1
|
Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature 1990; 344:552-5. [PMID: 1690862 DOI: 10.1038/344552a0] [Citation(s) in RCA: 262] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
All reactions involving reverse transcription of RNA are segregated from the cytosol within a subviral particle or capsid composed of the major capsid protein, the polymerase and the RNA template. A key step in the formation of these particles is the selective encapsidation of the RNA template. Although an important general feature of the reverse transcription pathway, encapsidation has been carefully studied only for retroviruses. We have now examined the encapsidation reaction in a family of enveloped DNA viruses that replicate by reverse transcription--the hepatitis B viruses (hepadnaviruses). Our results indicate that the hepadnaviral polymerase (P) gene product is required for RNA packaging, and that the encapsidation function of the enzyme can be separated from its DNA polymerase activity. To our knowledge, this is the first description of a role for polymerase gene products in this step of the reverse transcription pathway.
Collapse
|
|
35 |
262 |
2
|
Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol 1994; 68:6-13. [PMID: 7504742 PMCID: PMC236258 DOI: 10.1128/jvi.68.1.6-13.1994] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
All known DNA polymerases require primers for the initiation of DNA synthesis. While cellular polymerases and reverse transcriptases use free hydroxyl groups of RNA or DNA, the DNA polymerases of certain animal viruses and bacteriophages depend upon hydroxyl groups of amino acid residues within proteins as primers for DNA synthesis. Recently, the reverse transcriptase of a hepadnavirus has been shown to prime RNA-directed DNA synthesis from an internal site of the polypeptide (G.H. Wang and C. Seeger, Cell 71:663-670, 1992). In this report we demonstrate that a tyrosine residue of the polymerase polypeptide is the site of a phosphodiester linkage with the first nucleotide of minus-strand DNA. This tyrosine residue is located within an amino-terminal domain of the polymerase polypeptide and is indispensable for the priming of reverse transcription. Our results demonstrate that the hepatitis B virus reverse transcriptase can initiate DNA synthesis without the requirement for tRNA as a primer.
Collapse
|
research-article |
31 |
196 |
3
|
Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 2004; 78:13122-31. [PMID: 15542664 PMCID: PMC525004 DOI: 10.1128/jvi.78.23.13122-13131.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The initiation of reverse transcription and nucleocapsid assembly in hepatitis B virus (HBV) depends on the specific recognition of an RNA signal (the packaging signal, epsilon) on the pregenomic RNA (pgRNA) by the viral reverse transcriptase (RT). RT-epsilon interaction in the duck hepatitis B virus (DHBV) was recently shown to require the molecular chaperone complex, the heat shock protein 90 (Hsp90). However, the requirement for RT-epsilon interaction in the human HBV has remained unknown due to the inability to obtain a purified RT protein active in specific epsilon binding. We now report that Hsp90 is also required for HBV RT-epsilon interaction. Inhibition of Hsp90 led to diminished HBV pgRNA packaging into nucleocapsids in cells, which depends on RT-epsilon interaction. Furthermore, using truncated HBV RT proteins purified from bacteria and five purified Hsp90 chaperone factors, we have developed an in vitro RT-epsilon binding assay. Our results demonstrate that Hsp90, in a dynamic process that was dependent on ATP hydrolysis, facilitated RT-epsilon interaction in HBV, as in DHBV. Specific epsilon binding required sequences from both the amino-terminal terminal protein and the carboxy-terminal RT domain. Only the cognate HBV epsilon, but not the DHBV epsilon, could bind the HBV RT proteins. Furthermore, the internal bulge, but not the apical loop, of epsilon was required for RT binding. The establishment of a defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT-epsilon interaction and chaperone activation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
153 |
4
|
Seifer M, Hamatake RK, Colonno RJ, Standring DN. In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir. Antimicrob Agents Chemother 1998; 42:3200-8. [PMID: 9835515 PMCID: PMC106023 DOI: 10.1128/aac.42.12.3200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The guanosine analogs BMS-200475 and lobucavir have previously been shown to effectively suppress propagation of the human hepatitis B virus (HBV) and woodchuck hepatitis virus (WHV) in 2.2.15 liver cells and in the woodchuck animal model system, respectively. This repression was presumed to occur via inhibition of the viral polymerase (Pol) by the triphosphate (TP) forms of BMS-200475 and lobucavir which are both produced in mammalian cells. To determine the exact mode of action, BMS-200475-TP and lobucavir-TP, along with several other guanosine analog-TPs and lamivudine-TP were tested against the HBV, WHV, and duck hepatitis B virus (DHBV) polymerases in vitro. Estimates of the 50% inhibitory concentrations revealed that BMS-200475-TP and lobucavir-TP inhibited HBV, WHV, and DHBV Pol comparably and were superior to the other nucleoside-TPs tested. More importantly, both analogs blocked the three distinct phases of hepadnaviral replication: priming, reverse transcription, and DNA-dependent DNA synthesis. These data suggest that the modest potency of lobucavir in 2.2.15 cells may be the result of poor phosphorylation in vivo. Kinetic studies revealed that BMS-200475-TP and lobucavir-TP competitively inhibit HBV Pol and WHV Pol with respect to the natural dGTP substrate and that both drugs appear to bind to Pol with very high affinities. Endogenous sequencing reactions conducted in replicative HBV nucleocapsids suggested that BMS-200475-TP and lobucavir-TP are nonobligate chain terminators that stall Pol at sites that are distinct yet characteristically two to three residues downstream from dG incorporation sites.
