1
|
Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993; 5:327-37. [PMID: 8298639 DOI: 10.1038/ng1293-327] [Citation(s) in RCA: 1309] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. The gene (WD) has been mapped to chromosome 13 q14.3. On yeast artificial chromosomes from this region we have identified a sequence, similar to that coding for the proposed copper binding regions of the putative ATPase gene (MNK) defective in Menkes disease. We show that this sequence forms part of a P-type ATPase gene (referred to here as Wc1) that is very similar to MNK, with six putative metal binding regions similar to those found in prokaryotic heavy metal transporters. The gene, expressed in liver and kidney, lies within a 300 kb region likely to include the WD locus. Two WD patients were found to be homozygous for a seven base deletion within the coding region of Wc1. Wc1 is proposed as the gene for WD.
Collapse
|
|
32 |
1309 |
2
|
Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 1993; 5:344-50. [PMID: 8298641 DOI: 10.1038/ng1293-344] [Citation(s) in RCA: 908] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder characterized by the toxic accumulation of copper in a number of organs, particularly the liver and brain. As shown in the accompanying paper, linkage disequilibrium & haplotype analysis confirmed the disease locus to a single marker interval at 13q14.3. Here we describe a partial cDNA clone (pWD) which maps to this region and shows a particular 76% amino acid homology to the Menkes disease gene, Mc1. The predicted functional properties of the pWD gene together with its strong homology to Mc1, genetic mapping data and identification of four independent disease-specific mutations, provide convincing evidence that pWD is the Wilson disease gene.
Collapse
|
|
32 |
908 |
3
|
Abstract
Progressive hepatolenticular degeneration, or Wilson's disease, is a genetic disorder of copper metabolism. Knowledge of the clinical presentations and treatment of the disease are important both to the generalist and to specialists in gastroenterology and hepatology, neurology, psychiatry, and paediatrics. Wilson's disease invariably results in severe disability and death if untreated. The diagnosis is easily overlooked but if discovered early, effective treatments are available that will prevent or reverse many manifestations of this disorder. Studies have identified the role of copper in disease pathogenesis and clinical, biochemical, and genetic markers that can be useful in diagnosis. There are several chelating agents and zinc salts for medical therapy. Liver transplantation corrects the underlying pathophysiology and can be lifesaving. The discovery of the Wilson's disease gene has opened up a new molecular diagnostic approach, and could form the basis of future gene therapy.
Collapse
|
Review |
18 |
713 |
4
|
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML. Wilson disease. Nat Rev Dis Primers 2018; 4:21. [PMID: 30190489 PMCID: PMC6416051 DOI: 10.1038/s41572-018-0018-3] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a potentially treatable, inherited disorder of copper metabolism that is characterized by the pathological accumulation of copper. WD is caused by mutations in ATP7B, which encodes a transmembrane copper-transporting ATPase, leading to impaired copper homeostasis and copper overload in the liver, brain and other organs. The clinical course of WD can vary in the type and severity of symptoms, but progressive liver disease is a common feature. Patients can also present with neurological disorders and psychiatric symptoms. WD is diagnosed using diagnostic algorithms that incorporate clinical symptoms and signs, measures of copper metabolism and DNA analysis of ATP7B. Available treatments include chelation therapy and zinc salts, which reverse copper overload by different mechanisms. Additionally, liver transplantation is indicated in selected cases. New agents, such as tetrathiomolybdate salts, are currently being investigated in clinical trials, and genetic therapies are being tested in animal models. With early diagnosis and treatment, the prognosis is good; however, an important issue is diagnosing patients before the onset of serious symptoms. Advances in screening for WD may therefore bring earlier diagnosis and improvements for patients with WD.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
529 |
5
|
Abstract
Copper and iron are transition elements essential for life. These metals are required to maintain the brain's biochemistry such that deficiency or excess of either copper or iron results in central nervous system disease. This review focuses on the inherited disorders in humans that directly affect copper or iron homeostasis in the brain. Elucidation of the molecular genetic basis of these rare disorders has provided insight into the mechanisms of copper and iron acquisition, trafficking, storage, and excretion in the brain. This knowledge permits a greater understanding of copper and iron roles in neurobiology and neurologic disease and may allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
