1
|
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609. [PMID: 11483993 DOI: 10.1038/35085068] [Citation(s) in RCA: 2000] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor CREB -- for 'cyclic AMP response element-binding protein' -- functions in glucose homeostasis, growth-factor-dependent cell survival, and has been implicated in learning and memory. CREB is phosphorylated in response to various signals, but how is specificity achieved in these signalling pathways?
Collapse
MESH Headings
- Activating Transcription Factor 1
- Alternative Splicing
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP Response Element Modulator
- Cyclic AMP Response Element-Binding Protein/chemistry
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation/physiology
- Gene Products, tax/physiology
- Growth Substances/physiology
- Human T-lymphotropic virus 1/genetics
- Leucine Zippers
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Models, Molecular
- Multigene Family
- Nuclear Proteins/physiology
- Phosphorylation
- Protein Conformation
- Protein Processing, Post-Translational
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Second Messenger Systems/physiology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
|
Review |
24 |
2000 |
2
|
Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 1995; 15:2809-18. [PMID: 7739562 PMCID: PMC230512 DOI: 10.1128/mcb.15.5.2809] [Citation(s) in RCA: 597] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The eukaryotic transcription factor NF-kappa B plays a central role in the induced expression of human immunodeficiency virus type 1 and in many aspects of the genetic program mediating normal T-cell activation and growth. The nuclear activity of NF-kappa B is tightly regulated from the cytoplasmic compartment by an inhibitory subunit called I kappa B alpha. This cytoplasmic inhibitor is rapidly phosphorylated and degraded in response to a diverse set of NF-kappa B-inducing agents, including T-cell mitogens, proinflammatory cytokines, and viral transactivators such as the Tax protein of human T-cell leukemia virus type 1. To explore these I kappa B alpha-dependent mechanisms for NF-kappa B induction, we identified novel mutants of I kappa B alpha that uncouple its inhibitory and signal-transducing functions in human T lymphocytes. Specifically, removal of the N-terminal 36 amino acids of I kappa B alpha failed to disrupt its ability to form latent complexes with NF-kappa B in the cytoplasm. However, this deletion mutation prevented the induced phosphorylation, degradative loss, and functional release of I kappa B alpha from NF-kappa B in Tax-expressing cells. Alanine substitutions introduced at two serine residues positioned within this N-terminal regulatory region of I kappa B alpha also yielded constitutive repressors that escaped from Tax-induced turnover and that potently inhibited immune activation pathways for NF-kappa B induction, including those initiated from antigen and cytokine receptors. In contrast, introduction of a phosphoserine mimetic at these sites rectified this functional defect, a finding consistent with a causal linkage between the phosphorylation status and proteolytic stability of this cytoplasmic inhibitor. Together, these in vivo studies define a critical signal response domain in I kappa B alpha that coordinately controls the biologic activities of I kappa B alpha and NF-kappa B in response to viral and immune stimuli.
Collapse
|
research-article |
30 |
597 |
3
|
Igakura T, Stinchcombe JC, Goon PKC, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CRM. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003; 299:1713-6. [PMID: 12589003 DOI: 10.1126/science.1080115] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell contact is required for efficient transmission of human T cell leukemia virus- type 1 (HTLV-I) between cells and between individuals, because naturally infected lymphocytes produce virtually no cell-free infectious HTLV-I particles. However, the mechanism of cell-to-cell spread of HTLV-I is not understood. We show here that cell contact rapidly induces polarization of the cytoskeleton of the infected cell to the cell-cell junction. HTLV-I core (Gag protein) complexes and the HTLV-I genome accumulate at the cell-cell junction and are then transferred to the uninfected cell. Other lymphotropic viruses, such as HIV-1, may similarly subvert normal T cell physiology to allow efficient propagation between cells.