Collapse
|
research-article |
27 |
136 |
5
|
Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol 1994; 68:2994-9. [PMID: 7512155 PMCID: PMC236789 DOI: 10.1128/jvi.68.5.2994-2999.1994] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hepadnavirus DNA minus strands are covalently linked at their 5' terminus to the viral P gene product, which has been taken to indicate that the hepadnaviral polymerase polypeptide itself also functions as a protein primer for initiating reverse transcription of the RNA pregenome. The present study confirms this indication by identifying the nucleotide-linked amino acid in the P protein sequence of the duck hepatitis B virus (DHBV). In a first set of experiments, mutational analysis of three phylogenetically conserved tyrosine residues in the DNA terminal (TP) domain indicated that of these, only tyrosine 96 was essential for both viral DNA synthesis in transfected cells and priming of DNA synthesis in a cell-free system. This assignment was confirmed by direct biochemical analysis: tryptic peptides from the DHBV P protein, 32P labelled at the priming amino acid by the initiating dGTP and additionally labelled internally by [35S]methionine, were isolated and analyzed in parallel to reference peptides synthesized chemically and 33P labelled by a tyrosine kinase. Mobility in high-performance liquid chromatography, as well as the release in stepwise amino acid sequencing of phospholabel and of [35S]methionine, identified the priming amino acid unequivocally as the tyrosine in the sequence 91KLSGLYQMK99, which is located in the center of the TP domain. Conserved sequence motifs surrounding Tyr-96 allow the prediction of the priming tyrosine in other hepadnaviruses. Weak sequence similarity to picornavirus genome-linked polypeptides (VPgs) and similar gene organization suggest a common origin for the mechanisms that use protein priming to initiate synthesis of viral DNA genomes or RNA genomes from an RNA template.
Collapse
|
research-article |
31 |
131 |
6
|
Severini A, Liu XY, Wilson JS, Tyrrell DL. Mechanism of inhibition of duck hepatitis B virus polymerase by (-)-beta-L-2',3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother 1995; 39:1430-5. [PMID: 7492080 PMCID: PMC162757 DOI: 10.1128/aac.39.7.1430] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have used the endogenous reverse transcriptase reaction of viral core particles from duck liver to elucidate the mechanism of inhibition of duck hepatitis B virus (DHBV) replication by the nucleoside analog (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (3TC). As is the case in human immunodeficiency virus replication, 3TC-5'-triphosphate (3TC-TP) acts as a chain terminator for the DNA polymerase activities. The results of several different experiments support this conclusion, which explains the potent activity of 3TC against the hepadnaviruses. In isolated DHBV core particles, 3TC-TP inhibited the reverse transcriptase in a manner that resembled competitive inhibition with respect to dCTP. However, the kinetics of inhibition was not linear on a double-reciprocal plot for the highest concentrations of 3TC-TP and the lowest concentration of dCTP. This anomaly would be expected if binding to the nucleotide site was followed by DNA chain termination. Calculations that used only the linear part of the curve yielded a Ki of 0.78 +/- 0.10 microM 3TC-TP. The inhibition of core particles incubated in vitro with 3TC-TP was not reversed by removal of the free inhibitor. 3TC-TP inactivated the reverse transcriptase activity in a concentration-dependent manner. The Km of the chain termination reaction was calculated at 0.71 +/- 0.05 microM. Similar competitive kinetics and irreversible inhibition were also obtained on the endogenous DNA polymerase from viral particles from serum, suggesting that 3TC-TP also acts as a chain terminator of the DNA-directed DNA polymerase of DHBV replication.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
research-article |
30 |
111 |
7
|
Chang LJ, Hirsch RC, Ganem D, Varmus HE. Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. J Virol 1990; 64:5553-8. [PMID: 1698997 PMCID: PMC248607 DOI: 10.1128/jvi.64.11.5553-5558.1990] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The polymerase (P) gene of hepadnaviruses encodes a large polypeptide that appears to participate in several steps in the viral life cycle: packaging of viral RNA, providing the primer for synthesis of minus-strand DNA, synthesizing minus-strand DNA from an RNA template and plus-strand DNA from a DNA template, and degrading viral RNA in RNA-DNA hybrids. To assist in the assignment of these functions to domains of the duck hepatitis B virus polymerase protein, we have constructed a series of substitution mutations and a large insertion mutation, based in part on amino acid sequence comparisons with other proteins known to exhibit reverse transcriptase (RT) and RNase H activities. We found that changes in highly conserved sequences in putative RT and RNase H domains in the carboxy-terminal half of the protein dramatically reduced synthesis of both strands of viral DNA without major effects on RNA packaging into subviral cores. Thus we can uncouple RNA packaging and DNA synthesis but cannot separate RT and RNase H activities as has been done with human hepatitis B virus. The viability of a mutant with a large insertion (123 amino acids) upstream of the RT and RNase H domain indicates that a hinge region may separate parts of the polymerase protein implicated in priming and polymerization.
