1
|
Abstract
The aim of the present study was to establish the crucial precondition for directional smelling, i.e. the ability of humans to discriminate between odorous stimuli perceived either from the right or from the left side. When the 'pure' odorants hydrogen sulphide or vanillin were used as stimulants localization was random. On the other hand stimulation with carbon dioxide or menthol yielded identification rates of more than 96%. These results established the fact that directional orientation, considering single momentary odorous sensations, can only be assumed, when the olfactory stimulants simultaneously excite the trigeminal somatosensory system.
Collapse
|
Comparative Study |
36 |
157 |
2
|
Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol (1985) 2006; 100:1065-76. [PMID: 16467393 PMCID: PMC1363746 DOI: 10.1152/japplphysiol.00793.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca2+-activated K+ channels. This binding elevates channel Ca2+ sensitivity, that increases coupling of Ca2+ sparks to large-conductance Ca2+-activated K+ channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of l-cysteine catalyzed by cystathione gamma-lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K+ channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferation-associated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
151 |
3
|
Naqvi SW, Jayakumar DA, Narvekar PV, Naik H, Sarma VV, D'Souza W, Joseph S, George MD. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 2000; 408:346-9. [PMID: 11099038 DOI: 10.1038/35042551] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Eutrophication of surface waters and hypoxia in bottom waters has been increasing in many coastal areas, leading to very large depletions of marine life in the affected regions. These areas of high surface productivity and low bottom-water oxygen concentration are caused by increasing runoff of nutrients from land. Although the local ecological and socio-economic effects have received much attention, the potential contribution of increasing hypoxia to global-change phenomena is unknown. Here we report the intensification of one of the largest low-oxygen zones in the ocean, which develops naturally over the western Indian continental shelf during late summer and autumn. We also report the highest accumulations yet observed of hydrogen sulphide (H2S) and nitrous oxide (N2O) in open coastal waters. Increased N2O production is probably caused by the addition of anthropogenic nitrate and its subsequent denitrification, which is favoured by hypoxic conditions. We suggest that a global expansion of hypoxic zones may lead to an increase in marine production and emission of N2O, which, as a potent greenhouse gas, could contribute significantly to the accumulation of radiatively active trace gases in the atmosphere.
Collapse
|
|
25 |
134 |
4
|
Guerrero R, Pedros-Alio C, Esteve I, Mas J, Chase D, Margulis L. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A 1986; 83:2138-42. [PMID: 11542073 PMCID: PMC323246 DOI: 10.1073/pnas.83.7.2138] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.
Collapse
|
research-article |
39 |
111 |
5
|
|
|
52 |
105 |
6
|
|
|
72 |
91 |
7
|
Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H 2S targets. Redox Biol 2020; 34:101525. [PMID: 32505768 PMCID: PMC7276441 DOI: 10.1016/j.redox.2020.101525] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (H2S). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted.
Collapse
|
Review |
5 |
86 |
8
|
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. TRENDS IN PLANT SCIENCE 2021; 26:1270-1285. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters, which are involved in almost all plant physiological and stress-related processes. With its antioxidant regulatory properties, NO on its own ameliorates plant stress, while H2S, a foul-smelling gas, has differential effects. Recent studies have shown that these signaling molecules are involved in intertwined pathway networks. This is due to the contrasting effects of NO and H2S depending on cell type, subcellular compartment, and redox status, as well as the flux and dosage of NO and H2S in different plant species and cellular contexts. Here, we provide a comprehensive review of the complex networks of these molecules, with particular emphasis on root development, stomatal movement, and plant cell death.