|
Review |
18 |
377 |
6
|
Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson's disease: a cohort study. Gut 2007; 56:115-120. [PMID: 16709660 PMCID: PMC1856673 DOI: 10.1136/gut.2005.087262] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 05/09/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wilson's disease is a rare inborn disease related to copper storage, leading to liver cirrhosis and neuropsychological deterioration. Clinical data on larger cohorts are limited owing to low disease frequency. OBJECTIVE AND METHODS We performed a retrospective analysis of 163 patients with Wilson's disease, examined at the University of Heidelberg, Heidelberg, Germany, to determine clinical presentation, diagnostic course and long-term outcome. RESULTS Diagnostic criteria for non-caeruloplasmin-bound serum copper, serum caeruloplasmin, 24-h urinary copper excretion, liver copper content, presence of Kayser-Fleischer rings and histological signs of chronic liver damage were reached in 86.6%, 88.2%, 87.1%, 92.7%, 66.3% and 73% of patients, respectively. By analysis of the coding region of ATP7B (except exons 2, 3 and 21), disease-causing mutations were detected in 57% and 29% of patients with Wilson's disease on both chromosomes and on one chromosome, respectively. No mutations were detected in 15% of patients with Wilson's disease. No significant differences were found in clinical parameters or initial presentation between patients grouped according to their mutations. The patients with neurological symptoms were significantly older at the onset of symptoms than patients with hepatitic symptoms (20.2 v 15.5 years of age, p<0.05), and the neurological symptoms were associated with a significantly longer time from onset to diagnosis than hepatic symptoms (44.4 v 14.4 months, p<0.05). After initiating treatment, 76.1% of the patients had a stable or improved course of the disease. Disease progression under treatment was more likely for neuropsychiatric than for hepatic symptoms. Side effects of treatment occurred in 74.4% of patients. CONCLUSIONS Patients with Wilson's disease having predominantly neuropsychiatric symptoms manifest symptoms later, have a longer time delay from onset of symptoms until definitive diagnosis and have a poorer outcome than patients with hepatic symptoms.
Collapse
|
research-article |
18 |
372 |
7
|
Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 1993; 197:271-7. [PMID: 8250934 DOI: 10.1006/bbrc.1993.2471] [Citation(s) in RCA: 343] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The putative copper and ATP-binding domains of the human Menkes disease gene were used as probes to screen a human liver cDNA library at reduced stringency. Sixty-five clones which remained positive after tertiary screening were subcloned and sequenced. One of these cDNA clones contains an open reading frame with 65% amino acid homology to the Menkes protein. Southern blot analysis localizes this cDNA to the region of the Wilson disease locus on chromosome 13. This cDNA detects a 7.5 kB transcript which is present in human liver and cell lines devoid of the Menkes transcript and which is absent in liver from a patient with Wilson disease. These data suggest that this cDNA is a candidate gene for Wilson disease and that the protein encoded at this locus is a member of the P-type ATPase family.
Collapse
|
Comparative Study |
32 |
343 |
8
|
Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW. The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 1995; 9:210-7. [PMID: 7626145 DOI: 10.1038/ng0295-210] [Citation(s) in RCA: 337] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported the cloning of a gene that encodes a copper transporting P-type ATPase (ATP7B) which is defective in Wilson disease. We have now identified in 58 WND patients, 20 new mutations as well as three of five previously published mutations: 11 small insertions and deletions, seven missense, two nonsense and three splice site mutations. Two of the mutations are relatively frequent, representing 38% of the mutations in patients of European origin. Our findings suggest a wider spectrum of age of onset than is considered typical of Wilson disease: mutations that completely disrupt the gene can produce liver disease in early childhood when Wilson disease may not typically considered in the differential diagnosis. The mutations identified provide an explanation for at least part of the wide phenotypic variation observed in Wilson disease.
Collapse
|
|
30 |
337 |
9
|
La Fontaine S, Mercer JFB. Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 2007; 463:149-67. [PMID: 17531189 DOI: 10.1016/j.abb.2007.04.021] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 01/05/2023]
Abstract
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.