Collapse
|
research-article |
35 |
96 |
8
|
Hu J, Anselmo D. In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 2000; 74:11447-55. [PMID: 11090140 PMCID: PMC112423 DOI: 10.1128/jvi.74.24.11447-11455.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Reverse transcription in hepatitis B viruses is initiated through a unique protein priming mechanism whereby the viral reverse transcriptase (RT) first assembles into a ribonucleoprotein (RNP) complex with its RNA template and then initiates DNA synthesis de novo using the RT itself as a protein primer. RNP formation and protein priming require the assistance of host cell factors, including the molecular chaperone heat shock protein 90 (Hsp90). To better understand the mechanism of RT activation by Hsp90, we have now mapped the minimal RT sequences of the duck hepatitis B virus that are required for chaperone binding, RNP formation, and protein priming. Furthermore, we have reconstituted in vitro both RNP formation and protein priming using purified RT proteins and host factors. Our results show that (i) Hsp90 recognizes two independent domains of the RT, both of which are necessary for RNP formation and protein priming; (ii) Hsp90 function is required not only to establish, but also to maintain, the RT in a state competent for RNA binding; and (iii) Hsp90 is not required during RT synthesis and can activate the RT posttranslationally. Based on these findings, we propose a model for Hsp90 function whereby the chaperone acts as an active interdomain bridge to bring the two RT domains into a poised but labile conformation competent for RNP formation. It is anticipated that the reconstitution system established here will facilitate the isolation of additional host factors required for RT functions and further elucidation of the mechanisms of RT activation.
Collapse
|
research-article |
25 |
84 |
9
|
Tavis JE, Ganem D. Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template. J Virol 1996; 70:5741-50. [PMID: 8709189 PMCID: PMC190587 DOI: 10.1128/jvi.70.9.5741-5750.1996] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hepatitis B viruses replicate by reverse transcription of an RNA pregenome by using a virally encoded polymerase. A key early step in replication is binding of the polymerase to an RNA stem-loop (epsilon) of the pregenome; epsilon is both the RNA encapsidation signal and the origin of reverse transcription. Here we provide evidence that this interaction is also key to the development of enzymatic activity during biosynthesis of the polymerase. Duck hepatitis B virus polymerase expressed in Saccharomyces cerevisiae can synthesize DNA from epsilon-containing RNAs and can also end label other small RNAs. Expression of functional polymerase in S. cerevisiae requires interaction between the polymerase and epsilon during or shortly after translation for it to develop any enzymatic activity; if epsilon is absent during expression, the polymerase is inactive on RNAs both with and without epsilon. Functional duck polymerase can also be produced by in vitro translation, and synthesis of the polymerase in the presence of epsilon induces resistance in the polymerase to proteolysis by papain, trypsin, and bromelain. Induction of the resistance is specific for epsilon sequences that can support RNA encapsidation and initiation of DNA synthesis. Induction of the resistance precedes initiation of DNA synthesis and is reversible by degradation of epsilon. These two sets of data (i) support a model in which binding of epsilon to the polymerase induces a structural alteration of the polymerase prior to the development of enzymatic activity and (ii) suggest that this alteration may be required for the polymerase to mature to an active form.
Collapse
|
research-article |
29 |
80 |
10
|
Varlamov O, Fricker LD. Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface. J Cell Sci 1998; 111 ( Pt 7):877-85. [PMID: 9490632 DOI: 10.1242/jcs.111.7.877] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carboxypeptidase D (CPD) is a recently discovered membrane-bound metallocarboxypeptidase that has been proposed to be involved in the post-translational processing of peptides and proteins that transit the secretory pathway. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. Antisera to CPD stain the same intracellular structures as those labeled with furin and wheat germ agglutinin. This distribution is distinct from carboxypeptidase E, which is localized to the secretory vesicles in the cell processes. The perinuclear distribution of CPD is detected even when the AtT-20 cells are treated with brefeldin A for 1–30 minutes, suggesting that CPD is present in the trans-Golgi network (TGN). Although CPD is predominantly found in the TGN, an antiserum to the full length protein is internalized within 15–30 minutes of incubation at 37 degrees C. In contrast, an antiserum raised against the C-terminal region of CPD does not become internalized, suggesting that this domain is cytosolic. The antiserum to the full length CPD is internalized to a structure that co-stains with furin and wheat germ agglutinin, but is distinct from transferrin recycling endosomes. The internalization of CPD is not substantially affected by treatment of the AtT-20 cells with brefeldin A. These data are consistent with the cycling of CPD to the cell surface and back to the TGN. The TGN localization of CPD raises the possibility of a role for this enzyme in the processing of proteins that transit the secretory pathway.
