1
|
Petroni A, Blasevich M, Salami M, Papini N, Montedoro GF, Galli C. Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb Res 1995; 78:151-60. [PMID: 7482432 DOI: 10.1016/0049-3848(95)00043-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was designed to investigate the in vitro effects of phenolic compounds extracted from olive oil and from olive derived fractions. More specifically, we investigated the effects on platelets of 2-(3,4-di-hydroxyphenyl)-ethanol (DHPE), a phenol component of extra-virgin olive oil with potent antioxidant properties. The following variables were studied: aggregation of platelet rich plasma (PRP) induced by ADP or collagen, and thromboxane B2 production by collagen or thrombin-stimulated PRP. In addition, thromboxane B2 and 12-hydroxyeicosatetraenoic acid (12-HETE) produced during blood clotting were measured in serum. Preincubation of PRP with DHPE for at least 10 min resulted in maximal inhibition of the various measured variables. The IC50s (concentration resulting in 50% inhibition) of DHPE for ADP or collagen-induced PRP aggregations were 23 and 67 microM, respectively. At 400 microM DHPE, a concentration which completely inhibited collagen-induced PRP aggregation, TxB2 production by collagen- or thrombin-stimulated PRP was inhibited by over 80 percent. At the same DHPE concentration, the accumulation of TxB2 and 12-HETE in serum was reduced by over 90 and 50 percent, respectively. We also tested the effects of PRP aggregation of oleuropein, another typical olive oil phenol, and of selected flavnoids (luteolin, apigenin, quercetin) and found them to be much less active. On the other hand a partially characterized phenol-enriched extract obtained from aqueous waste from olive oil showed rather potent activities. Our results are the first evidence that components of the phenolic fraction of olive oil can inhibit platelet function and eicosanoid formation in vitro, and that other, partially characterized, olive derivatives share these biological activities.
Collapse
|
|
30 |
271 |
2
|
Spiecker M, Darius H, Hankeln T, Soufi M, Sattler AM, Schaefer JR, Node K, Börgel J, Mügge A, Lindpaintner K, Huesing A, Maisch B, Zeldin DC, Liao JK. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 2004; 110:2132-6. [PMID: 15466638 PMCID: PMC2633457 DOI: 10.1161/01.cir.0000143832.91812.60] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) 2J2 is expressed in the vascular endothelium and metabolizes arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs). The EETs are potent endogenous vasodilators and inhibitors of vascular inflammation. However, it is not known whether genetic polymorphisms of CYP2J2 are associated with increased cardiovascular risks. METHODS AND RESULTS All 9 exons of the CYP2J2 gene and its proximal promoter were sequenced in 132 patients to identify potential variants. Functional consequence of a single nucleotide polymorphism (SNP) in the promoter of CYP2J2 was further evaluated by use of transcription factor-binding and reporter assays. A total of 17 polymorphisms were identified. One of the most relevant polymorphisms in terms of frequency and functional importance is located at -50 (G-50T) in the proximal promoter of CYP2J2. Screening of 289 patients with coronary artery disease and 255 control subjects revealed 77 individuals with the G-50T SNP (17.3% of coronary artery disease patients, 10.6% of control subjects; P=0.026). The association of the G-50T polymorphism remained significant after adjustment for age, gender, and conventional cardiovascular risk factors (OR, 2.23; 95% CI, 1.04 to 4.79). The G-50T mutation resulted in the loss of binding of the Sp1 transcription factor to the CYP2J2 promoter and resulted in a 48.1+/-2.4% decrease in CYP2J2 promoter activity (P<0.01). Plasma concentrations of stable EET metabolites were significantly lower in individuals with the G-50T SNP. CONCLUSIONS A functionally relevant polymorphism of the CYP2J2 gene is independently associated with an increased risk of coronary artery disease.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
195 |
3
|
Clish CB, O'Brien JA, Gronert K, Stahl GL, Petasis NA, Serhan CN. Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc Natl Acad Sci U S A 1999; 96:8247-52. [PMID: 10393980 PMCID: PMC22220 DOI: 10.1073/pnas.96.14.8247] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspirin (ASA) triggers a switch in the biosynthesis of lipid mediators, inhibiting prostanoid production and initiating 15-epi-lipoxin generation through the acetylation of cyclooxygenase II. These aspirin-triggered lipoxins (ATL) may mediate some of ASA's beneficial actions and therefore are of interest in the search for novel antiinflammatories that could manifest fewer unwanted side effects. Here, we report that design modifications to native ATL structure prolong its biostability in vivo. In mouse whole blood, ATL analogs protected at carbon 15 [15(R/S)-methyl-lipoxin A4 (ATLa1)] and the omega end [15-epi-16-(para-fluoro)-phenoxy-LXA4 (ATLa2)] were recoverable to approximately 90 and 100% at 3 hr, respectively, compared with a approximately 40% loss of native lipoxin A4. ATLa2 retains bioactivity and, at levels as low as approximately 24 nmol/mouse, potently inhibited tumor necrosis factor-alpha-induced leukocyte recruitment into the dorsal air pouch. Inhibition was evident by either local intra-air pouch delivery (approximately 77% inhibition) or systemic delivery by intravenous injection (approximately 85% inhibition) and proved more potent than local delivery of ASA. Rank order for inhibiting polymorphonuclear leukocyte infiltration was: ATLa2 (10 micrograms, i.v.) approximately ATLa2 (10 micrograms, local) approximately dexamethasone (10 micrograms, local) >ASA (1.0 mg, local). Applied topically to mouse ear skin, ATLa2 also inhibited polymorphonuclear leukocyte infiltration induced by leukotriene B4 (approximately 78% inhibition) or phorbol ester (approximately 49% inhibition), which initiates endogenous chemokine production. These results indicate that this fluorinated analog of natural aspirin-triggered lipoxin A4 is bioavailable by either local or systemic delivery routes and is a more potent and precise inhibitor of neutrophil accumulation than is ASA.
