1
|
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011; 12:R40. [PMID: 21501500 PMCID: PMC3218866 DOI: 10.1186/gb-2011-12-4-r40] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/28/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. RESULTS Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. CONCLUSIONS The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
Collapse
|
research-article |
14 |
395 |
2
|
Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. EUKARYOTIC CELL 2006; 5:2128-37. [PMID: 17056741 PMCID: PMC1694815 DOI: 10.1128/ec.00211-06] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xyr1 (xylanase regulator 1) of the ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) was recently demonstrated to play an essential role in the transcriptional regulation of the xyn1 (xylanase 1-encoding) gene expression. Consequently, this study reports on the deletion of the xyr1 gene from the H. jecorina genome. Comparative studies of the growth behavior of the different mutant strains (deleted and retransformed xyr1) grown on various carbon sources pointed to the strongly reduced ability of the xyr1 deletion strain to utilize D-xylose and xylan. Transcriptional analysis of the xyl1 (D-xylose reductase 1-encoding) gene as well as measurements of corresponding enzymatic activities gave evidence that Xyr1 takes part in the control of the fungal D-xylose pathway, in particular in the regulation of D-xylose reductase. It could be demonstrated that the uptake of D-xylose into the fungal cell is uninfluenced in the Deltaxyr1 strain. Furthermore, transcriptional regulation of the major hydrolytic enzyme-encoding genes xyn1 and xyn2 (xylanases 1 and 2), cbh1 and cbh2 (cellobiohydrolases 1 and 2), and egl1 (endoglucanase 1) is strictly dependent on Xyr1. Regulation of the respective genes via Xyr1 is not affected by the substances mediating induction (xylose, xylobiose, and sophorose) and is indispensable for all modes of gene expression (basal, derepressed, and induced). Moreover, Xyr1, it was revealed, activated transcriptional regulation of inducer-providing enzymes such as beta-xylosidase BXLI and beta-glucosidase BGLI but was not shown to be involved in the regulation of BGLII.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
274 |
3
|
Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 2006; 42:813-28. [PMID: 16154784 DOI: 10.1016/j.fgb.2005.06.007] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 06/12/2005] [Accepted: 06/19/2005] [Indexed: 11/27/2022]
Abstract
One of the biggest obstructions to studies on Trichoderma has been the incorrect and confused application of species names to isolates used in industry, biocontrol of plant pathogens and ecological surveys, thereby making the comparison of results questionable. Here we provide a convenient, on-line method for the quick molecular identification of Hypocrea/Trichoderma at the genus and species levels based on an oligonucleotide barcode: a diagnostic combination of several oligonucleotides (hallmarks) specifically allocated within the internal transcribed spacer 1 and 2 (ITS1 and 2) sequences of the rDNA repeat. The barcode was developed on the basis of 979 sequences of 88 vouchered species which displayed in total 135 ITS1 and 2 haplotypes. Oligonucleotide sequences which are constant in all known ITS1 and 2 of Hypocrea/Trichoderma but different in closely related fungal genera, were used to define genus-specific hallmarks. The library of species-, clade- and genus-specific hallmarks is stored in the MySQL database and integrated in the TrichOKey v. 1.0 - barcode sequence identification program with the web interface located on . TrichOKey v. 1.0 identifies 75 single species, 5 species pairs and 1 species triplet. Verification of the DNA-barcode was done by a blind test on 53 unknown isolates of Trichoderma, collected in Central and South America. The obtained results were in a total agreement with phylogenetic identification based on tef1 (large intron), NCBI BLAST of vouchered records and postum morphological analysis. We conclude that oligonucleotide barcode is a powerful tool for the routine identification of Hypocrea/Trichoderma species and should be useful as a complement to traditional methods.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
254 |
4
|
Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 2008; 383:144-54. [PMID: 18723026 DOI: 10.1016/j.jmb.2008.08.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022]
Abstract