Collapse
|
|
27 |
79 |
11
|
Beck J, Nassal M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 2003; 278:36128-38. [PMID: 12851401 DOI: 10.1074/jbc.m301069200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hsp90 is a specialized chaperone that controls the activity of many key regulator proteins such as steroid hormone receptors (SHRs). Hormone binding, and therefore SHR activation, requires Hsp90, which is loaded onto the receptors by a series of events involving Hsp70, Hsp40, Hop, and p23. The reverse transcriptase (RT) of hepatitis B viruses, small DNA-containing viruses that replicate via an RNA intermediate, has been reported to depend similarly on Hsp90 for enzymatic activity. Using an in vitro reconstitution system consisting of recombinant duck hepatitis B virus RT, purified chaperones, and the authentic RNA template Depsilon, we demonstrate here that this RT can be activated efficiently by just Hsp40 and Hsc70 plus energy, without the need for Hsp90 or other cofactors. The reaction appears to proceed selectively with the Hdj1 variant of Hsp40 but not Hdj2 or its yeast homolog Ydj1. The primary reaction product is a metastable, RNA binding-competent intermediate that decays quickly in the absence of its cognate RNA but, in its presence, accumulates in an initiation-competent form over several hours. Because deletion of the RNase H domain rendered the protein partly chaperone-independent, the chaperones may be needed indirectly to relieve occlusion of the RNA binding site by this domain. Our results do not exclude that other factors contribute to RT activation in vivo, but they challenge a fundamental SHR-like dependence on Hsp90. Thus Hsc70, mostly known for its role in general protein folding, is able to effect activation of a highly specialized target protein.
Collapse
|
|
22 |
79 |
12
|
Tavis JE, Massey B, Gong Y. The duck hepatitis B virus polymerase is activated by its RNA packaging signal, epsilon. J Virol 1998; 72:5789-96. [PMID: 9621038 PMCID: PMC110380 DOI: 10.1128/jvi.72.7.5789-5796.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epsilon stem-loop at the 5' end of the pregenomic RNA of the hepatitis B viruses is both the primary element of the RNA packaging signal and the origin of reverse transcription. We have previously presented evidence for a third essential role for epsilon, that of an essential cofactor in the maturation of the viral polymerase (J. E. Tavis and D. Ganem, J. Virol. 70:5741-5750, 1996). In this case, binding of epsilon to the polymerase is proposed to induce a physical alteration to the polymerase that is needed for it to develop enzymatic activity. Three lines of evidence employing duck hepatitis B virus supporting this hypothesis are presented here. First, an unusual DNA polymerase activity employing exogenous RNAs (the trans reaction) that was originally discovered with recombinant duck hepatitis B virus polymerase expressed in Saccharomyces cerevisiae yeasts was shown to be an authentic property of the viral polymerase. The trans reaction was found to be template-dependent reverse transcription of the exogenous RNA. The trans reaction occurred independently of the hepadnavirus protein-priming mechanism, yet it was still strongly stimulated by epsilon. This directly demonstrates a role for epsilon in activation of the polymerase. Second, the reverse transcriptase domain of the polymerase was shown to be physically altered following binding to epsilon, as would be expected if the alteration was required for maturation of the polymerase to an enzymatically active form. Finally, analysis of 15 mutations throughout the duck hepatitis B virus polymerase demonstrated that the epsilon-dependent alteration to the polymerase was a prerequisite for DNA priming, reverse transcription, and the trans reaction.
Collapse
|
research-article |
27 |
69 |
13
|
Fischer KP, Tyrrell DL. Generation of duck hepatitis B virus polymerase mutants through site-directed mutagenesis which demonstrate resistance to lamivudine [(--)-beta-L-2', 3'-dideoxy-3'-thiacytidine] in vitro. Antimicrob Agents Chemother 1996; 40:1957-60. [PMID: 8843315 PMCID: PMC163451 DOI: 10.1128/aac.40.8.1957] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatitis B virus replication is very sensitive to lamivudine. A single amino acid change in human immunodeficiency virus reverse transcriptase is responsible for high-level resistance to this compound. Duck hepatitis B virus mutants were created bearing the analogous amino acid change in the duck hepatitis B virus polymerase. Viral DNA production was reduced 92% for the wild-type virus at 2 micrograms of lamivudine per ml, while the mutants required 40 micrograms of lamivudine per ml to inhibit replication by greater than 80%.