Collapse
|
research-article |
26 |
172 |
4
|
Woollard PM. Stereochemical difference between 12-hydroxy-5,8,10,14-eicosatetraenoic acid in platelets and psoriatic lesions. Biochem Biophys Res Commun 1986; 136:169-76. [PMID: 3707572 DOI: 10.1016/0006-291x(86)90891-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stereochemical analysis of 12-hydroxy-5,8,10,14-eicosatetraenoic acid derived from the lesional scale of patients with psoriasis is reported. Resolution of the C-12 hydroxyl enantiomers was carried out by high pressure liquid chromatography of their diastereomeric methyl ester dehydroabietyl urethane derivatives. The 'psoriasis derived" compound was shown to be stereochemically distinct from the platelet 12(S)-enantiomer as its derivative co-chromatographed with the 12(R)-diastereomer.
Collapse
|
|
39 |
158 |
5
|
Aliberti J, Serhan C, Sher A. Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J Exp Med 2002; 196:1253-62. [PMID: 12417634 PMCID: PMC2194099 DOI: 10.1084/jem.20021183] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The production of interleukin (IL)-12 is critical for the development of interferon (IFN)-gamma-dependent resistance to Toxoplasma gondii. Nevertheless, when this response is dysregulated, such as occurs in the absence of IL-10, the uncontrolled inflammation that results can have lethal consequences for the host. Recently, we demonstrated that lipoxin (LX)A(4), an eicosanoid mediator that depends on 5-lipoxygenase (LO) for its biosynthesis, exerts a regulatory role on dendritic cell IL-12 production triggered artificially by a T. gondii extract. We now formally establish the physiological relevance of this pathway in the systemic control of IL-12 production induced by live T. gondii infection and demonstrate its function to be distinct from that of IL-10. Thus, T. gondii-exposed wild-type, but not 5-LO-deficient animals, produced high levels of serum LXA(4) beginning at the onset of chronic infection. Moreover, 5-LO(-/-), in contrast to wild-type mice, succumbed during the same period displaying a marked encephalitis. The increased mortality of the 5-LO(-/-) animals was also associated with significant elevations of IL-12 and IFN-gamma and was completely prevented by the administration of a stable LXA(4) analogue. Together, these findings demonstrate a new pathway involving the induction of host LXs for the in vivo regulation of proinflammatory responses during microbial infection.
Collapse
|
research-article |
23 |
151 |
6
|
Brezinski ME, Serhan CN. Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc Natl Acad Sci U S A 1990; 87:6248-52. [PMID: 2117277 PMCID: PMC54510 DOI: 10.1073/pnas.87.16.6248] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The uptake and mobilization of (15S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a major product of arachidonic acid metabolism, was examined with human neutrophils (polymorphonuclear leukocytes; PMNs). Upon exposure to labeled 15-HETE, PMNs rapidly (15 sec to 20 min) incorporated approximately 20% of the label into phosphatidylinositol, while less than 4% was associated with other phospholipid classes and neutral lipids. This pattern was distinct from that of either labeled arachidonate or labeled(5S)-hydroxy-8,11,14-cis-6-trans-eicosatetraenoic acid (5-HETE), which within 20 min were predominantly associated with triglycerides and phosphatidylcholine. After reversed-phase HPLC, greater than 98% of the label in phosphatidylinositol, isolated from PMNs, was released with phospholipase A2. Upon exposure to either chemotactic peptide (FMLP), phorbol 12-myristate 13-acetate, or an ionophore (A23187), 15-HETE-labeled PMNs released 15-HETE from phosphatidylinositol and displayed an impaired ability to generate leukotriene B4 (LTB4), 20-OH-LTB4, and 20-COOH-LTB4. Deacylated [3H]15-HETE was converted to (5S,15S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid (5,15-DHETE), lipoxin A4, and lipoxin B4, each carrying 3H label. PMNs labeled with 5-HETE also released and transformed this HETE when stimulated. However, the profile of labeled products differed between PMNs with either esterified 15-HETE or 5-HETE. When activated, 5-HETE-labeled PMNs generated both 5,20-DHETE and 5,15-DHETE but not labeled lipoxins. Threshold aggregation induced by FMLP with 15-HETE-labeled PMNs was inhibited (approximately 2 orders of magnitude), while the threshold response was relatively unimpaired with either A23187 or phorbol 12-myristate 13-acetate-induced aggregation. Results indicate that 15-HETE is rapidly esterified into phosphatidylinositol of PMNs, which can be mobilized and transformed upon exposure of the cells to a second signal. Moreover, they suggest that eicosanoid intermediates other than arachidonic acid can be stored by cells, released via signal transduction, and oxygenated to generate alternative profiles of eicosanoids.