Collapse
|
|
18 |
335 |
10
|
Abstract
Bacterial plasmids encode resistance systems for toxic metal ions, including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+ and Zn2+. The function of most resistance systems is based on the energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The Cd(2+)-resistance ATPase of Gram-positive bacteria (CadA) is membrane cation pump homologous with other bacterial, animal and plant P-type ATPases. CadA has been labeled with 32P from [alpha-32P] ATP and drives ATP-dependent Cd2+ (and Zn2+) uptake by inside-out membrane vesicles (equivalent to efflux from whole cells). Recently, isolated genes defective in the human hereditary diseases of copper metabolism, namely Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to bacterial CadA than to other ATPases from eukaryotes. The arsenic resistance efflux system transports arsenite [As(III)], alternatively using either a double-polypeptide (ArsA and ArsB) ATPase or a single-polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. The triple-polypeptide Czc (Cd2+, Zn2+ and Co2+) chemiosmotic efflux pump consists of inner membrane (CzcA), outer membrane (CzcC) and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell.
Collapse
|
Review |
29 |
325 |
11
|
Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 1995; 92:2632-6. [PMID: 7708696 PMCID: PMC42272 DOI: 10.1073/pnas.92.7.2632] [Citation(s) in RCA: 323] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CCC2 gene of the yeast Saccharomyces cerevisiae is homologous to the human genes defective in Wilson disease and Menkes disease. A biochemical hallmark of these diseases is a deficiency of copper in ceruloplasmin and other copper proteins found in extracytosolic compartments. Here we demonstrate that disruption of the yeast CCC2 gene results in defects in respiration and iron uptake. These defects could be reversed by supplementing cells with copper, suggesting that CCC2 mutant cells were copper deficient. However, cytosolic copper levels and copper uptake were normal. Instead, CCC2 mutant cells lacked a copper-dependent oxidase activity associated with the extracytosolic domain of the FET3-encoded protein, a ceruloplasmin homologue previously shown to be necessary for high-affinity iron uptake in yeast. Copper restored oxidase activity both in vitro and in vivo, paralleling the ability of copper to restore respiration and iron uptake. These results suggest that the CCC2-encoded protein is required for the export of copper from the cytosol into an extracytosolic compartment, supporting the proposal that intracellular copper transport is impaired in Wilson disease and Menkes disease.
Collapse
|
research-article |
30 |
323 |
12
|
Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res Bull 2001; 55:175-85. [PMID: 11470313 DOI: 10.1016/s0361-9230(01)00454-3] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-beta-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer's disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer's disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer's disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.
Collapse
|
Review |
24 |
320 |
13
|
Petrukhin K, Fischer SG, Pirastu M, Tanzi RE, Chernov I, Devoto M, Brzustowicz LM, Cayanis E, Vitale E, Russo JJ. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993; 5:338-43. [PMID: 8298640 DOI: 10.1038/ng1293-338] [Citation(s) in RCA: 299] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper transport which map to chromosome 13q14.3. In pursuit of the WD gene, we developed yeast artificial chromosome and cosmid contigs, and microsatellite markers which span the WD gene region. Linkage disequilibrium and haplotype analysis of 115 WD families confined the disease locus to a single marker interval. A candidate cDNA clone was mapped to this interval which, as shown in the accompanying paper, is very likely the WD gene. Our haplotype and mutation analyses predict that approximately half of all WD mutations will be rare in the American and Russian populations.
Collapse
|
Comparative Study |
32 |
299 |
14
|
Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet 1994; 7:541-5. [PMID: 7951327 DOI: 10.1038/ng0894-541] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Long-Evans Cinnamon (LEC) rat shows similarity to Wilson disease in many clinical and biochemical features. We have cloned cDNAs for the rat gene (Atp7b) homologous to the human Wilson disease gene (ATP7B) and have used them to identify a partial deletion in the Atp7b gene in the LEC rat. The deletion removes at least 900 bp of the coding region at the 3' end, includes the crucial ATP binding domain and extends downstream of the gene. Our results provide convincing evidence for defining the LEC rat as an animal model for Wilson disease. This model will be important for studying liver pathophysiology, for developing therapy for Wilson disease and for studying the pathway of copper transport and its possible interaction with other heavy metals.