Collapse
|
research-article |
29 |
55 |
14
|
Stahl M, Beck J, Nassal M. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding. J Virol 2007; 81:13354-64. [PMID: 17913810 PMCID: PMC2168843 DOI: 10.1128/jvi.01196-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
All hepatitis B viruses replicate by protein-primed reverse transcription, employing a specialized reverse transcriptase, P protein, that carries a unique terminal protein (TP) domain. To initiate reverse transcription, P protein must bind to a stem-loop, epsilon, on the pregenomic RNA template. TP then provides a Y residue for covalent attachment of the first nucleotide of an epsilon-templated DNA oligonucleotide (priming reaction) that serves to initiate full-length minus-strand DNA synthesis. epsilon binding requires the chaperone-dependent conversion of inactive P protein into an activated, metastable form designated P*. However, how P* differs structurally from P protein is not known. Here we used an in vitro reconstitution system for active duck hepatitis B virus P combined with limited proteolysis, site-specific antibodies, and defined P mutants to structurally compare nonactivated versus chaperone-activated versus primed P protein. The data show that Hsp70 action, under conditions identical to those required for functional activation, transiently exposes the C proximal TP region which is, probably directly, involved in epsilon RNA binding. Notably, after priming and epsilon RNA removal, a very similar new conformation appears stable without further chaperone activity; hence, the activation of P protein is triggered by energy-consuming chaperone action but may be completed by template RNA binding.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
51 |
15
|
Stahl M, Retzlaff M, Nassal M, Beck J. Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Res 2007; 35:6124-36. [PMID: 17804463 PMCID: PMC2094093 DOI: 10.1093/nar/gkm628] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepadnaviruses are DNA viruses that replicate by protein-primed reverse transcription, employing a specialized reverse transcriptase (RT), P protein. DNA synthesis from the pregenomic RNA is initiated by binding of P to the ε signal. Using ε as template and a Tyr-residue for initiation, the RT synthesizes a DNA oligo (priming) as primer for full-length DNA. Priming strictly requires prior RT activation by chaperones. Active P–ε complexes have been reconstituted in vitro, but whether in addition to the heat-shock protein 70 (Hsp70) system the Hsp90 system is essential has been controversial. Here we quantitatively compared Hsp70 versus Hsp70 plus Hsp90 RT activation, and corroborated that the Hsp70 system alone is sufficient; however, Hsp90 as well the Hsp70 nucleotide exchange factor Bag-1 markedly stimulated activation by increasing the steady-state concentration of the activated metastable RT form P*, though by different mechanisms. Hsp90 inhibition in intact cells by geldanamycin analogs blocked hepadnavirus replication, however not completely and only at severely cytotoxic inhibitor concentrations. While compatible with a basal level of Hsp90 independent in vivo replication, unambiguous statements are precluded by the simultaneous massive upregulation of Hsp70 and Hsp90.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
51 |
16
|
Chen Y, Robinson WS, Marion PL. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis. J Virol 1994; 68:5232-8. [PMID: 8035519 PMCID: PMC236467 DOI: 10.1128/jvi.68.8.5232-5238.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genome of all hepadnaviruses has an open reading frame called the P gene, which encodes a polypeptide of 90 to 97 kDa. The product or products of this P gene are involved in multiple functions of the viral life cycle. These functions include a priming activity which initiates minus-strand DNA synthesis, a polymerase activity which synthesizes DNA by using either RNA or DNA templates (reverse transcriptase), a nuclease activity which degrades the RNA strand of RNA-DNA hybrids (RNase H), and involvement in packaging the RNA pregenome into nucleocapsids. In a previous study, we found that a single point mutation at position 711 in the duck hepatitis B virus (DHBV) P gene product RNase H domain prevented viral RNA packaging. In the present experiments, we have mutated additional conserved amino acids in the DHBV RNase H domain and examined the ability of viral genomes containing these mutations to package RNA and replicate viral DNA. Charged and sulfur group amino acids adjacent to Cys-711 were mutated. None of these mutants was defective in either RNA packaging or viral replication. We also tested a number of mutations on the basis of common elements in the crystal structures of Escherichia coli and human immunodeficiency virus reverse transcriptase RNase H enzymes and on the basis of the similarities of their amino acid sequences to those of the RNase H domains of DHBV and HBV. Our results revealed that the entire beta 4 strand and amino acids Leu-712, Leu-697, and Val-719 in the putative hydrophobic cores of the beta 4, alpha A, and alpha B regions, respectively, are involved in pregenomic RNA encapsidation. This suggests that the basic structure of the RNase H domain in the DHBV P gene product is required for viral RNA packaging. We used the in vitro DHBV minus-strand DNA priming system developed by Wang and Seeger (G.-H. Wang and C. Seeger, Cell 71:663-670, 1992) to test the effect of RNase H packaging mutations on P gene product enzymatic activity. While all packaging-defective mutants tested maintained DNA priming activity, levels were decreased 5- to 20-fold compared with that of the wild-type genome. This observation suggests that the hepadnavirus RNase H domain plays a role in optimizing priming of minus-strand DNA synthesis.