Collapse
|
|
22 |
562 |
4
|
Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 1990; 348:245-8. [PMID: 2146511 DOI: 10.1038/348245a0] [Citation(s) in RCA: 473] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human T-lymphotropic virus type I (HTLV-I), the first human retrovirus to be characterized, is associated with adult T-cell leukaemia and a chronic progressive disease of the central nervous system termed tropical spastic paraparesis, or HTLV-I-associated myelopathy. Only 1% of individuals infected with HTLV-I develop clinical disease however. The various manifestations of an HTLV-I infection may be related to differences in the genetic backgrounds of individuals, infection with variant strains of HTLV-I, differences in viral tropism or host immune response to the virus. Whereas the humoral response to HTLV-I is well characterized, little is known about the human cellular immune response, such as the production of cytotoxic T lymphocytes. Here we report the presence of high levels of circulating HTLV-I-specific cytotoxic T lymphocytes in patients with HTLV-I associated neurological disease but not in HTLV-I seropositive individuals without neurological involvement. These cytotoxic T lymphocytes are CD8+, HLA class I- restricted and predominantly recognize the HTLV-I gene products encoded in the regulatory region pX. These findings suggest that HTLV-I-specific cytotoxic T lymphocytes may contribute to the pathogenesis of associated neurological disorders associated with HTLV-I.
Collapse
MESH Headings
- Adult
- Cell Line, Transformed
- DNA, Recombinant
- Female
- Gene Expression
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, rex/genetics
- Gene Products, rex/immunology
- Gene Products, tax/genetics
- Gene Products, tax/immunology
- HTLV-I Infections/immunology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia, T-Cell/immunology
- Male
- Middle Aged
- Paraparesis, Tropical Spastic/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Transfection
- Vaccinia virus/genetics
Collapse
|
|
35 |
473 |
5
|
Satou Y, Yasunaga JI, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 2006; 103:720-5. [PMID: 16407133 PMCID: PMC1334651 DOI: 10.1073/pnas.0507631103] [Citation(s) in RCA: 464] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in 2-5% of carriers after a long latent period. An HTLV-I encoded protein, Tax, induces proliferation and inhibits apoptosis, resulting in clonal proliferation of infected cells. However, tax gene expression in ATL cells is disrupted by several mechanisms, including genetic changes in the tax gene and DNA methylation/deletion of the 5' long terminal repeat (LTR). Because Tax is the major target of cytotoxic T-lymphocytes in vivo, loss of Tax expression should enable ATL cells to escape the host immune system. The 5' LTR of HTLV-I is frequently hypermethylated or deleted in ATL cells, whereas the 3' LTR remains unmethylated and intact, suggesting the involvement of the 3' LTR in leukemogenesis. Here we show that a gene encoded by the minus strand of the HTLV-I proviral genome, HTLV-I basic leucine zipper factor (HBZ), is transcribed from 3'-LTR in all ATL cells. Suppression of HBZ gene transcription by short interfering RNA inhibits proliferation of ATL cells. In addition, HBZ gene expression promotes proliferation of a human T cell line. Analyses of T cell lines transfected with mutated HBZ genes showed that HBZ promotes T cell proliferation in its RNA form, whereas HBZ protein suppresses Tax-mediated viral transcription through the 5' LTR. Thus, the single HBZ gene has bimodal functions in two different molecular forms. The growth-promoting activity of HBZ RNA likely plays an important role in oncogenesis by HTLV-I.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
464 |
6
|
Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, Osame M. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 1998; 4:586-93. [PMID: 10065900 DOI: 10.3109/13550289809114225] [Citation(s) in RCA: 463] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to examine the effect of HTLV-I proviral load on the pathogenesis of HAM/TSP, we measured the HTLV-I proviral load in peripheral blood mononuclear cells (PBMC) from a large number of HAM/TSP patients and asymptomatic HTLV-I carriers. To measure the proviral load, we used an accurate and reproducible quantitative PCR method using a dual-labeled fluorogenic probe (ABI PRISM 7700 Sequence Detection System). The mean +/- standard error of mean (s.e.m.) HTLV-I proviral copy number per 1 x 10(4) PBMC was 798 +/- 51 (median 544) in 202 HAM/TSP patients; 120 +/- 17 (median 34) in 200 non HAM-related (general) asymptomatic HTLV-I carriers (RC); and 496 +/- 82 (median 321) in 43 asymptomatic HTLV-I carriers genetically related to HAM/TSP patients (FA). The prevalence of HAM/TSP rises exponentially with log (proviral load) once the proviral load exceeds 1% PBMC. The HTLV-I proviral load of female patients with HAM/TSP was significantly higher than that of male patients, however there was no significant difference in proviral load between sexes in RC. There was a significant correlation between the proviral load and the concentration of neopterin in CSF of HAM/TSP patients. These results indicate that the HTLV-I proviral load in PBMC may be related to the inflammatory process in the spinal cord lesion. The increased proviral load in FA suggests the existence of genetic factors contributing to the replication of HTLV-I in vivo.
