with a standard diet, 2) HF diet-induced obese control, and 3) HF_RSV (8mg/kg/day). After 4weeks of each treatment, blood and liver tissues were collected and the indices of glucose control, serum and liver triglyceride (TG), sirtuin pathway, inflammation, and NOD-like receptor family, pryin domain containing 3 (NLRP3) inflammasome were analyzed. RESULTS Body weight and food intake were not altered by administering resveratrol. Glucose control was impaired, and serum and liver TG levels were increased by the HF diet. Hepatic inflammation was aggravated in mice fed with the HF diet, as shown by the increased levels of the pro-inflammatory markers interleukin-1 (IL-1), IL-6 and tumor necrosis factor-alpha in the liver. However, resveratrol administration significantly improved glucose control, and serum and liver TG contents. Also, resveratrol treatment reduced the levels of the pro-inflammatory markers. These improvements were accompanied by alterations in sirtuin pathway and NLRP3 inflammasome activation. CONCLUSION These results demonstrate that resveratrol ameliorates hepatic metaflammation, accompanied by alterations in NLRP3 inflammasome.
Collapse
|
|
11 |
112 |
12
|
Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y, Uno M, Matsuzawa-Nagata N, Kato KI, Ando H, Fujimura A, Hayashi K, Kimura T, Ni Y, Otoda T, Miyamoto KI, Zen Y, Nakanuma Y, Kaneko S. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS One 2012; 7:e43056. [PMID: 23028442 PMCID: PMC3445596 DOI: 10.1371/journal.pone.0043056] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 07/17/2012] [Indexed: 02/06/2023] Open
Abstract
Background Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Methodology/Principal Findings Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. Conclusions/Significance These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
110 |
13
|
Sakai N, Van Sweringen HL, Belizaire RM, Quillin RC, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB. Interleukin-37 reduces liver inflammatory injury via effects on hepatocytes and non-parenchymal cells. J Gastroenterol Hepatol 2012; 27:1609-16. [PMID: 22646996 PMCID: PMC3448792 DOI: 10.1111/j.1440-1746.2012.07187.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The purpose of the present study was to determine the effects of interleukin-37 (IL-37) on liver cells and on liver inflammation induced by hepatic ischemia/reperfusion (I/R). METHODS Mice were subjected to I/R. Some mice received recombinant IL-37 (IL-37) at the time of reperfusion. Serum levels of alanine aminotransferase, and liver myeloperoxidase content were assessed. Serum and liver tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemokine (KC) were also assessed. Hepatic reactive oxygen species (ROS) levels were assessed. For in vitro experiments, isolated hepatocytes and Kupffer cells were treated with IL-37 and inflammatory stimulants. Cytokine and chemokine production by these cells were assessed. Primary hepatocytes underwent induced cell injury and were treated with IL-37 concurrently. Hepatocyte cytotoxicity and Bcl-2 expression were determined. Isolated neutrophils were treated with TNF-α and IL-37 and neutrophil activation and respiratory burst were assessed. RESULTS IL-37 reduced hepatocyte injury and neutrophil accumulation in the liver after I/R. These effects were accompanied by reduced serum levels of TNF-α and MIP-2 and hepatic ROS levels. IL-37 significantly reduced MIP-2 and KC productions from lipopolysaccharide-stimulated hepatocytes and Kupffer cells. IL-37 significantly reduced cell death and increased Bcl-2 expression in hepatocytes. IL-37 significantly suppressed TNF-α-induced neutrophil activation. CONCLUSIONS IL-37 is protective against hepatic I/R injury. These effects are related to the ability of IL-37 to reduce proinflammatory cytokine and chemokine production by hepatocytes and Kupffer cells as well as having a direct protective effect on hepatocytes. In addition, IL-37 contributes to reduce liver injury through suppression of neutrophil activity.
Collapse
|
research-article |
13 |
108 |
14
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
|
|
5 |
108 |
15
|
He H, Zheng N, Song Z, Kim KH, Yao C, Zhang R, Zhang C, Huang Y, Uckun FM, Cheng J, Zhang Y, Yin L. Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles. ACS NANO 2016; 10:1859-70. [PMID: 26811880 DOI: 10.1021/acsnano.5b05470] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Treatment of inflammatory diseases represents one of the biggest clinical challenges. RNA interference (RNAi) against TNF-α provides a promising modality toward anti-inflammation therapy, but its therapeutic potential is greatly hampered by the by the lack of efficient siRNA delivery vehicles in vivo. Herein, we report a hybrid nanoparticulate (HNP) system based on a cationic helical polypeptide PPABLG for the efficient delivery of TNF-α siRNA. The helical structure of PPABLG features pore formation on cellular and endosomal membranes to facilitate the direct translocation as well as endosomal escape of TNF-α siRNA in macrophages, representing a unique superiority to a majority of the existing polycation-based gene vectors that experience severe endosomal entrapment and lysosomal degradation. As such, HNPs containing TNF-α siRNA afforded effective systemic TNF-α knockdown following systemic administration at a low dose of 50 μg of siRNA/kg and thus demonstrated a potent anti-inflammatory effect to rescue animals from LPS/d-GalN-induced hepatic sepsis. This study therefore verifies that the bioactive secondary structure of polypeptides significantly dominates the in vivo siRNA delivery efficiency, and the unique properties of PPABLG HNPs render remarkable potentials for anti-inflammation therapies.