Collapse
|
research-article |
35 |
143 |
7
|
Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 1992; 86:56-63. [PMID: 1617790 DOI: 10.1161/01.cir.86.1.56] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Percutaneous transluminal coronary angioplasty (PTCA) is a widely used and important method of reperfusing coronary arteries. However, it is also associated with serious complications such as acute reocclusion and accelerated restenosis. The factors as well as the mechanisms involved in PTCA-associated complications remain to be fully elucidated. Because peptidoleukotrienes and lipoxins are potent vasoactive compounds, the formation of which is not inhibited by aspirin (ASA) treatment in vitro, it is possible that these eicosanoids are involved in PTCA-associated untoward events. To test this, we determined the intracoronary levels of peptidoleukotrienes and lipoxin A4 (LXA4) as well as thromboxane (TX) and 5S,12S-dihydroxyeicosatetraenoic acid (5S,12S-DiHETE; a product of double dioxygenation) after plaque rupture and evaluated the impact of ASA therapy. METHODS AND RESULTS PTCA was performed on 12 patients with coronary artery disease, six undergoing ASA therapy and six without ASA therapy, for at least 2 weeks before PTCA. By means of a technique that permitted sampling of intracoronary blood at the plaque site in situ, samples were taken immediately before and 10 seconds after initiation of plaque rupture. Lipoxygenase (LO)-derived products, including LXA4 and 5S,12S-DiHETE, and a marker of cyclooxygenase activity, i.e., TXB2, were quantitated after extraction and chromatography using deuterium-labeled internal standards and electron capture negative ion chemical ionization mass spectrometry. Peptidoleukotrienes (LTC4 and LTD4) were quantitated after reverse-phase high-performance liquid chromatography coupled with radioimmunoassay. Intracoronary blood taken before PTCA showed no detectable levels of these eicosanoids (the minimum limits of detection were within the picomole range). In contrast, each of these LO products was detected after PTCA. Patients undergoing ASA treatment showed elevated levels of each LO product examined compared with those not receiving ASA. Eicosanoid levels were (mean +/- SEM): LTC4, 7.10 +/- 1.22 ng/ml (ASA) versus 0.48 +/- 0.10 ng/ml; LTD4, 4.92 +/- 0.56 ng/ml (ASA) versus 1.17 +/- 0.48 ng/ml; LXA4, 24.98 +/- 4.11 ng/ml (ASA) versus 15.83 +/- 2.43 ng/ml; 5S,12S-DiHETE, 19.47 +/- 3.98 ng/ml (ASA) versus 11.98 +/- 1.83 ng/ml; TXB2, complete blockage (ASA) versus 31.04 +/- 7.38 ng/ml (p less than 0.05 for LTC4 and LTD4). To distinguish between dilatation of whole blood versus dilatation of whole blood and atheroma for contribution of eicosanoids, we also monitored their formation in Gore-tex grafts. Upon balloon inflation, TXB2 was generated, but LO products were not detected. In contrast, injection of platelet- and leukocyte-directed agonists within the graft led to both peptidoleukotriene and lipoxin formation. CONCLUSIONS The results indicate that PTCA triggers the intraluminal release of peptidoleukotrienes and LXA4 and that ASA therapy enhances their appearance in intracoronary blood. In addition, they provide direct evidence for LO products (LTC4, LTD4, and LXA4) in a local milieu in vivo. Moreover, the presence of the double dioxygenation product 5S,12S-DiHETE (a potential marker of 5- and 12-LO interactions) suggests that transcellular metabolic events can contribute to eicosanoid formation in vivo.
Collapse
|
|
33 |
137 |
8
|
Srivastava KC, Bordia A, Verma SK. Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 1995; 52:223-7. [PMID: 7784468 DOI: 10.1016/0952-3278(95)90040-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In traditional medicine, Ayurveda, several spices and herbs are held to possess medicinal properties. Earlier we have reported that extracts from several spices, including turmeric, inhibit platelet aggregation and modulate eicosanoid biosynthesis. Due to their eicosanoid-modulating property, it was suggested that the spices may serve to provide clues to drugs directed to arachidonic acid (AA) pathway enzymes as pharmacological targets. Curcumin, a major component of turmeric, inhibited platelet aggregation induced by arachidonate, adrenaline and collagen. This compound inhibited thromboxane B2 (TXB2) production from exogenous [14C] arachidonate in washed platelets with a concomitant increase in the formation of 12-lipoxygenase products. Moreover, curcumin inhibited the incorporation of [14C]AA into platelet phospholipids and inhibited the deacylation of AA-labelled phospholipids (liberation of free AA) on stimulation with calcium ionophore A23187. Curcumin's anti-inflammatory property may, in part, be explained by its effects on eicosanoid biosynthesis.
Collapse
|
|
30 |
115 |
9
|
Seet RCS, Lee CYJ, Loke WM, Huang SH, Huang H, Looi WF, Chew ES, Quek AML, Lim ECH, Halliwell B. Biomarkers of oxidative damage in cigarette smokers: which biomarkers might reflect acute versus chronic oxidative stress? Free Radic Biol Med 2011; 50:1787-93. [PMID: 21420490 DOI: 10.1016/j.freeradbiomed.2011.03.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/28/2011] [Accepted: 03/11/2011] [Indexed: 11/17/2022]
Abstract
Cigarette smoking predisposes to the development of multiple diseases involving oxidative damage. We measured a range of oxidative damage biomarkers to understand which differ between smokers and nonsmokers and if the levels of these biomarkers change further during the act of smoking itself. Despite overnight abstinence from smoking, smokers had higher levels of plasma total and esterified F(2)-isoprostanes, hydroxyeicosatetraenoic acid products (HETEs), F(4)-neuroprostanes, 7-ketocholesterol, and 24- and 27-hydroxycholesterol. Levels of urinary F(2)-isoprostanes, HETEs, and 8-hydroxy-2'-deoxyguanosine were also increased compared with age-matched nonsmokers. Several biomarkers (plasma free F(2)-isoprostanes, allantoin, and 7β-hydroxycholesterol and urinary F(2)-isoprostane metabolites) were not elevated. The smokers were then asked to smoke a cigarette; this acute smoking elevated plasma and urinary F(2)-isoprostanes, plasma allantoin, and certain cholesterol oxidation products compared to presmoking levels, but not plasma HETEs or urinary 8-hydroxy-2'-deoxyguanosine. Smokers showed differences in plasma fatty acid composition. Our findings confirm that certain oxidative damage biomarkers are elevated in smokers even after a period of abstinence from smoking, whereas these plus some others are elevated after acute smoking. Thus, different biomarkers do not measure identical aspects of oxidative stress.