Collapse
|
|
27 |
463 |
7
|
Abstract
Mathematical models, which are based on a firm understanding of biological interactions, can provide nonintuitive insights into the dynamics of host responses to infectious agents and can suggest new avenues for experimentation. Here, a simple mathematical approach is developed to explore the relation between antiviral immune responses, virus load, and virus diversity. The model results are compared to data on cytotoxic T cell responses and viral diversity in infections with the human T cell leukemia virus (HTLV-1) and the human immunodeficiency virus (HIV-1).
Collapse
|
|
29 |
456 |
8
|
Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol 2002; 76:12813-22. [PMID: 12438606 PMCID: PMC136662 DOI: 10.1128/jvi.76.24.12813-12822.2002] [Citation(s) in RCA: 382] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of the human T-cell leukemia virus type 1 (HTLV-1) codes for proteins involved in infectivity, replication, and transformation. We report in this study the characterization of a novel viral protein encoded by the complementary strand of the HTLV-1 RNA genome. This protein, designated HBZ (for HTLV-1 bZIP factor), contains a N-terminal transcriptional activation domain and a leucine zipper motif in its C terminus. We show here that HBZ is able to interact with the bZIP transcription factor CREB-2 (also called ATF-4), known to activate the HTLV-1 transcription by recruiting the viral trans-activator Tax on the Tax-responsive elements (TxREs). However, we demonstrate that the HBZ/CREB-2 heterodimers are no more able to bind to the TxRE and cyclic AMP response element sites. Taking these findings together, the functional inactivation of CREB-2 by HBZ is suggested to contribute to regulation of the HTLV-1 transcription. Moreover, the characterization of a minus-strand gene protein encoded by HTLV-1 has never been reported until now.
Collapse
|
research-article |
23 |
382 |
9
|
Tagaya Y, Bamford RN, DeFilippis AP, Waldmann TA. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 1996; 4:329-36. [PMID: 8612127 DOI: 10.1016/s1074-7613(00)80246-0] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
Review |
29 |
355 |
10
|
Abstract
The human T cell leukemia virus-1 (HTLV-1) is a retrovirus that causes adult T cell leukemia (ATL) and neurological disorder, the tropical spastic paraparesis (HAM/TSP). The pathogenesis apparently results from the pleiotropic function of Tax protein, which is a key regulator of viral replication. Tax exerts (a) trans-activation and -repression of transcription of different sets of cellular genes through binding to groups of transcription factors and coactivators, (b) dysregulation of cell cycle through binding to inhibitors of CDK4/6, and (c) inhibition of some tumor suppressor proteins. These effects on a wide variety of cellular targets seem to cooperate in promoting cell proliferation. This is an effective viral strategy to amplify its proviral genome through replication of infected cells; ultimately it results in cell transformation and leukemogenesis.
Collapse
|
Review |
24 |
353 |
11
|
Smith MR, Greene WC. Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev 1990; 4:1875-85. [PMID: 2276622 DOI: 10.1101/gad.4.11.1875] [Citation(s) in RCA: 345] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The type I human T-cell leukemia virus (HTLV-I) encodes a 40-kD nuclear trans-regulatory protein termed Tax that transcriptionally activates the HTLV-I long terminal repeat (LTR), as well as select [corrected] cellular and heterologous viral promoters. Tax does not bind DNA specifically but, rather, acts in a more indirect manner. Tax activation of the HTLV-I LTR is mediated through constitutively expressed cellular factors that bind to cAMP response elements (CREs) present within the 21-bp enhancers of the LTR. In contrast, Tax transactivation of the interleukin-2 receptor-alpha gene (IL-2R alpha) and LTR of the type 1 human immunodeficiency virus (HIV-1) involves the induced nuclear expression of NF-kappa B. We now report the identification of missense mutations within the tax gene that functionally segregate these two pathways of trans-activation. Additionally, we demonstrate that the carboxyl terminus of the Tax protein, despite its acidic and predicted alpha-helical structure, is completely dispensable for trans-activation through either of these transcription factor pathways. Finally, we demonstrate that mutations within a putative zinc finger domain disrupt the nuclear localization of Tax and abolish trans-activation. These results demonstrate that Tax trans-activation of viral and cellular promoters involves at least two mechanisms of host transcription factor activation and suggest that this activation is likely mediated through distinct functional domains.