The glycoside hydrolase (GH) family 61 is a long-recognized, but still recondite, class of proteins, with little known about the activity, mechanism or function of its more than 70 members. The best-studied GH family 61 member, Cel61A of the filamentous fungus Hypocrea jecorina, is known to be an endoglucanase, but it is not clear if this represents the main activity or function of this family in vivo. We present here the first structure for this family, that of Cel61B from H. jecorina. The best-quality crystals were formed in the presence of nickel, and the crystal structure was solved to 1.6 A resolution using a single-wavelength anomalous dispersion method with nickel as the source of anomalous scatter. Cel61B lacks a carbohydrate-binding module and is a single-domain protein that folds into a twisted beta-sandwich. A structure-aided sequence alignment of all GH family 61 proteins identified a highly conserved group of residues on the surface of Cel61B. Within this patch of mostly polar amino acids was a site occupied by the intramolecular nickel hexacoordinately bound in the solved structure. In the Cel61B structure, there is no easily identifiable carbohydrate-binding cleft or pocket or catalytic center of the types normally seen in GHs. A structural comparison search showed that the known structure most similar to Cel61B is that of CBP21 from the Gram-negative soil bacterium Serratia marcescens, a member of the carbohydrate-binding module family 33 proteins. A polar surface patch highly conserved in that structural family has been identified in CBP21 and shown to be involved in chitin binding and in the protein's enhancement of chitinase activities. The analysis of the Cel61B structure is discussed in light of our continuing research to better understand the activities and function of GH family 61.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
146 |
5
|
Schmoll M, Franchi L, Kubicek CP. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. EUKARYOTIC CELL 2006; 4:1998-2007. [PMID: 16339718 PMCID: PMC1317494 DOI: 10.1128/ec.4.12.1998-2007.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Envoy, a PAS/LOV domain protein with similarity to the Neurospora light regulator Vivid, which has been cloned due to its lack of expression in a cellulase-negative mutant, links cellulase induction by cellulose to light signaling in Hypocrea jecorina. Despite their similarity, env1 could not compensate for the lack of vvd function. Besides the effect of light on sporulation, we observed a reduced growth rate in constant light. An env1(PAS-) mutant of H. jecorina grows significantly slower in the presence of light but remains unaffected in darkness compared to the wild-type strain QM9414. env1 rapidly responds to a light pulse, with this response being different upon growth on glucose or glycerol, and it encodes a regulator essential for H. jecorina light tolerance. The induction of cellulase transcription in H. jecorina by cellulose is enhanced by light in the wild-type strain QM9414 compared to that in constant darkness, whereas a delayed induction in light and only a transient up-regulation in constant darkness of cbh1 was observed in the env1(PAS-) mutant. However, light does not lead to cellulase expression in the absence of an inducer. We conclude that Envoy connects the light response to carbon source signaling and thus that light must be considered an additional external factor influencing gene expression analysis in this fungus.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
121 |
6
|
Chaverri P, Castlebury LA, Samuels GJ, Geiser DM. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 2003; 27:302-13. [PMID: 12695093 DOI: 10.1016/s1055-7903(02)00400-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichoderma harzianum is a ubiquitous species in the environment and is effective in the biological control of plant-pathogenic fungi. T. harzianum has not been linked unequivocally to its sexual state nor has its phylogeny been studied in detail. It has been suggested that T. harzianum is a species complex based on the phenotypic and genotypic variability encountered. On the basis of morphological and cultural characters and DNA sequence data analysis of four genes (ITS rDNA, translation elongation factor 1-alpha, calmodulin, and alpha-actin), Hypocrea lixii was found to be the sexual state of T. harzianum. Both the asexual and sexual states of this species have wide geographic distributions. Phylogenetic analysis of four genes showed that T. harzianum/H. lixii is a cohesive group that is supported by bootstrap values higher than 95%. Principles of genealogical concordance indicated that T. harzianum/H. lixii is a complex of independent monophyletic lineages, but no diagnostic morphological distinctions were identified that justify formal taxonomic recognition for the different lineages.