Collapse
|
|
14 |
110 |
10
|
Barden AE, Moghaddami M, Mas E, Phillips M, Cleland LG, Mori TA. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids 2016; 107:24-9. [PMID: 27033423 DOI: 10.1016/j.plefa.2016.03.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Specialised pro-resolving mediators (SPM) are derived from n-3 long chain polyunsaturated fatty acids (n-3FA). They promote resolution of inflammation and may contribute to the beneficial effects of n-3FA in patients with arthritis. This study compared SPM in knee effusions and plasma of patients with arthritis taking n-3FA, and plasma of healthy volunteers taking n-3FA. METHODS Thirty six patients taking n-3FA undergoing arthrocentesis for an inflammatory knee effusion and 36 healthy volunteers who had taken n-3FA (2.4g/day) for 4 weeks were studied. SPM in synovial fluid and plasma were measured by liquid chromatography-tandem mass spectrometry included 18-hydroxyeicosapentaenoic acid (18-HEPE), the precursor of the E-series SPM (RvE1, RvE2, RvE3, 18R-RvE3), and 17-hydroxydocosahexaenoic acid (17-HDHA), the precursor of the D-series SPM (RvD1, 17R-RvD1, RvD2). Other SPM included protectin D1 (PD1), 10S,17S-dihydroxydocosahexaenoic acid (10,17S-DHDHA), maresin-1 (MaR-1) and 14-hydroxydocosahexaenoic acid (14-HDHA) derived from docosahexaenoic acid (DHA). RESULTS E- and D-series SPM and the precursors 18-HEPE and 17-HDHA were present in synovial fluid and plasma of the patients with inflammatory arthritis. Plasma SPM were negatively related to erythrocyte sedimentation rate in arthritis patients (P<0.01) and synovial fluid RvE2 was negatively associated with pain score (P=0.02). Conversion from 18-HEPE and 17-HDHA to E- and D-series SPM was greater in synovial fluid (P<0.01). Most plasma SPM in arthritis patients were elevated (P<0.05) compared with healthy volunteers, and conversion to E- and D-series SPM was greater (P<0.01). CONCLUSIONS SPM are present in chronic knee effusions and although the levels are lower than in plasma, the association between synovial fluid RvE2 and reduced pain scores suggests that synthesis of SPM at the site of inflammation is a relevant mechanism by which n-3FA alleviate the symptoms of arthritis.
Collapse
|
|
9 |
104 |
11
|
Hall LM, Murphy RC. Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1998; 9:527-532. [PMID: 9879367 DOI: 10.1016/s1044-0305(98)00013-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent evidence suggests that generation of hydroxyl radicals in the presence of lipid membranes can lead to oxidation of arachidonic acid esterified to glycerophospholipids and the production of compounds isomeric to prostaglandins, thromboxanes, and leukotrienes. Liquid chromatography tandem mass spectrometry and multiple reaction monitoring were employed to quantitate the production of 5-hydroxyeicosatetraenoic acid (5-HETE), 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and 5-oxo-eicosatetraenoic acid (5-oxo-ETE) in red blood cells ghosts treated with t-butylhydroperoxide (tBuOOH). Untreated red blood cell ghosts were found to contain low, but measurable quantities of these three 5-oxygenated eicosanoids as phospholipid esters. Following treatment, there was approximately a 53- and 22.5-fold increase in 5-HETE and 5-HPETE, respectively, and an 8.5-fold increase in 5-oxo-ETE. The formation of these compounds was inhibited nearly 90% by the antioxidants butylated hydroxytoluene, ascorbic acid, and resveratrol providing further evidence for free radical mediated oxidation of arachidonic acid. This analytical protocol provided sufficient sensitivity for detection of these compounds in studies in which previous analysis by high-pressure liquid chromatography with UV detection failed to detect their presence. These results reveal that the biologically active eicosanoids 5-HPETE, 5-HPETE, and 5-oxo-ETE are formed esterified to phospholipids following exposure of cellular membranes to reactive oxygen species and free radicals in a model system where intracellular antioxidant mechanisms were depleted.