Collapse
|
research-article |
31 |
46 |
17
|
|
Comparative Study |
29 |
37 |
18
|
Chen Y, Marion PL. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA. J Virol 1996; 70:6151-6. [PMID: 8709240 PMCID: PMC190638 DOI: 10.1128/jvi.70.9.6151-6156.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hepadnavirus P gene contains amino acid sequences which share homology with all known RNases H. In this study, we made four mutants in which single amino acids of the duck hepatitis B virus (DHBV) RNase H region were altered. In two of them, amino acids at locations comprising the putative catalytic site were changed, while the remaining mutants had alterations at amino acids conserved among hepadnaviruses. Transfection of these mutant genomes into permissive cells resulted in synthesis of several discrete viral nucleic acid species, ranging in apparent sizes from approximately 500 to 3,000 bp, numbered I, II, III, IV, and V. While the locations of the species were similar in all mutants, the proportions of the species varied among the mutants. Analysis of the nucleic acid species revealed that they were hybrid molecules of RNA and minus-strand DNA, indicating that the RNase H activity was missing or greatly reduced in these mutants. Primer extension experiments showed that the mutant viruses initiated minus-strand viral DNA synthesis normally. The 3' termini of minus-strand DNA in species II, III, and IV were mapped just downstream of nucleotides 1659, 1220, and 721, respectively. Species V contained essentially full-length minus-strand viral DNA. A parallel amino acid change in the putative catalytic site of the HBV RNase H domain resulted in accumulation of low-molecular-weight hybrid molecules consisting of RNA and minus-strand DNA and similar in size and pattern to those seen with DHBV. These studies demonstrate experimentally the involvement of the C-terminal portion of the P gene in RNase H activity in both DHBV and human hepatitis B virus and indicate that the amino acids essential for RNase H activity of hepadnavirus P protein are also important for the efficient elongation of minus-strand viral DNA.
Collapse
|
research-article |
29 |
36 |
19
|
Wang X, Qian X, Guo HC, Hu J. Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase. J Virol 2003; 77:4471-80. [PMID: 12663754 PMCID: PMC152163 DOI: 10.1128/jvi.77.8.4471-4480.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The reverse transcriptase (RT) encoded by hepadnaviruses (hepatitis B viruses) is a multifunctional protein critical for several aspects of viral assembly and replication. Reverse transcription is triggered by the specific interaction between the RT and an RNA signal located on the viral pregenomic RNA, termed epsilon, and is initiated through a novel protein priming mechanism whereby the RT itself serves as a protein primer and epsilon serves as the obligatory template. Using the RT from duck hepatitis B virus as a model, we previously demonstrated that RT-epsilon interaction and protein priming require the assistance of a host cell chaperone complex, heat shock protein 90 (Hsp90) and its co-chaperones, which associates with the RT and facilitates the folding of the RT into an active conformation. We now report that extensive truncation removing the entire C-terminal RNase H domain and part of the central RT domain could relieve this dependence on Hsp90 for RT folding such that the truncated RT variants could function in epsilon interaction and protein priming independently of Hsp90. The presence of certain nonionic or zwitterionic detergent was sufficient to establish and maintain the truncated RT proteins in an active, albeit labile, state. Furthermore, we were able to refold an RT truncation variant de novo after complete denaturation. In contrast, the full-length RT and also RT variants with less-extensive C-terminal truncations required Hsp90 for activation. Surprisingly, the presence of detergent plus some yet-to-be-identified cytoplasmic factor(s) led to a dramatic suppression of the RT activities. These results have important implications for RT folding and conformational maturation, Hsp90 chaperone function, and potential inhibition of RT functions by host cell factors.