Collapse
|
Comparative Study |
22 |
115 |
7
|
Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttilä M, Mach RL. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. EUKARYOTIC CELL 2006; 5:447-56. [PMID: 16524900 PMCID: PMC1398055 DOI: 10.1128/ec.5.3.447-456.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two major xylanases (XYN I and XYN II) of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) are simultaneously expressed during growth on xylan but respond differently to low-molecular-weight inducers. In vivo footprinting analysis of the xylanase1 (xyn1) promoter revealed three different nucleotide sequences (5'-GGCTAAATGCGACATCTTAGCC-3' [an inverted repeat of GGCTAA spaced by 10 bp], 5'-CCAAT-3', and 5'-GGGGTCTAGACCCC-3' [equivalent to a double Cre1 site]) used to bind proteins. Binding to the Cre1 site is only observed under repressed conditions, whereas binding to the two other motifs is constitutive. Applying heterologously expressed components of the H. jecorina cellulase regulators Ace1 and Ace2 and the xylanase regulator Xyr1 suggests that Ace1 and Xyr1 but not Ace2 contact both GGCTAA motifs. H. jecorina transformants containing mutated versions of the xyn1 promoter, leading to elimination of protein binding to the left or the right GGCTAA box revealed either strongly reduced or completely eliminated induction of transcription. Elimination of Cre1 binding to its target released the basal transcriptional level from glucose repression but did not influence the inducibility of xyn1 expression. Mutation of the CCAAT box prevents binding of the Hap2/3/5 complex in vitro and is partially compensating for the loss of transcription caused by the mutation of the right GGCTAA box. Finally, evidence for a competition of Ace1 and Xyr1 for the right GGCTAA box is given. These data prompted us to hypothesize that xyn1 regulation is based on the interplay of Cre1 and Ace1 as a general and specific repressor with Xyr1 as transactivator.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
108 |
8
|
Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS. Tricho Blast: A Multilocus Database for Trichoderma and Hypocrea Identifications. ACTA ACUST UNITED AC 2005; 109:658-60. [PMID: 16080389 DOI: 10.1017/s0953756205233397] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
20 |
102 |
9
|
Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 2006; 72:2126-33. [PMID: 16517662 PMCID: PMC1393202 DOI: 10.1128/aem.72.3.2126-2133.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
86 |
10
|
Druzhinina I, Kubicek CP. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 2005; 6:100-12. [PMID: 15633245 PMCID: PMC1389624 DOI: 10.1631/jzus.2005.b0100] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trichoderma/Hypocrea is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans. Species identification, while essential in view of the controversial properties of taxa of this genus, has been problematic by traditional methods. Here we will present a critical survey of the various identification methods in use. In addition, we will present an update on the taxonomy and phylogeny of the 88 taxa (which occur as 14 holomorphs, 49 teleomorphs and 25 anamorphs in nature) of Trichoderma/Hypocrea that have been confirmed by a combination of morphological, physiological and genetic approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
83 |
11
|
Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics 2003; 270:46-55. [PMID: 12905071 DOI: 10.1007/s00438-003-0895-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 06/30/2003] [Indexed: 10/26/2022]
Abstract
The 5' regulatory region of the cbh2 gene of Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for induction of cbh2 gene expression by sophorose and cellulose. The CAE consists of two motifs, a CCAAT box on the template strand and a GTAATA box on the coding strand, which cooperate during induction. Northern analyses of cbh2 gene expression has revealed an absolute dependence on induction, but no direct effect of Cre1-mediated carbon catabolite repression. Investigation of the chromatin structure in the wild-type strain showed that, under repressing conditions, there is a nucleosome free region (nfr) around the CAE, which is flanked by strictly positioned nucleosomes. Induction results in a loss of positioning of nucleosomes -1 and -2 downstream of the CAE, thus making the TATA box accessible. Simultaneous mutation of both motifs of the CAE, or of the CCAAT-box alone, also leads to shifting of nucleosome -1, which normally covers the TATA-box under repressing conditions, whereas mutation of the GTAATA element results in a narrowing of the nfr, indicating that the proteins that bind to both motifs in the CAE interact with chromatin, although in different ways. A cellulase-negative mutant strain, which has previously been shown to be altered in protein binding to the CAE, still displayed the induction-specific changes in nucleosome structure, indicating that none of the proteins that directly interact with CAE are affected, and that nucleosome rearrangement and induction of cbh2 expression are uncoupled. Interestingly, the carbon catabolite repressor Cre1 is essential for strict nucleosome positioning in the 5' regulatory sequences of cbh2 under all of the conditions tested, and induction can occur in a promoter that lacks positioned nucleosomes. These data suggest that Cre1, the Hap2/3/5 complex and the GTAATA-binding protein are all involved in nucleosome assembly on the cbh2 promoter, and that the latter two respond to inducing conditions by repositioning nucleosome -1.