Collapse
|
|
27 |
98 |
12
|
Nithipatikom K, DiCamelli RF, Kohler S, Gumina RJ, Falck JR, Campbell WB, Gross GJ. Determination of cytochrome P450 metabolites of arachidonic acid in coronary venous plasma during ischemia and reperfusion in dogs. Anal Biochem 2001; 292:115-24. [PMID: 11319825 DOI: 10.1006/abio.2001.5044] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) can be metabolized by cytochrome P450 enzymes to many biologically active compounds including 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), as well as 19- and 20-hydroxyeicosatetraenoic acids (HETEs). These eicosanoids are potent regulators of vascular tone. However, their role in the ischemic myocardium has not been well investigated. In this study, we used a gas chromatographic-mass spectrometric technique to analyze total EETs, DHETs, and 20-HETE released into coronary venous plasma during coronary artery occlusion and reperfusion in anesthetized dogs. Pentafluorobenzyl esters (PFB-esters) of EETs and PFB-esters/trimethylsilyl ethers (TMS-ethers) of DHETs and 20-HETE were detected in the negative ion chemical ionization (NICI) using methane as a reagent gas. Under the conditions used, all four regioisomers of EET eluted from the capillary gas chromatographic column at similar retention times while four regioisomers of DHETs and 20-HETE eluted separately. The detection limits in plasma samples are 5 pg for total EETs, 40 pg for DHET, and 15 pg for 20-HETE. 14,15-DHET is the major regioisomer detected in the plasma samples while other regioisomers of DHETs are probably present at too low a concentration for detection. During the first 5 to 15 min of coronary occlusion, a slight decrease in the concentration of EETs, 14,15-DHET, and 20-HETE from the control values was observed in coronary venous plasma. At 60 min of occlusion, their concentrations significantly increased and remained elevated during 5 to 60 min of reperfusion. The concentrations decreased at 120 min of reperfusion. The NICI GC-MS was successfully used as a sensitive technique to determine cP450 metabolites of AA in plasma during prolonged occlusion-reperfusion periods. Furthermore, the results indicate that these metabolites may play a role in mediating ischemic-reperfusion injury.
Collapse
|
|
24 |
90 |
13
|
Nithipatikom K, Gross ER, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res 2004; 95:e65-71. [PMID: 15388642 DOI: 10.1161/01.res.0000146277.62128.6f] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450s (CYP) and their arachidonic acid (AA) metabolites have important roles in regulating vascular tone, but their function and specific pathways involved in modulating myocardial ischemia-reperfusion injury have not been clearly established. Thus, we characterized the effects of several selective CYPomega-hydroxylase inhibitors and a CYPomega-hydroxylase metabolite of AA, 20-hydroxyeicosatetraenoic acid (20-HETE), on the extent of ischemia-reperfusion injury in canine hearts. During 60 minutes of ischemia and particularly after 3 hours of reperfusion, 20-HETE was produced at high concentrations. A nonspecific CYP inhibitor, miconazole, and 2 specific CYPomega-hydroxylase inhibitors, 17-octadecanoic acid (17-ODYA) and N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly inhibited 20-HETE production during ischemia-reperfusion and produced a profound reduction in myocardial infarct size (expressed as a percent of the area at risk) (19.6+/-1.7% [control], 8.4+/-2.5% [0.96 mg/kg miconazole], 5.9+/-2.2% [0.28 mg/kg 17-ODYA], and 10.8+/-1.8% [0.40 mg/kg DDMS], P<0.05, respectively). Conversely, exogenous 20-HETE administration significantly increased infarct size (26.9+/-1.9%, P<0.05). Several CYPomega-hydroxylase isoforms, which are known to produce 20-HETE such as CYP4A1, CYP4A2, and CYP4F, were demonstrated to be present in canine heart tissue and their activity was markedly inhibited by incubation with 17-ODYA. These results indicate an important endogenous role for CYPomega-hydroxylases and in particular their product, 20-HETE, in exacerbating myocardial injury in canine myocardium. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
90 |
14
|
Serhan CN, Fiore S, Brezinski DA, Lynch S. Lipoxin A4 metabolism by differentiated HL-60 cells and human monocytes: conversion to novel 15-oxo and dihydro products. Biochemistry 1993; 32:6313-9. [PMID: 8518275 DOI: 10.1021/bi00076a002] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipoxins are tetraene-containing eicosanoids that possess biological activity in several organ systems. To determine their route of further metabolism, [11,12-3H]lipoxin A4 was prepared and incubated with human neutrophils, promyelocytic leukemia (HL-60) cells, and adherent monocytes. Intact neutrophils and undifferentiated HL-60 cells did not significantly metabolize [11,12-3H]LXA4, while HL-60 cells differentiated with PMA to monocyte/macrophage lineage rapidly (< 15 s) transformed this eicosanoid. The major radiolabeled LXA4-derived metabolites were characterized by physical methods and were shown to be 15-oxo-LXA4, 13,14-dihydro-15-oxo-LXA4, and 13,14-dihydro-LXA4. Substrate competition with cell-free supernatants from differentiated HL-60 cells suggests that lipoxins compete for 15-hydroxyprostaglandin dehydrogenase activity or an equivalent enzyme system. In addition, adherent monocytes exposed to [11,12-3H]LXA4 rapidly metabolized (> 60% within 30 s) the label to its oxo and dihydro derivatives. These results indicate that, unlike leukotrienes, LXA4 is subject to dehydrogenation and reduction of its conjugated tetraene to form triene-containing products. Moreover, they suggest that monocytes participate in lipoxin metabolism in their local milieu.
Collapse
|
Comparative Study |
32 |
89 |
15
|
Tawata M, Aida K, Noguchi T, Ozaki Y, Kume S, Sasaki H, Chin M, Onaya T. Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur J Pharmacol 1992; 212:87-92. [PMID: 1555643 DOI: 10.1016/0014-2999(92)90076-g] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism was studied by which isoliquiritigenin, a new aldose reductase inhibitor purified from licorice (Glycyrrhizae radix), inhibits platelet aggregation. This new agent significantly inhibited the phosphorylation of 40,000- and 20,000-dalton proteins, and inhibited the formation of 12 (S)-hydroxy-5,8,10-heptadecatrienoic acid, 12-hydroxyeicosatetraenoic acid and thromboxane B2. The inhibitory effect of isoliquiritigenin on platelet aggregation in vitro was comparable to that of aspirin. Our findings may indicate that isoliquiritigenin elicits an anti-platelet action by inhibiting not only cyclooxygenase but also lipoxygenase or peroxidase activity in platelets. Isoliquiritigenin also showed an anti-platelet action in vivo. Isoliquiritigenin appears to be the only aldose reductase inhibitor with a significant anti-platelet action. Since the hyperaggregability of platelets has been implicated in the pathogenesis of diabetic complications, isoliquiritigenin may offer a unique benefit as an aldose reductase inhibitor.