Collapse
|
|
22 |
33 |
20
|
Cao F, Badtke MP, Metzger LM, Yao E, Adeyemo B, Gong Y, Tavis JE. Identification of an essential molecular contact point on the duck hepatitis B virus reverse transcriptase. J Virol 2005; 79:10164-70. [PMID: 16051809 PMCID: PMC1182640 DOI: 10.1128/jvi.79.16.10164-10170.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepadnaviral polymerase (P) functions in a complex with viral nucleic acids and cellular chaperones. To begin to identify contacts between P and its partners, we assessed the exposure of the epitopes of six monoclonal antibodies (MAbs) to the terminal protein domain of the duck hepatitis B virus P protein in a partially denaturing buffer (RIPA) and a physiological buffer (IPP150). All MAbs immunoprecipitated in vitro translated P well in RIPA, but three immunoprecipitated P poorly in IPP150. Therefore, the epitopes for these MAbs were obscured in the native conformation of P but were exposed when P was in RIPA. Epitopes for MAbs that immunoprecipitated P poorly in IPP150 were between amino acids (aa) 138 and 202. Mutation of a highly conserved motif within this region (T3; aa 176 to 183) improved the immunoprecipitation of P by these MAbs and simultaneously inhibited DNA priming by P. Peptides containing the T3 motif inhibited DNA priming in a dose-dependent manner, whereas eight irrelevant peptides did not. T3 function appears to be conserved among the hepadnaviruses because mutating T3 ablated DNA synthesis in both duck hepatitis B virus and hepatitis B virus. These results indicate that (i) the conserved T3 motif is a molecular contact point whose ligand can be competed by soluble T3 peptides, (ii) the occupancy of T3 obscures the epitopes for three MAbs, and (iii) proper occupancy of T3 by its ligand is essential for DNA priming. Therefore, small-molecule ligands that compete for binding to T3 with its natural ligand could form a novel class of antiviral drugs.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
33 |
21
|
Abstract
The duck hepatitis B virus (DHBV) polymerase (P) is translated by de novo initiation from a downstream open reading frame (ORF) that partially overlaps the core (C) ORF on the bicistronic pregenomic RNA (pgRNA). The DHBV P AUG is in a poor context for translational initiation and is preceded by 14 AUGs that could intercept scanning ribosomes, yet P translation is unanticipatedly rapid. Therefore, we assessed C and P translation in the context of the pgRNA. Mutating the upstream C ORF revealed that P translation was inversely related to C translation, primarily due to occlusion of P translation by ribosomes translating C. Translation of the pgRNA was found to be cap dependent, because inserting a stem-loop (BamHI-SL) that blocked >90% of scanning ribosomes at the 5' end of the pgRNA greatly inhibited C and P synthesis. Neither mutating AUGs between the C and P start sites in contexts similar to that of the P AUG nor blocking ribosomal scanning by inserting the BamHI-SL between the C and P start codons greatly altered P translation, indicating that most ribosomes that translate P do not scan through these sequences. Finally, optimizing the P AUG context did not increase P translation. Therefore, the majority of the ribosomes that translate P are shunted from a donor region near the 5' end of the pgRNA to an acceptor site at or near the P AUG, and the shunt acceptor sequences may augment initiation at the P AUG.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
27 |
22
|
Beck J, Vogel M, Nassal M. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases. Nucleic Acids Res 2002; 30:1679-87. [PMID: 11917030 PMCID: PMC101827 DOI: 10.1093/nar/30.7.1679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B viruses, or hepadnaviruses, are small DNA-containing viruses that replicate through reverse transcription. Their prototype, HBV, causes severe liver disease in humans. The hepadnaviral P protein is an unusual reverse transcriptase (RT) that initiates DNA synthesis by host-factor-dependent protein priming on a specific RNA stem-loop template, epsilon, yielding a short DNA oligonucleotide covalently attached to the RT. This priming reaction can be reconstituted with in vitro-translated duck hepatitis B virus (DHBV) P protein. No direct structural data are available for any P protein. However, P proteins share a number of conserved motifs with other polymerases. Box A contains an invariant bulky residue recently shown to be crucial for dNTP versus NTP discrimination in RTs and some DNA polymerases; its equivalent in DHBV P protein would be phenylalanine 451 (F451). Four mutants, containing glycine (F451G), alanine (F451A), valine (F451V) and aspartate (F451D), were therefore analyzed for their ability to utilize dNTPs and NTPs in in vitro priming. Priming efficiencies with dNTPs decreased with decreasing side chain size but GTP utilization increased; the wild-type enzyme was inactive with GTP. In the context of complete DHBV genomes, all mutant proteins were competent for RNA encapsidation, indicating the absence of global structural alterations. Because the function of the discriminatory residue depends on its specific spatial disposition this strongly suggests a similar architecture for the P protein dNTP-binding pocket as in other RTs.