Collapse
|
|
35 |
345 |
12
|
Tanaka A, Takahashi C, Yamaoka S, Nosaka T, Maki M, Hatanaka M. Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro. Proc Natl Acad Sci U S A 1990; 87:1071-5. [PMID: 2300570 PMCID: PMC53412 DOI: 10.1073/pnas.87.3.1071] [Citation(s) in RCA: 338] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) is a causative agent of adult T-cell leukemia (ATL). To elucidate the role of HTLV-I in leukemogenesis, we examined the biological activity of a defective HTLV-I provirus with the env-pX 3' long terminal repeat region cloned from leukemic cells of an ATL patient. Transfection experiments showed growth stimulation of NIH 3T3 cells--growing beyond the saturation density and growing in soft agar. Since the pX sequence is known to encode three proteins, Tax, Rex, and p21x, the biological activity of each pX gene was examined separately. The growth-stimulating activity was induced only by the tax gene in NIH 3T3 cells and Rat-1 cells. Furthermore, the tax gene induced tumorigenicity in nude mice when introduced into Rat-1 cells. Thus, a transcriptional transactivator gene of HTLV-I, tax, is clearly identified as a viral oncogene without a cellular homolog. The transforming activity of tax, possibly via a transcriptional deregulation of cell growth control, may play an important role in leukemogenesis of ATL in addition to its aberrant stimulation of the interleukin 2 system.
Collapse
|
research-article |
35 |
338 |
13
|
Abstract
HTLV-I infection is causally associated with a variety of human diseases including leukemia/lymphoma, myelopathy, uveitis, and arthropathy. Tax protein of HTLV-I, which is considered oncogenic, binds to transcription factors or other cytoplasmic cellular molecules involved in the fundamental cell function and thereby induces cellular changes. The interaction between HTLV-I-infected cells with dysregulated function and different kinds of cells in the host, such as lymphocytes and vascular endothelial cells through viral peptides, antigen receptors cell adhesion molecules, and cytokines, appears to be one of the basic mechanisms underlying the development of HTLV-I-associated diseases. This interaction may play a major role in determining tumorigenicity and in forming clinical features of the diseases. The in vivo cell proliferation model of HTLV-I-infected cells using severe combined immunodeficient (SCID) mice can differentiate tumorigenicity from cell immortalization in vitro. The OX40 and its ligand gp34, which are induced by HTLV-I infection and directly mediate the adhesion between HTLV-I-infected T cells and vascular endothelial cells, may be critically involved in the localization and proliferation of HTLV-I-infected cells in vivo.
Collapse
MESH Headings
- Animals
- Arthritis, Infectious/etiology
- Cell Adhesion
- Cell Division
- Endothelium, Vascular/pathology
- Gene Products, tax/physiology
- Genome, Viral
- HTLV-I Infections/etiology
- HTLV-I Infections/pathology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- In Vitro Techniques
- Leukemia-Lymphoma, Adult T-Cell/etiology
- Lymphoma, T-Cell, Cutaneous/etiology
- Mice
- Mice, SCID
- Paraparesis, Tropical Spastic/etiology
- T-Lymphocytes, Cytotoxic/immunology
- Uveitis/etiology
- Viral Proteins/physiology
Collapse
|
Review |
28 |
321 |
14
|
Lee H, Swanson P, Shorty VS, Zack JA, Rosenblatt JD, Chen IS. High rate of HTLV-II infection in seropositive i.v. drug abusers in New Orleans. Science 1989; 244:471-5. [PMID: 2655084 DOI: 10.1126/science.2655084] [Citation(s) in RCA: 311] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Confirmed infection with HTLV-II (human T cell leukemia virus type II) has been described only in rare cases. The major limitation to serological diagnosis of HTLV-II has been the difficulty of distinguishing HTLV-II from HTLV-I (human T cell leukemia virus type I) infection, because of substantial cross-reactivity between the viruses. A sensitive modification of the polymerase chain reaction method was used to provide unambiguous molecular evidence that a significant proportion of intravenous drug abusers are infected with HTLV, and the majority of these individuals are infected with HTLV-II rather than HTLV-I. Of 23 individuals confirmed by polymerase chain reaction analysis to be infected with HTLV, 21 were identified to be infected with HTLV-II, and 2 were infected with HTLV-I. Molecular identification of an HTLV-II--infected population provides an opportunity to investigate the pathogenicity of HTLV-II in humans.