Collapse
|
|
33 |
87 |
16
|
Rosenthal MD, Vishwanath BS, Franson RC. Effects of aristolochic acid on phospholipase A2 activity and arachidonate metabolism of human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1001:1-8. [PMID: 2536283 DOI: 10.1016/0005-2760(89)90299-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aristolochic acid is an alkaloid which has recently been shown to have anti-inflammatory activity against edema in mouse foot pads induced by phospholipases A2 from human synovial fluid. The present study has investigated the effects of aristolochic acid on phospholipase activity and arachidonic acid mobilization in human neutrophils. We find that aristolochic acid is a dose-dependent inhibitor of the calcium-dependent neutral active phospholipase A2 isolated from human neutrophils. As much as 90% of the A23187-stimulated release of previously incorporated [3H]arachidonate from intact neutrophils is inhibited by aristolochic acid; the effect is dose-dependent, with an IC50 of 40 microM, and quite rapid, with near maximal inhibition within 5 min. Aristolochic acid inhibits the A23187-stimulated loss of [3H]arachidonate from both choline- and inositol-phospholipids. Decreased release of free [3H]arachidonate is accompanied by a concomitant decrease in synthesis of [3H]leukotriene B4 and [3H]hydroxyeicosatetraenoic acids. Furthermore, aristolochic acid also inhibits the A23187-stimulated synthesis of [3H]alkylacetylglycerophosphocholine from cellular [3H]alkylacylglycerophosphocholine. These results indicate that aristolochic acid is an effective inhibitor of the A23187-stimulated phospholipase A2 activity in human neutrophils.
Collapse
|
|
36 |
77 |
17
|
Vericel E, Croset M, Sedivy P, Courpron P, Dechavanne M, Lagarde M. Platelets and aging. I--Aggregation, arachidonate metabolism and antioxidant status. Thromb Res 1988; 49:331-42. [PMID: 3129819 DOI: 10.1016/0049-3848(88)90313-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelet functions were investigated in sixteen old (78-94 years) and eight young (25-35 years) subjects. Whole blood platelet aggregation induced by collagen was higher in the elderly. Similarly, aggregation of platelet rich plasma and plasma-free platelets induced by various agents was increased but the collagen-induced release of ATP was reduced. In agreement with the enhanced platelet aggregability, the increase of thromboxane formation (under thrombin stimulation) was also noted in platelets from elderly people. To further assess platelet and vascular function in vivo, we measured the excretion of urinary TXB2, 2,3-dinor TXB2, 6-keto-PGF1 alpha and 2,3-dinor-6-keto-PGF1 alpha. The four metabolites were all increased in the elder population. In addition, a significant reduction of platelet vitamin E was observed in the elderly people, although the plasma content was normal. These results indicate numerous modifications of platelet behaviour with aging. They include the increased platelet susceptibility to aggregation, and the depletion of ATP granule content, which could reflect an activation in vivo in agreement with the enhanced urinary excretion of thromboxane and prostacyclin metabolites. We hypothesize that platelet hyperactivity associated with the enhanced oxygenated metabolism of arachidonic acid could be linked to vitamin E depletion. These changes may reveal a prethrombotic state in the elderly population.
Collapse
|
Comparative Study |
37 |
76 |
18
|
Rajeswari P, Natarajan R, Nadler JL, Kumar D, Kalra VK. Glucose induces lipid peroxidation and inactivation of membrane-associated ion-transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 1991; 149:100-9. [PMID: 1658008 DOI: 10.1002/jcp.1041490113] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Erythrocytes of diabetic subjects (non-insulin dependent) were found to have eight- to ten-fold higher levels of endogenously formed thiobarbituric acid reactive malonyldialdehyde (MDA), thirteen-fold higher levels of phospholipid-MDA adduct, 15-20% reduced Na(+)-K(+)-ATPase activity with unchanged Ca+2-ATPase activity, as compared with the erythrocytes from normal healthy individuals. Incubation of normal erythrocytes with elevated concentrations (15-35 mM) of glucose, similar to that present in diabetic plasma, led to the increased lipid peroxidation, phospholipid-MDA adduct formation, reduction of Na(+)-K(+)-ATPase (25-50%) and Ca+2-ATPase (50%) activities. 2-doxy-glucose was 80% as effective as glucose in the lipid peroxidation and lipid adduct formation. However, other sugars, such as fructose, galactose, mannose, fucose, glucosamine and 3-O-methylmannoside, and sucrose, tested at a concentration of 35 mM, resulted in reduced (20-30%) lipid peroxidation without the formation of lipid-MDA adduct. Kinetic studies show that reductions in Na(+)-K(+)-ATPase and Ca+2-ATPase activities precede the lipid peroxidation as the enzyme inactivation occur within 30 min of incubation of erythrocytes with high concentration (15-35 mM) of glucose, while lipid peroxidation product, MDA appears at 4 hr and lipid-MDA adducts at 8 hr. The lipoxygenase pathway inhibitors, 5,8,11-eicosatriynoic acid and Baicalein (5,6,7-trihydroxyflavone), reduced the glucose-induced lipid peroxidation by 30% and MDA-lipid adduct formation by 26%. Indomethacin, a cyclooxygenase pathway inhibitor, had no discernible effect on the lipid peroxidation in erythrocytes. However, the inhibitors of lipid peroxidation, 3-phenylpyrazolidone, metyrapone, and the inhibitors of lipoxygenase pathways did not ablate the glucose-induced reduction of Na(+)-K(+)-ATPase and Ca+2-ATPase activities in erythrocytes. Erythrocytes produce 15-HETE (15-hydroxy-eicosatetraenoic acid), which is augmented by glucose. These results suggest that the formation of lipoxygenase metabolites potentiate the glucose-induced lipid peroxidation and that the inactivation of Na(+)-K(+)-ATPase and Ca+2-ATPase occurs as a result of non-covalent interaction of glucose with these enzymes.