Collapse
|
Review |
4 |
76 |
9
|
Stuck BA, Frey S, Freiburg C, Hörmann K, Zahnert T, Hummel T. Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 2006; 117:1367-75. [PMID: 16651024 DOI: 10.1016/j.clinph.2006.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 02/22/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE For chemosensory event-related potentials (ERP) significant effects of age and sex have been demonstrated. The aim of the present study was to assess the effects of stimulus concentration, side of stimulation, and sex on the topographical distribution of chemosensory ERP in a large group of subjects stratified for different age groups. In addition, psychophysical measures of both olfactory and trigeminal function should be assessed in greater detail compared to previous work. METHODS A total of 95 healthy subjects participated in the study. Olfactory functions were tested using the 'Sniffin' Sticks' comprising tests of odor identification, odor discrimination, and odor threshold. Trigeminal sensitivity was assessed on a psychophysical level using a lateralization paradigm. ERP to the olfactory stimulant H2S and the trigeminal irritant CO2 were recorded; stimuli were presented in different concentrations to the left and right nostril. RESULTS Olfactory thresholds exhibited an age-related increase while the outcome of psychophysical trigeminal tests was not significantly affected by age. In contrast, there was no significant main effect of the factor 'sex' for olfactory tests, while women scored higher than men in the trigeminal task. ERP to olfactory and trigeminal stimuli exhibited a relationship to stimulus concentration, age, and sex with youngest women showing largest amplitudes and shortest latencies. There was no significant main effect of left- or right-sided stimulation on ERP. Measures of olfactory function were found to correlate with parameters of olfactory ERP even when controlling for the subject's age. In addition, correlations between scores in the lateralization task and parameters of the trigeminal ERP were found. CONCLUSIONS Based on electrophysiological data obtained in a large sample size the present results established an age-related loss of olfactory and trigeminal function, which appears to be almost linear. Further, the present results emphasize that responses to chemosensory stimuli are related to sex, while the side of stimulation does not play a major role in the presently used paradigm. Finally, these data establish the lateralization paradigm as a psychophysical tool to investigate intranasal trigeminal function. SIGNIFICANCE The present results obtained in a representative group of healthy subjects establishes a comprehensive set of data, which will serve as reference for future work in this area of research.
Collapse
|
|
19 |
75 |
10
|
Yamada H, Kumagai H, Kashima N, Torii H, Enei H, Okumura S. Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem Biophys Res Commun 1972; 46:370-4. [PMID: 5057881 DOI: 10.1016/s0006-291x(72)80148-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
53 |
71 |
11
|
Kimura H. Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 2020; 177:720-733. [PMID: 30657595 PMCID: PMC7024735 DOI: 10.1111/bph.14579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is a signalling molecule that regulates neuronal transmission, vascular tone, cytoprotection, inflammatory responses, angiogenesis, and oxygen sensing. Some of these functions have recently been ascribed to its oxidized form polysulfides (H2 Sn ), which can be produced by 3-mercaptopyruvate sulfurtransferase (MPST), also known as a H2 S-producing enzyme. H2 Sn activate ion channels, tumour suppressors, transcription factors, and protein kinases. H2 Sn S-sulfurate (S-sulfhydrate) cysteine residues of these target proteins to modify their activity by inducing conformational changes through the formation of a disulfide bridge between the two cysteine residues involved. The chemical interaction between H2 S and NO also generates H2 Sn , which may be a chemical entity that exerts the synergistic effect of H2 S and NO. MPST also produces redox regulators cysteine persulfide (CysSSH), GSH persulfide (GSSH), and persulfurated proteins. In addition to MPST, haemoproteins such as haemoglobin, myoglobin, neuroglobin, and catalase as well as SOD can produce H2 Sn , and sulfide quinone oxidoreductase and cysteinyl tRNA synthetase can make GSSH and CysSSH. This review focuses on the recent progress in the study of the production and physiological roles of these persulfurated and polysulfurated molecules. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
|
Review |
5 |
69 |
12
|
Abstract
The aim of this study was to investigate the usefulness of chemosensory event-related potentials (CSERPs) in response to both olfactory and intranasal trigeminal stimulation in the diagnosis of anosmia. Forty-four patients participated. Gaseous CO2 was used for trigeminal stimulation, vanillin and H2S were used as olfactory stimulants. Event-related potentials to olfactory stimuli could not be obtained in any of the anosmic patients, indicating the complete loss of the sense of smell. However, all patients responded to stimulation of the trigeminal nerve with CO2. These data clearly demonstrate the clinical significance of CSERPs in the assessment of anosmia.