Collapse
|
|
36 |
311 |
15
|
Abstract
Computer methods of accurate gene finding in DNA sequences require models of protein coding and non-coding regions derived either from experimentally validated training sets or from large amounts of anonymous DNA sequence. Here we propose a new, heuristic method producing fairly accurate inhomogeneous Markov models of protein coding regions. The new method needs such a small amount of DNA sequence data that the model can be built 'on the fly' by a web server for any DNA sequence >400 nt. Tests on 10 complete bacterial genomes performed with the GeneMark.hmm program demonstrated the ability of the new models to detect 93.1% of annotated genes on average, while models built by traditional training predict an average of 93.9% of genes. Models built by the heuristic approach could be used to find genes in small fragments of anonymous prokaryotic genomes and in genomes of organelles, viruses, phages and plasmids, as well as in highly inhomogeneous genomes where adjustment of models to local DNA composition is needed. The heuristic method also gives an insight into the mechanism of codon usage pattern evolution.
Collapse
|
research-article |
26 |
310 |
16
|
Abstract
The HTLV Tax protein is crucial for viral replication and for initiating malignant transformation leading to the development of adult T-cell leukemia. Tax has been shown to be oncogenic, since it transforms and immortalizes rodent fibroblasts and human T-lymphocytes. Through CREB, NF-kappaB and SRF pathways Tax transactivates cellular promoters including those of cytokines (IL-13, IL-15), cytokine receptors (IL-2Ralpha) and costimulatory surface receptors (OX40/OX40L) leading to upregulated protein expression and activated signaling cascades (e.g. Jak/STAT, PI3Kinase, JNK). Tax also stimulates cell growth by direct binding to cyclin-dependent kinase holenzymes and/or inactivating tumor suppressors (e.g. p53, DLG). Moreover, Tax silences cellular checkpoints, which guard against DNA structural damage and chromosomal missegregation, thereby favoring the manifestation of a mutator phenotype in cells.
Collapse
|
|
20 |
305 |
17
|
Abstract
Embryonic stem cells (ESCs) and other primitive stem cells of mice have been known for more than 30 years to potently block retrovirus replication. Infection of ESCs by the murine leukaemia viruses (MLVs) results in the normal establishment of integrated proviral DNA, but this DNA is then transcriptionally silenced, preventing further viral spread. The repression is largely mediated by trans-acting factors that recognize a conserved sequence element termed the primer binding site, an 18-base pair sequence complementary to the 3' end of a cellular transfer RNA. A specific tRNA is annealed to the primer binding site sequence of the viral genomic RNA, and is used to prime DNA synthesis. This same sequence in the context of the integrated proviral DNA is targeted for silencing in ESCs. We have recently shown that a large protein complex binding to the primer binding site in ESCs contains TRIM28 (refs 8, 9), a well-characterized transcriptional co-repressor. An important question remains as to the identity of the factor that directly recognizes integrated retroviral DNAs and recruits TRIM28 to mediate their specific silencing. Here we identify the zinc finger protein ZFP809 as the recognition molecule that bridges the integrated proviral DNA and TRIM28. We show that expression of ZFP809 is sufficient to render even differentiated cells highly resistant to MLV infection. Furthermore, we demonstrate that ZFP809 is able to potently block transcription from DNA constructs of human T-cell lymphotropic virus-1 (HTLV-1), which use the same primer tRNA. These results identify ZFP809 as a DNA-binding factor that specifically recognizes a large subset of mammalian retroviruses and retroelements, targeting them for transcriptional silencing. We propose that ZFP809 evolved as a stem-cell-specific retroviral restriction factor, and therefore constitutes a new component of the intrinsic immune system of stem cells.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
300 |
18
|
Grossman WJ, Kimata JT, Wong FH, Zutter M, Ley TJ, Ratner L. Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A 1995; 92:1057-61. [PMID: 7862633 PMCID: PMC42636 DOI: 10.1073/pnas.92.4.1057] [Citation(s) in RCA: 293] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human T-cell leukemia virus type I Tax protein trans-activates several cellular genes implicated in T-cell replication and activation. To investigate its leukemogenic potential, Tax was targeted to the mature T-lymphocyte compartment in transgenic mice by using the human granzyme B promoter. These mice developed large granular lymphocytic leukemia, demonstrating that expression of Tax in the lymphocyte compartment is sufficient for the development of leukemia. Furthermore, these observations suggest that human T-cell leukemia virus infection may be involved in the development of large granular lymphocytic leukemia.