Collapse
|
Comparative Study |
31 |
264 |
15
|
de Bie P, Muller P, Wijmenga C, Klomp LWJ. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 2007; 44:673-88. [PMID: 17717039 PMCID: PMC2752173 DOI: 10.1136/jmg.2007.052746] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper-induced trafficking, post-translational modifications and protein-protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
Collapse
|
Review |
18 |
258 |
16
|
Coffey AJ, Durkie M, Hague S, McLay K, Emmerson J, Lo C, Klaffke S, Joyce CJ, Dhawan A, Hadzic N, Mieli-Vergani G, Kirk R, Elizabeth Allen K, Nicholl D, Wong S, Griffiths W, Smithson S, Giffin N, Taha A, Connolly S, Gillett GT, Tanner S, Bonham J, Sharrack B, Palotie A, Rattray M, Dalton A, Bandmann O. A genetic study of Wilson's disease in the United Kingdom. Brain 2013; 136:1476-87. [PMID: 23518715 PMCID: PMC3634195 DOI: 10.1093/brain/awt035] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/18/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
Previous studies have failed to identify mutations in the Wilson's disease gene ATP7B in a significant number of clinically diagnosed cases. This has led to concerns about genetic heterogeneity for this condition but also suggested the presence of unusual mutational mechanisms. We now present our findings in 181 patients from the United Kingdom with clinically and biochemically confirmed Wilson's disease. A total of 116 different ATP7B mutations were detected, 32 of which are novel. The overall mutation detection frequency was 98%. The likelihood of mutations in genes other than ATP7B causing a Wilson's disease phenotype is therefore very low. We report the first cases with Wilson's disease due to segmental uniparental isodisomy as well as three patients with three ATP7B mutations and three families with Wilson's disease in two consecutive generations. We determined the genetic prevalence of Wilson's disease in the United Kingdom by sequencing the entire coding region and adjacent splice sites of ATP7B in 1000 control subjects. The frequency of all single nucleotide variants with in silico evidence of pathogenicity (Class 1 variant) was 0.056 or 0.040 if only those single nucleotide variants that had previously been reported as mutations in patients with Wilson's disease were included in the analysis (Class 2 variant). The frequency of heterozygote, putative or definite disease-associated ATP7B mutations was therefore considerably higher than the previously reported occurrence of 1:90 (or 0.011) for heterozygote ATP7B mutation carriers in the general population (P < 2.2 × 10(-16) for Class 1 variants or P < 5 × 10(-11) for Class 2 variants only). Subsequent exclusion of four Class 2 variants without additional in silico evidence of pathogenicity led to a further reduction of the mutation frequency to 0.024. Using this most conservative approach, the calculated frequency of individuals predicted to carry two mutant pathogenic ATP7B alleles is 1:7026 and thus still considerably higher than the typically reported prevalence of Wilson's disease of 1:30 000 (P = 0.00093). Our study provides strong evidence for monogenic inheritance of Wilson's disease. It also has major implications for ATP7B analysis in clinical practice, namely the need to consider unusual genetic mechanisms such as uniparental disomy or the possible presence of three ATP7B mutations. The marked discrepancy between the genetic prevalence and the number of clinically diagnosed cases of Wilson's disease may be due to both reduced penetrance of ATP7B mutations and failure to diagnose patients with this eminently treatable disorder.
Collapse
|
research-article |
12 |
245 |
17
|
Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 1999; 97:383-93. [PMID: 10319818 DOI: 10.1016/s0092-8674(00)80747-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ethylene is an important regulator of plant growth. We identified an Arabidopsis mutant, responsive-to-antagonist1 (ran1), that shows ethylene phenotypes in response to treatment with trans-cyclooctene, a potent receptor antagonist. Genetic epistasis studies revealed an early requirement for RAN1 in the ethylene pathway. RAN1 was cloned and found to encode a protein with similarity to copper-transporting P-type ATPases, including the human Menkes/Wilson proteins and yeast Ccc2p. Expression of RAN1 complemented the defects of a ccc2delta mutant, demonstrating its function as a copper transporter. Transgenic CaMV 35S::RAN1 plants showed constitutive expression of ethylene responses, due to cosuppression of RAN1. These results provide an in planta demonstration that ethylene signaling requires copper and reveal that RAN1 acts by delivering copper to create functional hormone receptors.