Collapse
|
|
27 |
66 |
13
|
Pillai SD, Widmer KW, Dowd SE, Ricke SC. Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge. Appl Environ Microbiol 1996; 62:296-9. [PMID: 8572708 PMCID: PMC167798 DOI: 10.1128/aem.62.1.296-299.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glass impingers (AGI-30) were used at a commercial sludge application site to determine the levels of airborne bacteria and pathogen indicators. Even though heterotrophic bacteria averaged 10(5) CFU/m3, none of the sites showed the presence of Salmonella spp. or indicators such as fecal coliforms or coliphages. Indicators such as H2S producers and pathogenic clostridia were present in locations having significant physical agitation of the sludge material. PCR-based ribotyping using the 16S-23S interspacer region is a promising method to identify the genetic relatedness and origins of airborne clostridia.
Collapse
|
research-article |
29 |
65 |
14
|
Lindvall T, Svensson LT. A quantitative principle of perceived intensity summation in odor mixtures. JOURNAL OF EXPERIMENTAL PSYCHOLOGY 1973; 100:29-38. [PMID: 4744499 DOI: 10.1037/h0035435] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
62 |
15
|
Corpas FJ. Hydrogen Sulfide: A New Warrior against Abiotic Stress. TRENDS IN PLANT SCIENCE 2019; 24:983-988. [PMID: 31494025 DOI: 10.1016/j.tplants.2019.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 05/23/2023]
Abstract
Nitro-oxidative stress in plants involves reactive oxygen and nitrogen species overproduction, which could trigger irreversible cellular damage. In this context, a novel signaling gaseous molecule, hydrogen sulfide (H2S), has emerged, which appears to stimulate the antioxidant system and is capable of mediating effective mechanisms of response to these abiotic stresses.
Collapse
|
|
6 |
62 |
16
|
Bauer M, Heitmann T, Macalady DL, Blodau C. Electron transfer capacities and reaction kinetics of peat dissolved organic matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:139-45. [PMID: 17265939 DOI: 10.1021/es061323j] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Information about electron-transfer reactions of dissolved organic matter (DOM) is lacking. We determined electron acceptor and donor capacities (EAC and EDC) of a peat humic acid and an untreated peat DOM by electrochemical reduction and reduction with metallic Zn and H2S (EAC), and by oxidation with complexed ferric iron (EDC) at pH 6.5. DOC concentrations (10-100 mg L(-1)) and pH values (4.5-8) were varied in selected experiments. EAC reached up to 6.2 mequiv x (g C)(-1) and EDC reached up to 1.52 mequiv-(g C)(-1). EDC decreased with pH and conversion of chelated to colloidal iron, and the electron-transfer capacity (ETC) was controlled by the redox potential Eh of the reactant (ETC = 1.016x Eh - 0.138; R(2) = 0.87; p = 0.05). The kinetics could be adequately described by pseudo first-order rate laws, one or two DOM pools, and time constants ranging from 2.1 x 10(-3) d-1 to 1.9 x 10(-2) d(-1) for the fast pool. Reactions were completed after 24-160 h depending on the redox couple applied. The results indicate that DOM may act as a redox buffer over electrochemical potentials ranging from -0.9 to +1.0 V.