Collapse
|
|
34 |
76 |
19
|
Pickens CA, Sordillo LM, Zhang C, Fenton JI. Obesity is positively associated with arachidonic acid-derived 5- and 11-hydroxyeicosatetraenoic acid (HETE). Metabolism 2017; 70:177-191. [PMID: 28403941 DOI: 10.1016/j.metabol.2017.01.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxylipids are oxygenated polyunsaturated fatty acid (PUFA) metabolites that are responsible for the onset and resolution of the inflammatory response. Enzymatic oxygenation through the lipoxygenase (LOX) or cytochrome P450 (CYP) pathways can form oxylipids that have either proinflammatory or proresolving functions depending on the type of PUFA substrate and degree of metabolism. The objective of this study was to determine how PUFA substrates and their corresponding oxylipids are associated with obesity. METHODS Plasma non-esterified FA and oxylipids were isolated from 123 Caucasian males using solid phase extraction and quantified using high performance liquid chromatography-tandem mass spectrometry. Statistical analyses included linear regressions and polytomous logistic regressions, and the responses were body mass index (BMI) and waist circumference (WC), and serum leptin, total adiponectin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-peptide. Models were adjusted for age and smoking, and p-values were corrected for false discovery per Benjamini-Hochberg and Bonferroni. RESULTS We report that BMI, WC, and several serum cytokines were highly associated arachidonic acid (ARA)-derived hydroxyeicosatetraenoic acids (HETEs), and vicinal diols (i.e., alcohols on adjacent carbon atoms) derived from several PUFAs. There was a significant linear relationship between BMI, WC, and serum leptin, and ARA-derived 5-, 11-, and 15-HETE. Specifically, BMI and WC were positively associated with proinflammatory 5- and 11-hydroxyeicosatetraenoic acid (HETE), even after normalization to ARA concentrations and false discovery p-value correction. Individuals with 5-HETE concentrations >5.01nmol/L or 11-HETE concentrations and >0.89nmol/L were over 5 times more likely to be obese compared to those with ≤1.86nmol/L and ≤0.39nmol/L, respectively. Vicinal diols from linoleic, eicosapentaenoic, and docosahexaenoic acid were inversely associated with obesity. Across all statistical tests, vicinal diols were inversely associated with obesity whether normalized to parent PUFA concentrations or normalized to precursor epoxides. Interestingly, the proinflammatory cytokines IL-6 and TNF-α were not associated with any oxylipids. Since 5-HETE is a 5LOX product, 11-HETE is marker of lipid peroxidation, and vicinal diols are formed through soluble epoxide hydrolase (sEH) metabolism of CYP epoxygenated PUFAs, therefore, these results indicate that obesity is likely associated with altered metabolism with distinct oxygenating pathways. Taken together, our results indicate that obesity is associated with specific oxylipids indicative of altered PUFA metabolism through several pathways (i.e., LOX, reactive oxygen species, and sEH and CYP epoxygenase), rather than attributed solely to altered dietary PUFA intake.
Collapse
|
|
8 |
75 |
20
|
Laviolette M, Coulombe R, Picard S, Braquet P, Borgeat P. Decreased leukotriene B4 synthesis in smokers' alveolar macrophages in vitro. J Clin Invest 1986; 77:54-60. [PMID: 3003154 PMCID: PMC423308 DOI: 10.1172/jci112301] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown that alveolar macrophages (AM) are able to release leukotrienes (LTs). Since cigarette smoking inhibits the cyclooxygenase pathway of arachidonic acid metabolism in the AM, we evaluated the LT production by AM from smokers and nonsmokers. AM were obtained from 35 volunteers, 16 nonsmokers, and 19 smokers. The cells were incubated under various conditions including stimulation with 30 microM arachidonic acid, 2 microM ionophore A23187, or both. Each experiment was performed in parallel using cells from a smoker and a nonsmoker. Lipoxygenase products were analyzed by reverse-phase high performance liquid chromatography. After stimulation, nonsmokers' AM produced LTB4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In incubations of AM with arachidonic acid and ionophore, the amounts of products formed were: LTB4, 317 +/- 56 pmol/10(6) cells and 5-HETE, 1,079 +/- 254, mean +/- SEM. No metabolites were generated under control conditions (no stimulation). In all incubations performed, the peptido-LTs (LTC4, LTD4, and LTE4) were undetectable. In comparison with AM from nonsmokers, those from smokers showed a 80-90% reduction of 5-HETE and LTB4 synthesis (P less than 0.05 to P less than 0.001 according to stimulatory conditions). This defective lipoxygenase metabolite production in AM from smokers was observed over a wide range of stimuli concentrations and incubation times; AM from smokers also had lower levels of intracellular (esterified) 5-HETE than nonsmokers' AM. We also studied blood polymorphonuclear leukocytes (PMNL) and no difference in the synthesis of 5-lipoxygenase products in these cells was noticed between smokers and nonsmokers. These data show that cigarette smoking causes a profound inhibition of the 5-lipoxygenase pathway in AM but not in blood PMNL.