Collapse
|
research-article |
23 |
25 |
23
|
Wang X, Hu J. Distinct requirement for two stages of protein-primed initiation of reverse transcription in hepadnaviruses. J Virol 2002; 76:5857-65. [PMID: 12021318 PMCID: PMC136195 DOI: 10.1128/jvi.76.12.5857-5865.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Reverse transcription in hepadnaviruses is primed by the viral reverse transcriptase (RT) (protein priming) and requires the specific interaction between the RT and a viral RNA signal termed epsilon, which bears the specific template sequence for protein priming. The product of protein priming is a short oligodeoxynucleotide which represents the 5' end of the viral minus-strand DNA and is covalently attached to the RT. We have now identified truncated RT variants from the duck hepatitis B virus that were fully active in the initial step of protein priming, i.e., the covalent attachment of the first nucleotide to the protein (RT deoxynucleotidylation), but defective in any subsequent DNA polymerization. A short sequence in the RT domain was localized that was dispensable for RT deoxynucleotidylation but essential for the subsequent DNA polymerization. These results have thus revealed two distinct stages of protein priming, i.e., the initial attachment of the first nucleotide to the RT (RT deoxynucleotidylation or initiation of protein priming) and the subsequent DNA synthesis (polymerization) to complete protein priming, with the second step entailing additional RT sequences. Two models are proposed to explain the observed differential sequence requirement for the two distinct stages of the protein priming reaction.
Collapse
|
research-article |
23 |
24 |
24
|
Seignères B, Aguesse-Germon S, Pichoud C, Vuillermoz I, Jamard C, Trépo C, Zoulim F. Duck hepatitis B virus polymerase gene mutants associated with resistance to lamivudine have a decreased replication capacity in vitro and in vivo. J Hepatol 2001; 34:114-22. [PMID: 11211887 DOI: 10.1016/s0168-8278(00)00074-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Hepatitis B virus mutants of the polymerase gene are frequently selected during lamivudine therapy for chronic hepatitis B. To study the biology of these mutants, we analyzed their replication capacity in the duck hepatitis B virus (DHBV) infection. METHODS The B and C domain polymerase mutants corresponding to the clinical isolates were engineered by site directed mutagenesis in the DHBV genome in different expression vectors. RESULTS The study of the enzymatic activity of the mutated viral polymerase polypeptides analyzed in a cell free system demonstrated a lower priming activity and a decreased capacity of elongation of viral minus strand DNA that was consistent with the lower replication capacity of these mutants in transfected leghorn male hepatoma cells compared to wild type genome. These mutants had a lower replication capacity in primary hepatocytes and in in vivo transfected ducklings. Although resistant to lamivudine, these mutants remained sensitive to PMEA. CONCLUSION YMDD mutants of the DHBV reverse transcriptase have a decreased replication capacity both in vitro and in vivo, and are not cross-resistant to PMEA. These results may be important to design new antiviral strategies to combat the replication of the lamivudine resistant viral strains.
Collapse
|
|
24 |
24 |
25
|
von Janta-Lipinski M, Costisella B, Ochs H, Hübscher U, Hafkemeyer P, Matthes E. Newly synthesized L-enantiomers of 3'-fluoro-modified beta-2'-deoxyribonucleoside 5'-triphosphates inhibit hepatitis B DNA polymerases but not the five cellular DNA polymerases alpha, beta, gamma, delta, and epsilon nor HIV-1 reverse transcriptase. J Med Chem 1998; 41:2040-6. [PMID: 9622545 DOI: 10.1021/jm9704210] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel beta-L-2',3'-dideoxy-3'-fluoro nucleosides were synthesized and further converted to their 5'-triphosphates. Their inhibitory activities against hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) DNA polymerases, human immunodeficiency virus (HIV) reverse transcriptase (RT), and the cellular DNA polymerases alpha, beta, gamma, delta, and epsilon were investigated and compared with those of the corresponding 3'-fluoro-modified beta-d-analogues. The 5'-triphosphates of 3'-deoxy-3'-fluoro-beta-L-thymidine (beta-L-FTTP), 2',3'-dideoxy-3'-fluoro-beta-L-cytidine (beta-L-FdCTP), and 2',3'-dideoxy-3'-fluoro-beta-l-5-methylcytidine (beta-L-FMetdCTP) emerged as effective inhibitors of HBV/DHBV DNA polymerases (IC50 = 0.25-10.4 microM). They were either equally (FTTP) or less (FMetdCTP, FdCTP) effective than their beta-d-counterparts. Also the 5'-triphosphate of beta-L-thymidine (beta-L-TTP) was shown to be a strong inhibitor of these two viral enzymes (IC50 = 0.46/1.0 microM). However, all beta-L-FdNTPs (also beta-L-TTP) were inactive against HIV-RT, a result which contrasts sharply with the high efficiency of the beta-D- FdNTPs against this polymerase. Between the cellular DNA polymerases only the beta and gamma enzymes displayed a critical susceptibility to beta-D-FdNTPs which is largely abolished by the beta-L-enantiomers. These results recommend beta-L-FTdR, beta-L-FCdR, and beta-L-FMetCdR for further evaluation as selective inhibitors of HBV replication at the cellular level.
Collapse
|
Comparative Study |
27 |
22 |