Collapse
|
Comparative Study |
18 |
62 |
17
|
Wallace JL, Nagy P, Feener TD, Allain T, Ditrói T, Vaughan DJ, Muscara MN, de Nucci G, Buret AG. A proof-of-concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide-releasing anti-inflammatory drug. Br J Pharmacol 2020; 177:769-777. [PMID: 30834513 PMCID: PMC7024706 DOI: 10.1111/bph.14641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE ATB-346 is a hydrogen sulfide (H2 S)-releasing anti-inflammatory and analgesic drug. Animal studies demonstrated negligible gastrointestinal (GI) damage despite marked inhibition of COX activity and significant analgesic and anti-inflammatory effects. In humans, ATB-346 (250 mg once daily) was found to inhibit COX to the same extent as naproxen (550 mg twice daily). EXPERIMENTAL APPROACH Two hundred forty-four healthy volunteers completed a 2-week, double-blind study, taking either ATB-346 (250 mg once daily) or naproxen (550 mg twice daily), with upper GI ulceration being examined endoscopically. KEY RESULTS Forty-two per cent of the subjects taking naproxen developed at least one ulcer (≥3-mm diameter), while only 3% of the subjects taking ATB-346 developed at least one ulcer. The two drugs produced comparable and substantial (>94%) suppression of COX activity. Subjects in the naproxen group developed more ulcers per subject than ATB-346-treated subjects and a greater incidence of larger ulcers (≥5-mm diameter). The incidence of dyspepsia, abdominal pain, gastro-oesophageal reflux, and nausea was lower with ATB-346 than with naproxen. Subjects treated with ATB-346 had significantly higher plasma levels of H2 S than those treated with naproxen. CONCLUSIONS AND IMPLICATIONS This Phase 2B study provides unequivocal evidence for a marked reduction of GI toxicity of the H2 S-releasing analgesic/anti-inflammatory drug, ATB-346, as compared to the conventional dose of naproxen that produced equivalent suppression of COX. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
|
Clinical Trial, Phase II |
5 |
61 |
18
|
Hollaus F, Sleytr U. On the taxonomy and fine structure of some hyperthermophilic saccharolytic Clostridia. ARCHIV FUR MIKROBIOLOGIE 1972; 86:129-46. [PMID: 5081116 DOI: 10.1007/bf00413368] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
53 |
60 |
19
|
|
Comparative Study |
46 |
60 |
20
|
Abstract
Methionine has been shown to be a product of the action of a spark discharge on a simulated primitive earth atmosphere containing CH(4), N(2), NH(3), H(2)O, and H(2)S or CH(3)SH. Acrolein has also been shown to be a product of the discharge and is proposed as an intermediate in the prebiotic synthesis of methionine and of glutamic acid, homocysteine, homoserine, and alpha,gamma-diaminobutyric acid.
Collapse
|
|
53 |
59 |
21
|
Kettenmann B, Jousmäki V, Portin K, Salmelin R, Kobal G, Hari R. Odorants activate the human superior temporal sulcus. Neurosci Lett 1996; 203:143-5. [PMID: 8834114 DOI: 10.1016/0304-3940(95)12280-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human olfactory pathways are well defined up to the level of the prepiriform cortex but the neocortical projections and their functional organization are still largely unknown. We recorded whole-scalp neuromagnetic signals to olfactory stimulation with boluses of phenylethyl alcohol, hydrogen sulphide, and vanillin. The main magnetic response peaked about 700 ms after the stimulus onset. The three odorants activated overlapping cortical areas around the superior temporal sulci of both hemispheres, revealing a neocortical area involved in olfactory processing.
Collapse
|
|
29 |
58 |
22
|
Aroca A, Zhang J, Xie Y, Romero LC, Gotor C. Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5893-5904. [PMID: 34077530 PMCID: PMC8355753 DOI: 10.1093/jxb/erab239] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 05/16/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates critical processes and allows plants to adapt to adverse conditions. The molecular mechanism underlying H2S action relies on its chemical reactivity, and the most-well characterized mechanism is persulfidation, which involves the modification of protein thiol groups, resulting in the formation of persulfide groups. This modification causes a change of protein function, altering catalytic activity or intracellular location and inducing important physiological effects. H2S cannot react directly with thiols but instead can react with oxidized cysteine residues; therefore, H2O2 signaling through sulfenylation is required for persulfidation. A comparative study performed in this review reveals 82% identity between sulfenylome and persulfidome. With regard to abscisic acid (ABA) signaling, widespread evidence shows an interconnection between H2S and ABA in the plant response to environmental stress. Proteomic analyses have revealed persulfidation of several proteins involved in the ABA signaling network and have shown that persulfidation is triggered in response to ABA. In guard cells, a complex interaction of H2S and ABA signaling has also been described, and the persulfidation of specific signaling components seems to be the underlying mechanism.
Collapse
|
Review |
4 |
56 |
23
|
Hansen TA, Veldkamp H. Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. ARCHIV FUR MIKROBIOLOGIE 1973; 92:45-58. [PMID: 4725822 DOI: 10.1007/bf00409510] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
56 |
24
|
|
|
50 |
53 |
25
|
Taniguchi T, Kimura T. Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 364:284-95. [PMID: 4370594 DOI: 10.1016/0005-2744(74)90014-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
Comparative Study |
51 |
52 |