Collapse
|
|
9 |
101 |
16
|
Oh H, Kim DH, Cho JH, Kim YC. Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:421-424. [PMID: 15507369 DOI: 10.1016/j.jep.2004.08.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 07/16/2004] [Accepted: 08/17/2004] [Indexed: 05/24/2023]
Abstract
Hepatoprotective activity-guided fractionation of the MeOH extract of Equisetum arvense L. (Equisetaceae) resulted in the isolation of two phenolic petrosins, onitin (1) and onitin-9-O-glucoside (2), along with four flavonoids, apigenin (3), luteolin (4), kaempferol-3-O-glucoside (5), and quercetin-3-O-glucoside (6). Among these, compounds 1 and 4 exhibited hepatoprotective activities on tacrine-induced cytotoxicity in human liver-derived Hep G2 cells, displaying EC(50) values of 85.8 +/ -9.3 microM and 20.2 +/- 1.4 microM, respectively. Silybin, used as a positive control, showed the EC(50) value of 69.0 +/- 3.3 microM. Compounds 1 and 4 also showed superoxide scavenging effects (IC(50) = 35.3 +/- 0.2 microM and 5.9 +/- 0.3 microM, respectively) and DPPH free radical scavenging effect (IC(50) of 35.8 +/- 0.4 microM and 22.7 +/- 2.8 microM, respectively). These results support the use of this plant for the treatment of hepatitis in oriental traditional medicine.
Collapse
|
|
21 |
100 |
17
|
Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 2004; 114:701-12. [PMID: 15343389 PMCID: PMC514586 DOI: 10.1172/jci21593] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/13/2004] [Indexed: 12/13/2022] Open
Abstract
Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.
Collapse
|
research-article |
21 |
95 |
18
|
Knodell RG, Conrad ME, Ginsberg AL, Bell CJ. Efficacy of prophylactic gamma-globulin in preventing non-A, non-B post-transfusion hepatitis. Lancet 1976; 1:557-61. [PMID: 55838 DOI: 10.1016/s0140-6736(76)90357-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of 279 cardiac-surgery patients receiving a mean of twelve transfusions, 47 had significantly increased transaminase concentrations 14 to 180 days postoperatively and 10 were icteric. Preoperatively, each patient randomly received high-titre HbsAb gamma-globulin, normal gamma-globulin, or placebo and was followed at intervals for 9 months. Only 3 patients had serological evidence of hepatitis-B infection. 3 additional patients had serological evidence of cytomegalovirus infection, while none had evidence of hepatitis-A or Epstein-Barr infection. Less icteric hepatitis occurred in patients receiving the gamma-globulin preparations (P = 0-003), and the overall frequency of hepatitis was significantly reduced when compared with recipients of placebo. The protective effects of the two gamma-globulin preparations were not significantly different. Most post-transfusion hepatitis tody is neither viral hepatitis type B nor type A, and its severity and transmission are reduced by pre-transfusion gamma-globulin.
Collapse
|
Clinical Trial |
49 |
90 |
19
|
Wang J, Sun R, Wei H, Dong Z, Gao B, Tian Z. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 2006; 44:446-54. [PMID: 16310275 DOI: 10.1016/j.jhep.2005.08.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS T cell immune responses play key roles in the pathogenesis of viral hepatitis, and innate immunity is known to be also activated during this process, however, the effects of innate immunity activation on T cell-mediated hepatitis remain obscure. Here we examined the effect of the activation of NK cells induced by toll-like receptor 3 (TLR3) ligand, polyinosinic-polycytidylic acid (poly I:C), on concanavalin A (Con A)-induced T cell-mediated liver injury. METHODS Mice received nontoxic intraperitoneal poly I:C injection before Con A intravenous administration. The liver injury was examined by measuring serum transaminase and pathology, and the function of hepatic lymphocytes was detected by FACS analysis. RESULTS Poly I:C pretreatment protected against T cell-mediated hepatitis, as evidenced by decreased mortality, hepatic necrosis, serum transaminase levels and inflammatory cytokines (IL-4, IFN-gamma). The protective effect of poly I:C was diminished in NK-depleted mice, which could be partially restored by adoptive transfer of NK cells. Administration of poly I:C caused NKT and T cell apoptosis via enhancing expression of Fas protein on these cells and expression of Fas ligand on NK cells. CONCLUSIONS These findings suggest that activation of NK cells by poly I:C prevents Con A-induced T cell-hepatitis via downregulation of T/NKT cells and subsequent reduction of inflammatory cytokines.