Collapse
|
|
22 |
79 |
12
|
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 2006; 97:1365-78. [PMID: 16722227 DOI: 10.3852/mycologia.97.6.1365] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The holomorph of the new species Hypocrea voglmayrii (Hypocreales, Ascomycota, Fungi) is described by a combined approach, using morphology of the teleomorph, morphology of the anamorph, culture studies and phylogenetic analyses of ITS1 and 2, ech42 and rpb2 gene sequences. Its anamorph Trichoderma voglmayrii is described as a new anamorph species. Unlike most other species of Hypocrea the teleomorph of H. voglmayrii occurs on dry standing trunks and exhibits well defined black ostioles. Although exclusively collected at higher altitudes, this species grows at 35 C in culture. Hypocrea voglmayrii develops pale yellowish to greenish conidia, a yellowish pigment and a coconut-like odor on CMD. Phylogenetically, H. voglmayrii forms a distinct, isolated branch between the section Trichoderma and the H. pachybasioides clade but does not associate with any of these clades in different gene trees.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
79 |
13
|
Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 2007; 581:3915-20. [PMID: 17662982 DOI: 10.1016/j.febslet.2007.07.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/01/2007] [Accepted: 07/08/2007] [Indexed: 11/29/2022]
Abstract
This study reports the vital regulatory influence of Xyr1 (xylanase regulator 1) on the transcription of hydrolytic enzyme-encoding genes and hydrolase formation on lactose in Hypocrea jecorina. While the transcription of the xyr1 gene itself is achieved by release of carbon catabolite repression, the transcript formation of xyn1 (xylanase 1) is regulated by an additional induction mechanism mediated by lactose. Xyr1 has an important impact on lactose metabolism by directly activating xyl1 (xylose reductase 1) transcription and indirectly influencing transcription of bga1 (beta-galactosidase 1). The latter is achieved by regulating the conversion of D-galactose to the inducing carbon source galactitol.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
66 |
14
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology (Reading) 2007; 153:3417-3437. [PMID: 17906141 DOI: 10.1099/mic.0.2007/006692-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptaibols are characteristic linear alpha-aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus Hypocrea/Trichoderma [Hypocrea and Trichoderma are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within Trichoderma permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of Trichoderma, identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of Trichoderma/Hypocrea, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B (rpb2) gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers Hypocrea virens, Hypocrea jecorina and Hypocrea atroviridis as obtained from ITS1 and 2, and rpb2, respectively, and therefore hint at a complex history of peptaibol diversity.
Collapse
|
|
18 |
65 |
15
|
Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Mol Microbiol 2004; 51:1015-25. [PMID: 14763977 DOI: 10.1046/j.1365-2958.2003.03901.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactose is the only soluble carbon source which can be used economically for the production of cellulases or heterologous proteins under cellulase expression signals by Hypocrea jecorina (=Trichoderma reesei). Towards an understanding of lactose metabolism and its role in cellulase formation, we have cloned and characterized the gal1 (galactokinase) gene of H. jecorina, which catalyses the first step in d-galactose catabolism. It exhibits a calculated Mr of 57 kDa, and shows moderate identity (about 40%) to its putative homologues of Saccharomyces cerevisiae and Kluyveromyces lactis. Gal1 is a member of the GHMP family, shows conservation of a Gly/Ser rich region involved in ATP binding and of amino acids (Arg 51, Glu 57, Asp 60, Asp 214, Tyr 270) responsible for galactose binding. A single transcript was formed constitutively during the rapid growth phase on all carbon sources investigated and accumulated to about twice this level during growth on d-galactose, l-arabinose and their corresponding polyols. Deletion of gal1 reduces growth on d-galactose but does only slightly affect growth on lactose. This is the result of the operation of a second pathway for d-galactose catabolism, which involves galactitol as an intermediate, and whose transient concentration is strongly enhanced in the delta-gal1 strain. In this pathway, galactitol is catabolised by the lad1-encoded l-arabinitol-4-dehydrogenase, because a gal1/lad1 double delta-mutant failed to grow on d-galactose. In the delta-gal1 strain, induction of the Leloir pathway gene gal7 (encoding galactose-1-phosphate uridylyltransferase) by d-galactose, but not by l-arabinose, is impaired. Induction of cellulase gene expression by lactose is also impaired in a gal1 deleted strain, whereas their induction by sophorose (the putative cellulose-derived inducer) was shown to be normal, thus demonstrating that galactokinase is a key enzyme for cellulase induction during growth on lactose, and that induction by lactose and sophorose involves different mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
64 |
16
|
Akel E, Metz B, Seiboth B, Kubicek CP. Molecular regulation of arabinan and L-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). EUKARYOTIC CELL 2009; 8:1837-44. [PMID: 19801419 PMCID: PMC2794218 DOI: 10.1128/ec.00162-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
Abstract
Hypocrea jecorina (anamorph: Trichoderma reesei) can grow on plant arabinans by the aid of secreted arabinan-degrading enzymes. This growth on arabinan and its degradation product L-arabinose requires the operation of the aldose reductase XYL1 and the L-arabinitol dehydrogenase LAD1. Growth on arabinan and L-arabinose is also severely affected in a strain deficient in the general cellulase and hemicellulase regulator XYR1, but this impairment can be overcome by constitutive expression of the xyl1 encoding the aldose reductase. An inspection of the genome of H. jecorina reveals four genes capable of degrading arabinan, i.e., the alpha-L-arabinofuranosidase encoding genes abf1, abf2, and abf3 and also bxl1, which encodes a beta-xylosidase with a separate alpha-L-arabinofuranosidase domain and activity but no endo-arabinanase. Transcriptional analysis reveals that in the parent strain QM9414 the expression of all of these genes is induced by L-arabinose and to a lesser extent by L-arabinitol and absent on D-glucose. Induction by L-arabinitol, however, is strongly enhanced in a Deltalad1 strain lacking L-arabinitol dehydrogenase activity and severely impaired in an aldose reductase (Deltaxyl1) strain, suggesting a cross talk between L-arabinitol and the aldose reductase XYL1 in an alpha-L-arabinofuranosidase gene expression. Strains bearing a knockout in the cellulase regulator xyr1 do not show any induction of abf2 and bxl1, and this phenotype cannot be reverted by constitutive expression of xyl1. The loss of function of xyr1 has also a slight effect on the expression of abf1 and abf3. We conclude that the expression of the four alpha-L-arabinofuranosidases of H. jecorina for growth on arabinan requires an early pathway intermediate (L-arabinitol or L-arabinose), the first enzyme of the pathway XYL1, and in the case of abf2 and bxl1 also the function of the cellulase regulator XYR1.