Collapse
|
|
26 |
234 |
18
|
Shah AB, Chernov I, Zhang HT, Ross BM, Das K, Lutsenko S, Parano E, Pavone L, Evgrafov O, Ivanova-Smolenskaya IA, Annerén G, Westermark K, Urrutia FH, Penchaszadeh GK, Sternlieb I, Scheinberg IH, Gilliam TC, Petrukhin K. Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analyses. Am J Hum Genet 1997; 61:317-28. [PMID: 9311736 PMCID: PMC1715895 DOI: 10.1086/514864] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wilson disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver and subsequently in the brain and other organs. On the basis of sequence homology to known genes, the WD gene (ATP7B) appears to be a copper-transporting P-type ATPase. A search for ATP7B mutations in WD patients from five population samples, including 109 North American patients, revealed 27 distinct mutations, 18 of which are novel. A composite of published findings shows missense mutations in all exons-except in exons 1-5, which encode the six copper-binding motifs, and in exon 21, which spans the carboxy-terminus and the poly(A) tail. Over one-half of all WD mutations occur only rarely in any population sample. A splice-site mutation in exon 12 accounts for 3% of the WD mutations in our sample and produces an in-frame, 39-bp insertion in mRNA of patients homozygous, but not heterozygous, for the mutation. The most common WD mutation (His1069Glu) was represented in approximately 38% of all the WD chromosomes from the North American, Russian, and Swedish samples. In several population cohorts, this mutation deviated from Hardy-Weinberg equilibrium, with an overrepresentation of homozygotes. We did not find a significant correlation between His1069Glu homozygosity and several clinical indices, including age of onset, clinical manifestation, ceruloplasmin activity, hepatic copper levels, and the presence of Kayser-Fleischer rings. Finally, lymphoblast cell lines from individuals homozygous for His1069Glu and 4 other mutations all demonstrated significantly decreased copper-stimulated ATPase activity.
Collapse
|
research-article |
28 |
228 |
19
|
Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH, Gilliam TC. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet 1994; 3:1647-56. [PMID: 7833924 DOI: 10.1093/hmg/3.9.1647] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wilson disease is an autosomal recessive disorder of copper transport. Disease symptoms develop from the toxic build-up of copper primarily in the liver, and subsequently in the brain, kidney, cornea and other tissues. A candidate gene for WD (ATP7B) has recently been identified based upon apparent disease-specific mutations and a striking amino acid homology to the gene (ATP7A) responsible for another human copper transport disorder, X-linked Menkes disease (MNK). The cloning of WD and MNK genes provides the first opportunity to study copper homeostasis in humans. A preliminary analysis of the WD gene is presented which includes: isolation and characterization of the 5'-end of the gene; construction of a genomic restriction map; identification of all 21 exon/intron boundaries; characterization of extensive alternative splicing in brain; prediction of structure/function features of the WD and MNK proteins which are unique to the subset of heavy metal-transporting P-type ATPases; and comparative analysis of the six metal-binding domains. The analysis indicates that WD and MNK proteins belong to a subset of transporting ATPases with several unique features presumably reflecting their specific regulation and function. It appears that the mechanism of alternative splicing serves to regulate the amount of functional WD protein produced in brain, kidney, placenta, and possibly in liver.
Collapse
|
|
31 |
225 |
20
|
Abstract
In this review, our basic and most recent understanding of copper biochemistry and molecular biology for mammals (including humans) is described. Information is provided on the nutritional biochemistry of copper, including food sources, intestinal absorption, transport, tissue distribution, and excretion, along with descriptions of copper binding proteins and other factors involved and their roles in these processes. The metabolism of copper and its importance for the functions of a roster of vital enzymes is detailed. Its potential toxicology is also addressed. Alterations in copper metabolism associated with genetic and nongenetic diseases are summarized, including potential connections to inflammation, cancer, atherosclerosis, and anemia, and the effects of genetic copper deficiency (Menkes syndrome) and copper overload (Wilson disease). Understanding these diseases suggests new ways of viewing the normal functions of copper and provides new insights into the details of copper transport and distribution in mammals.
Collapse
|
Review |
29 |
224 |
21
|
Steindl P, Ferenci P, Dienes HP, Grimm G, Pabinger I, Madl C, Maier-Dobersberger T, Herneth A, Dragosics B, Meryn S, Knoflach P, Granditsch G, Gangl A. Wilson's disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology 1997; 113:212-218. [PMID: 9207280 DOI: 10.1016/s0016-5085(97)70097-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In patients with Wilson's disease presenting with liver involvement, the correct diagnosis is often missed or delayed. The aim of this study was to find an algorithm for diagnosis of this difficult patient group. METHODS Clinical and laboratory findings of 55 patients with Wilson's disease were evaluated at diagnosis before treatment. Presenting symptom was chronic liver disease in 17 patients, fulminant hepatic failure in 5 patients, hemolysis in 3 patients, and neurological disease in 20 patients, and 10 patients were detected by family screening (siblings). Evaluation included neurological and ophthalmologic examination, routine laboratory tests, and parameters of copper metabolism including liver copper content in 43 liver biopsy specimens. RESULTS In the whole group, serum ceruloplasmin level was <20 mg/dL in 73%, urinary copper excretion was increased in 88%, and liver copper content was elevated in 91% at diagnosis. Kayser-Fleischer rings were detected in 55%. In contrast to patients with neurological disease (90% Kayser-Fleischer rings, 85% low ceruloplasmin), only 65% of patients presenting with liver disease were diagnosed by these typical findings. Ceruloplasmin levels were lower in patients with Kayser-Fleischer rings or with neurological disturbances than in patients without these symptoms. CONCLUSIONS The commonly used clinical and laboratory parameters are not sufficient to exclude the diagnosis of Wilson's disease in patients with liver disease of unknown origin.