Collapse
|
Comparative Study |
19 |
75 |
20
|
Bowen DG, McCaughan GW, Bertolino P. Intrahepatic immunity: a tale of two sites? Trends Immunol 2005; 26:512-7. [PMID: 16109501 DOI: 10.1016/j.it.2005.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/04/2005] [Accepted: 08/05/2005] [Indexed: 01/04/2023]
Abstract
The intrahepatic immune environment is associated with the induction of tolerance, yet maintains the capacity to sustain effective responses against pathogens. The mechanisms underlying this dichotomy are unclear. Recent data indicate that activation of naïve CD8(+) T cells occurs within the liver. However, in contrast to efficient primary activation observed within the lymph nodes, this pathway is relatively ineffective, leading to reduced CD8(+) T-cell cytotoxicity and survival. Thus, the outcome of intrahepatic CD8(+) T-cell responses might be determined by whether primary activation occurs within the tolerogenic environment of the liver, or whether immunity is induced by initial antigen encounter within the lymph nodes. These findings support a novel model of hepatic-immune interactions, with implications for our understanding of the paradoxical nature of liver immunobiology.
Collapse
|
Review |
20 |
75 |
21
|
Abstract
The calculated residual infectious risk of HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) from blood transfusion is extremely low. However, the risk of bacterial contamination remains and a variety of other agents including emerging viruses, protozoa and tick-borne agents threaten blood supplies and undermine public confidence in blood safety. Traditional methods of donor screening and testing have limited ability to further reduce disease transmission and cannot prevent an emerging infectious agent from entering the blood supply. Pathogen inactivation technologies have all but eliminated the infectious risks of plasma-derived protein fractions, but as yet no technique has proved sufficiently safe and effective for traditional blood components. Half-way technologies can reduce the risk of pathogen transmission from fresh frozen plasma and cryoprecipitate. Traditional methods of mechanical removal such as washing and filtration have limited success in reducing the risk of cell-associated agents, but methods aimed at sterilizing blood have either proved toxic to the cells or to the recipients of blood components. Several promising methods that target pathogen nucleic acid have recently entered clinical testing.
Collapse
|
Review |
20 |
71 |
22
|
Reda AA, Fisseha S, Mengistie B, Vandeweerd JM. Standard precautions: occupational exposure and behavior of health care workers in Ethiopia. PLoS One 2010; 5:e14420. [PMID: 21203449 PMCID: PMC3009714 DOI: 10.1371/journal.pone.0014420] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/30/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Occupational exposure to blood and body fluids is a serious concern for health care workers, and presents a major risk for the transmission of infections such as HIV and hepatitis viruses. The objective of this study was to investigate occupational exposures and behavior of health care workers (HCWs) in eastern Ethiopia. METHODS We surveyed 475 HCWs working in 10 hospitals and 20 health centers in eastern Ethiopia using a structured questionnaire with a response rate of 84.4%. Descriptive statistics and multivariate analysis using logistic regression were performed. RESULTS Life time risks of needle stick (30.5%; 95% CI 26.4-34.6%) and sharps injuries (25.7%; 95% CI 21.8-29.6%) were high. The one year prevalence of needle stick and sharps injury were 17.5% (95% CI 14.1-20.9%) and 13.5% (95% CI 10.4-16.6%) respectively. There was a high prevalence of life time (28.8%; 95% CI = 24.7-32.9%) and one year (20.2%; 95% CI = 16.6-23.8%) exposures to blood and body fluids. Two hundred thirteen (44.8%) HCWs reported that they were dissatisfied by the supply of infection prevention materials. HCWs had sub-optimal practices and unfavorable attitudes related to standard precautions such as needle recapping (46.9%) and discriminatory attitudes (30.5%) toward HIV/AIDS patients. CONCLUSION There was a high level of exposure to blood and body fluids among HCWs. We detected suboptimal practices and behavior that put both patients and HCWs at significant risk of acquiring occupational infections. Health authorities in the study area need to improve the training of HCWs and provision of infection prevention equipment. In addition, regular reporting and assessment of occupational exposures need to be implemented.