Collapse
|
research-article |
39 |
73 |
21
|
Serhan CN. On the relationship between leukotriene and lipoxin production by human neutrophils: evidence for differential metabolism of 15-HETE and 5-HETE. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1004:158-68. [PMID: 2546590 DOI: 10.1016/0005-2760(89)90264-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.
Collapse
|
Comparative Study |
36 |
71 |
22
|
Flynn DL, Rafferty MF, Boctor AM. Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. PROSTAGLANDINS, LEUKOTRIENES, AND MEDICINE 1986; 24:195-8. [PMID: 3467378 DOI: 10.1016/0262-1746(86)90126-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of structurally related pungent natural products including capsaicin, gingerol, and gingerdione among others were evaluated and found to be potent inhibitors of 5-HETE biosynthesis in intact human leukocytes, with IC50 values of 100 and 15 microM for capsaicin and gingerdione, respectively. Several compounds within this series were also found to inhibit PGE2 formation, with the most potent being gingerdione (IC50 = 18 microM). These and other data indicate that members of the capsaicin/gingerol family of pungent compounds can act as dual inhibitors of arachidonic acid metabolism, which could account in part for the antiinflammatory and analgesic properties of compounds within this group.
Collapse
|
|
39 |
70 |
23
|
Terao J, Shibata SS, Matsushita S. Selective quantification of arachidonic acid hydroperoxides and their hydroxy derivatives in reverse-phase high performance liquid chromatography. Anal Biochem 1988; 169:415-23. [PMID: 3382013 DOI: 10.1016/0003-2697(88)90306-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the quantification of lipid hydroperoxides by high performance liquid chromatography (HPLC), it has been necessary to improve the detection system specific to the hydroperoxy group. We first developed a technique which combined detection by uv absorption due to conjugated diene and detection based on electrochemical (EC) reduction in reverse-phase HPLC for the selective determination of arachidonic acid hydroperoxides (hydroperoxyeicosatetraenoic acid, HPETE) and its reduced derivative, hydroxyeicosatetraenoic acid (HETE). 15-HPETE was quantified selectively by EC detection, although both 15-HPETE and 15-HETE were detected by uv absorption and were hardly resolved in the chromatogram. Isomers in HPETE obtained from autoxidized arachidonic acid were partially separated in the chromatogram and seem to have been quantified similarly to 15-HPETE. The application of this analytical system to the analysis of 15-HPETE added in human plasma has demonstrated that the recovery of HPETE extracted from human plasma is much lower than that from normal saline and that HPETE is reduced to HETE by incubation at 37 degrees C. The fact that a high concentration of glutathione accelerated this reduction may indicate that human plasma possesses a glutathione-dependent HPETE-reducing ability as a defense system against excess accumulation of lipid hydroperoxides. Blood plasma effectively suppressed the decomposition of HPETE induced by ferrous ion indicating the presence of factors which prevent the action of ferrous ion on HPETE.
Collapse
|
|
37 |
66 |
24
|
Meade CJ, Turner GA, Bateman PE. The role of polyphosphoinositides and their breakdown products in A23187-induced release of arachidonic acid from rabbit polymorphonuclear leucocytes. Biochem J 1986; 238:425-36. [PMID: 3026352 PMCID: PMC1147153 DOI: 10.1042/bj2380425] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.
Collapse
|
research-article |
39 |
64 |
25
|
Tsai IJ, Croft KD, Mori TA, Falck JR, Beilin LJ, Puddey IB, Barden AE. 20-HETE and F2-isoprostanes in the metabolic syndrome: the effect of weight reduction. Free Radic Biol Med 2009; 46:263-70. [PMID: 19013235 DOI: 10.1016/j.freeradbiomed.2008.10.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 11/24/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that regulates vascular function and sodium homeostasis. Studies showing an association between 20-HETE excretion, raised BMI, and oxidative stress suggest that 20-HETE may be important in the development of cardiovascular disease in the metabolic syndrome (MetS). We investigated whether 20-HETE and F(2)-isoprostanes (markers of oxidative stress) were altered in the MetS before and after weight reduction. A case-controlled comparison of 30 participants with the MetS and matched controls showed that plasma and urinary 20-HETE and F(2)-isoprostanes were significantly elevated in the MetS group. There was a significant gender x group interaction such that women with the MetS had higher urinary 20-HETE and F(2)-isoprostanes compared to controls (p<0.0001). In a randomized controlled trial, 42 participants with the MetS were assigned to 16 weeks of weight maintenance or a 12-week weight-loss program followed by 4 weeks weight stabilization. Relative to the weight-maintenance group, a 4-kg loss in weight resulted in a 2-mm Hg fall in blood pressure (BP) but did not alter urinary or plasma 20-HETE or F(2)-isoprostanes. 20-HETE and oxidative stress may be important mediators of cardiovascular disease risk in the MetS. Although a 4% reduction in body weight reduced BP, there were no changes in plasma or urinary 20-HETE or F(2)-isoprostanes.
Collapse
|
Comparative Study |
16 |
63 |