Collapse
|
research-article |
30 |
293 |
19
|
Kwok RP, Laurance ME, Lundblad JR, Goldman PS, Shih H, Connor LM, Marriott SJ, Goodman RH. Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 1996; 380:642-6. [PMID: 8602268 DOI: 10.1038/380642a0] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Tax protein of human T-lymphotropic virus (HTLV)-1 activates expression of the HTLV-1 long terminal repeat through a DNA element that resembles the cellular cyclic AMP-regulated enhancer (CRE). Tax contains a transcriptional activation domain, but its ability to activate gene expression depends on interactions with cellular CRE-binding proteins such as CREB. Whether Tax can activate the expression of cellular CRE-containing genes has been controversial. Here we show that Tax can activate both the HTLV-1 and consensus cellular CREs, and propose that this activation may occur through mechanisms that are differentially dependent on CREB phosphorylation. Tax not only increases the binding of CREB to the viral CRE but also recruits the transcriptional co-activator CBP in a manner independent of CREB phosphorylation. In contrast, association of Tax with the cellular CRE occurs through CBP which, in turn, is recruited only in the presence of phosphorylated CREB.
Collapse
|
|
29 |
284 |
20
|
Fujii M, Sassone-Corsi P, Verma IM. c-fos promoter trans-activation by the tax1 protein of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A 1988; 85:8526-30. [PMID: 2847164 PMCID: PMC282491 DOI: 10.1073/pnas.85.22.8526] [Citation(s) in RCA: 275] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To understand the mechanisms of oncogenesis by human T-cell leukemia virus type I, we have investigated the ability of the tax1, protein to modulate transcription of protooncogenes. By using a transient cotransfection assay, we report that the protooncogene fos promoter is transactivated by tax1 in a variety of cell types. Two regions containing upstream sequences between positions -362/-324 and -323/-276 of the c-fos promoter responded to this activation and also conferred tax1 responsiveness to the heterologous herpesvirus thymidine kinase promoter. These two sequences include elements mediating the induction by v-sis-conditioned medium and serum, phorbol ester, or epidermal growth factor, respectively. Furthermore, expression of the endogenous c-fos gene was activated by tax1 in human T-cell leukemia virus type I-infected cell lines. In contrast, no trans-activation of the c-myc or c-Ha-ras promoter was observed.
Collapse
|
research-article |
37 |
275 |
21
|
Grassmann R, Dengler C, Müller-Fleckenstein I, Fleckenstein B, McGuire K, Dokhelar MC, Sodroski JG, Haseltine WA. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc Natl Acad Sci U S A 1989; 86:3351-5. [PMID: 2541443 PMCID: PMC287130 DOI: 10.1073/pnas.86.9.3351] [Citation(s) in RCA: 270] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of the X region of the genome of the human T-cell leukemia virus type I (HTLV-I) in the immortalization of lymphocytes has been difficult to distinguish from its role in viral replication as this region encodes at least two genes, tax and rex, required for replication and the expression of viral proteins. To determine whether the X region does encode immortalizing functions, a fragment of the HTLV-I provirus capable of expressing known X-region proteins was inserted into the genome of a transformation-defective, replication-competent Herpesvirus saimiri. Infection of fresh mitogen-activated human cord blood and thymocytes yielded immortal T-cell lines that had the same phenotype (CD4+, CD5+, HLA class II+, interleukin 2 receptor alpha-chain +) as lymphocytes transformed by cocultivation with HTLV-I. These experiments demonstrate that the X region encodes the functions of HTLV-I that immortalize a distinct subpopulation of human T cells. The experiments also demonstrate the utility of the H. saimiri vector for the transduction of heterologous genes into human T cells.