Collapse
|
research-article |
15 |
71 |
23
|
Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS, McConnell JM, Ozanne SE. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 2016; 103:579-88. [PMID: 26718412 PMCID: PMC4733260 DOI: 10.3945/ajcn.115.119834] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. DESIGN A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). CONCLUSIONS Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.
Collapse
|
research-article |
9 |
68 |
24
|
Chang B, Nishikawa M, Nishiguchi S, Inoue M. L-carnitine inhibits hepatocarcinogenesis via protection of mitochondria. Int J Cancer 2005; 113:719-29. [PMID: 15499623 DOI: 10.1002/ijc.20636] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is usually preceded by chronic inflammation. However, the molecular mechanism in hepatocarcinogenesis is not well known. Recently, we reported that mitochondrial dysfunction plays an important role in hepatocarcinogenesis via the production of free radicals. Furthermore, we proved that L-carnitine effectively protects mitochondrial function in vivo. Therefore, we investigated whether long-term administration of L-carnitine could prevent hepatitis and subsequent hepatocellular carcinoma in Long-Evans Cinnamon rats that are often analyzed as a model of hepatocarcinogenesis. The results indicated that oxidative stress elicited from abnormally accumulated copper increased the amount of free fatty acids, thereby inducing mitochondrial dysfunction, resulting in cell death and enhanced secondary generation of reactive oxygen species, which were significantly inhibited by carnitine treatment. Finally, the occurrence of placental glutathione S-transferase-positive foci as a marker for preneoplastic lesions and hepatocarcinogenesis were significantly inhibited by L-carnitine. These facts suggest that mitochondrial injury plays an essential role in the development of hepatocarcinogenesis and that the clinical use of carnitine has excellent therapeutic potential in individuals with chronic hepatitis.
Collapse
|
Journal Article |
20 |
62 |
25
|
Aleksandrova K, Bamia C, Drogan D, Lagiou P, Trichopoulou A, Jenab M, Fedirko V, Romieu I, Bueno-de-Mesquita HB, Pischon T, Tsilidis K, Overvad K, Tjønneland A, Bouton-Ruault MC, Dossus L, Racine A, Kaaks R, Kühn T, Tsironis C, Papatesta EM, Saitakis G, Palli D, Panico S, Grioni S, Tumino R, Vineis P, Peeters PH, Weiderpass E, Lukic M, Braaten T, Quirós JR, Luján-Barroso L, Sánchez MJ, Chilarque MD, Ardanas E, Dorronsoro M, Nilsson LM, Sund M, Wallström P, Ohlsson B, Bradbury KE, Khaw KT, Wareham N, Stepien M, Duarte-Salles T, Assi N, Murphy N, Gunter MJ, Riboli E, Boeing H, Trichopoulos D. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2015; 102:1498-508. [PMID: 26561631 PMCID: PMC4658462 DOI: 10.3945/ajcn.115.116095] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Higher coffee intake has been purportedly related to a lower risk of liver cancer. However, it remains unclear whether this association may be accounted for by specific biological mechanisms. OBJECTIVE We aimed to evaluate the potential mediating roles of inflammatory, metabolic, liver injury, and iron metabolism biomarkers on the association between coffee intake and the primary form of liver cancer-hepatocellular carcinoma (HCC). DESIGN We conducted a prospective nested case-control study within the European Prospective Investigation into Cancer and Nutrition among 125 incident HCC cases matched to 250 controls using an incidence-density sampling procedure. The association of coffee intake with HCC risk was evaluated by using multivariable-adjusted conditional logistic regression that accounted for smoking, alcohol consumption, hepatitis infection, and other established liver cancer risk factors. The mediating effects of 21 biomarkers were evaluated on the basis of percentage changes and associated 95% CIs in the estimated regression coefficients of models with and without adjustment for biomarkers individually and in combination. RESULTS The multivariable-adjusted RR of having ≥4 cups (600 mL) coffee/d compared with <2 cups (300 mL)/d was 0.25 (95% CI: 0.11, 0.62; P-trend = 0.006). A statistically significant attenuation of the association between coffee intake and HCC risk and thereby suspected mediation was confirmed for the inflammatory biomarker IL-6 and for the biomarkers of hepatocellular injury glutamate dehydrogenase, alanine aminotransferase, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and total bilirubin, which-in combination-attenuated the regression coefficients by 72% (95% CI: 7%, 239%). Of the investigated biomarkers, IL-6, AST, and GGT produced the highest change in the regression coefficients: 40%, 56%, and 60%, respectively. CONCLUSION These data suggest that the inverse association of coffee intake with HCC risk was partly accounted for by biomarkers of inflammation and hepatocellular injury.
Collapse
|
research-article |
10 |
62 |