Collapse
|
|
28 |
222 |
22
|
Abstract
Little is known at the molecular level about the homeostatic control of heavy-metal concentrations in mammals. Recently, however, two human diseases that disrupt copper transport, Menkes disease and Wilson disease, were found to be caused by mutations in two closely related genes, MNK and WND, which encode proteins belonging to the P-type ATPase family of cation transporters. The MNK and WND proteins are unique in having at their amino termini six copies of a sequence that is remarkably similar to sequences previously found in bacterial heavy-metal-resistance proteins and in a P-type ATPase that appears to form part of a bacterial copper homeostatic system. These two human ATPases are the first putative heavy-metal transporters to be discovered in eukaryotes.
Collapse
|
Review |
31 |
214 |
23
|
Abstract
Copper (Cu) is a potentially toxic yet essential element. MENKES DISEASE, a copper deficiency disorder, and WILSON DISEASE, a copper toxicosis condition, are two human genetic disorders, caused by mutations of two closely related Cu-transporting ATPases. Both molecules efflux copper from cells. Quite diverse clinical phenotypes are produced by different mutations of these two Cu-transporting proteins. The understanding of copper homeostasis has become increasingly important in clinical medicine as the metal could be involved in the pathogenesis of some important neurological disorders such as Alzheimer's disease, motor neurone diseases and prion diseases.
Collapse
|
Review |
24 |
212 |
24
|
Frydman M, Bonné-Tamir B, Farrer LA, Conneally PM, Magazanik A, Ashbel S, Goldwitch Z. Assignment of the gene for Wilson disease to chromosome 13: linkage to the esterase D locus. Proc Natl Acad Sci U S A 1985; 82:1819-21. [PMID: 3856863 PMCID: PMC397364 DOI: 10.1073/pnas.82.6.1819] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wilson disease (WD) is an autosomal recessively inherited disorder of copper metabolism for which the basic defect is still unknown. Twenty-seven autosomal markers were investigated for linkage in a large inbred kindred with affected individuals in two generations. Also, serum copper and ceruloplasmin were measured on all available members. Close linkage (theta = 0.06) with a logarithm of odds (lod) score of 3.21 was found between the gene for WD and the esterase D locus. Efficient detection of linkage was made possible by the use of a multisibship inbred pedigree. The discovery of a polymorphic marker genetically linked to the WD locus has profound implications both for investigation of the primary gene defect and for clinical services.
Collapse
|
research-article |
40 |
210 |
25
|
Abstract
Cellular copper transport processes are required by all organisms for correct utilization in cell biochemical processes and avoidance of the toxicity of copper excess. Copper import into bacterial, yeast, and mammalian cells requires the coordinate function of proteins with both metal-binding and catalytic domains in mediated transport steps. Following entry, detoxification mechanisms found across species include the binding of copper to specific proteins (e.g. metallothioneins) and the transfer of copper into isolated cell compartments (e.g. periplasmic space, lysosome). Multiple proteins mediate intracellular transfers in bacteria, and glutathione may play a major role in cytosolic copper delivery to cuproenzymes in mammalian cells. Study of two human disorders of copper transport, Menkes disease and Wilson disease, led to the identification of an important category of proteins mediating cell copper export. The Menkes and Wilson disease gene products are copper-transporting ATPases of the P type, with ATPase domains and N-terminal metal-binding amino acid motifs that are evolutionarily conserved in unicellular and mammalian organisms. These observations suggest that yeast and bacterial copper transport proteins, or individual domains of these proteins, may generally have homologues in mammalian systems.
Collapse
|
Review |
30 |
208 |