Collapse
|
research-article |
36 |
270 |
22
|
Zhao LJ, Giam CZ. Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci U S A 1992; 89:7070-4. [PMID: 1386673 PMCID: PMC49647 DOI: 10.1073/pnas.89.15.7070] [Citation(s) in RCA: 266] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
HTLV-I Tax protein activates transcription from three 21-base-pair (bp) repeat sequences in the viral enhancer. The HTLV-I 21-bp repeat contains a TGACGT motif that is homologous to the cAMP-responsive element (CRE) and crucial for tax transactivation. Tax exhibits marginal affinity for DNA but rather interacts with cellular CRE-binding proteins to enhance their affinity for the HTLV-I 21-bp repeats. Using the HTLV-I 21-bp repeat and Jurkat T-lymphocyte nuclear extract in a gel electrophoretic mobility-shift assay, we previously detected three protein-DNA complexes that are specific for the CRE in the 21-bp repeat (complexes I, II, and IV). Complexes I and II but not IV interacted with Tax. We now show that complexes I, II, and IV are composed of CREB (CRE binding protein) homodimer, CREB/ATF-1 (activating transcription factor 1) heterodimer, and ATF-1 homodimer, respectively. Tax stabilizes complexes I and II via a direct interaction with the CREB moiety. In the absence of DNA, CREB and Tax continue to form a complex that can be immunoprecipitated by a Tax-specific antibody. These results suggest that one mechanism by which Tax activates transcription may be mediated through the direct interaction with CREB homodimer and/or CREB/ATF-1 heterodimer to stabilize their assembly on the Tax-responsive CRE motifs in the HTLV-I enhancer.
Collapse
|
research-article |
33 |
266 |
23
|
Siomi H, Shida H, Nam SH, Nosaka T, Maki M, Hatanaka M. Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 1988; 55:197-209. [PMID: 3048703 DOI: 10.1016/0092-8674(88)90043-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The posttranscriptional regulator (p27x-III) of human T cell leukemia virus type I (HTLV-I) is located predominantly in the cell nucleolus. A highly basic amino-terminal sequence (NH2-Met-Pro-Lys-Thr-Arg-Arg-Arg-Pro-Arg-Arg-Ser-Gln-Arg-Lys-Arg-Pro-Pro -Thr- Pro) in this protein, when fused to the amino termini of beta-galactosidase and p40x of HTLV-I, acts as an autonomous signal capable of directing the hybrid proteins to the cell nucleolus.
Collapse
|
|
37 |
266 |
24
|
Navarro F, Bollman B, Chen H, König R, Yu Q, Chiles K, Landau NR. Complementary function of the two catalytic domains of APOBEC3G. Virology 2005; 333:374-86. [PMID: 15721369 DOI: 10.1016/j.virol.2005.01.011] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/07/2004] [Accepted: 01/10/2005] [Indexed: 01/08/2023]
Abstract
The HIV-1 viral accessory protein Vif prevents the encapsidation of the antiviral cellular cytidine deaminases APOBEC3F and APOBEC3G by inducing their proteasomal degradation. In the absence of Vif, APOBEC3G is encapsidated and blocks virus replication by deaminating cytosines of the viral cDNA. APOBEC3G encapsidation has been recently shown to depend on the viral nucleocapsid protein; however, the role of RNA remains unclear. Using APOBEC3G deletion and point mutants, we mapped the encapsidation determinant to the Zn(2+) coordination residues of the N-terminal catalytic domain (CD1). Notably, these residues were also required for RNA binding. Mutations in the two aromatic residues of CD1 but not CD2, which are conserved in cytidine deaminase core domains and are required for RNA binding, prevented encapsidation into HIV-1, HTLV-I and MLV. The Zn(2+) coordination residues of the C-terminal catalytic domain (CD2) were not required for encapsidation but were essential for cytidine deaminase activity and the antiviral effect. These findings suggest a model in which CD1 mediates encapsidation and RNA binding while CD2 mediates cytidine deaminase activity. Interestingly, HTLV-I was relatively resistant to the antiviral effects of encapsidated APOBEC3G.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
263 |
25
|
Jeang KT, Widen SG, Semmes OJ, Wilson SH. HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene. Science 1990; 247:1082-4. [PMID: 2309119 DOI: 10.1126/science.2309119] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiological agent for adult T cell leukemia (ATL). The HTLV-I trans-activator protein Tax can activate the expression of its own long terminal repeat (LTR) and many cellular and viral genes. Tax down-regulated the expression of human beta-polymerase (hu beta-pol), a cellular enzyme involved in host cell DNA repair. This finding suggests a possible correlation between HTLV-I infection and host chromosomal damage, which is often seen in ATL cells.
Collapse
|
|
35 |
259 |