Collapse
|
research-article |
16 |
62 |
17
|
Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B. d-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology (Reading) 2006; 152:1507-1514. [PMID: 16622067 DOI: 10.1099/mic.0.28719-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactose (1,4-O-β-d-galactopyranosyl-d-glucose) is a soluble and economic carbon source for the industrial production of cellulases or recombinant proteins by Hypocrea jecorina (anamorph Trichoderma reesei). The mechanism by which lactose induces cellulase formation is not understood. Recent data showed that the galactokinase step is essential for cellulase induction by lactose, but growth on d-galactose alone does not induce cellulases. Consequently, the hypothesis was tested that d-galactose may be an inducer only at a low growth rate, which is typically observed when growing on lactose. Carbon-limited chemostat cultivations of H. jecorina were therefore performed at different dilution rates with d-galactose, lactose, galactitol and d-glucose. Cellulase gene expression was monitored by using a strain carrying a fusion between the cbh2 (encoding cellobiohydrolase 2, Cel6A) promoter region and the Aspergillus niger glucose oxidase gene and by identification of the two major cellobiohydrolases Cel7A and Cel6A. The results show that d-galactose indeed induces cbh2 gene transcription and leads to Cel7A and Cel6A accumulation at a low (D=0·015 h−1) but not at higher dilution rates. At the same dilution rate, growth on d-glucose did not lead to cbh2 promoter activation or Cel6A formation but a basal level, lower than that observed on d-galactose, was detected for the carbon-catabolite-derepressible Cel7A. Lactose induced significantly higher cellulase levels at 0·015 h−1 than d-galactose and induced cellulases even at growth rates up to 0·042 h−1. Results of chemostats with an equimolar mixture of d-galactose and d-glucose essentially mimicked the behaviour on d-galactose alone, whereas an equimolar mixture of d-galactose and galactitol, the first intermediate of a recently described second pathway of d-galactose catabolism, led to cellulase induction at D=0·030 h−1. It is concluded that d-galactose indeed induces cellulases at low growth rate and that the operation of the alternative pathway further increases this induction. However, under those conditions lactose is still a superior inducer for which the mechanism remains to be clarified.
Collapse
|
|
19 |
57 |
18
|
Schmoll M, Zeilinger S, Mach RL, Kubicek CP. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 2004; 41:877-87. [PMID: 15288024 DOI: 10.1016/j.fgb.2004.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 06/08/2004] [Indexed: 02/07/2023]
Abstract
The cellulase system of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) is encoded by several cellobiohydrolase, endoglucanase and beta-glucosidase genes, which are co-ordinately expressed upon induction by cellulose or the disaccharide sophorose. To identify genes, which are specifically expressed under these inducing conditions and possibly related to the induction process, we applied rapid subtraction hybridization (RaSH) to sophorose induced mRNAs from the wild-type strain H. jecorina QM9414 and a mutant strain H. jecorina QM9978, which is defective in the induction of cellulase gene expression. From a total of 224 clones, 22 gene fragments representing 20 different genes were analyzed. These included one gene encoding a PAS-domain protein with similarity to the Neurospora clock modulator VIVID; one gene similar to Podospora anserina ami1 involved in nuclear migration and the genes encoding translation elongation factor 1alpha, the transcriptional activator Hap5, and myo-inositol-1-phosphate synthase; in addition, several genes were detected, whose function is unknown. Some of them did not even have potential homologues in the Neurospora or Fusarium genome databases. The differential regulation of expression of those 20 genes by sophorose in wild-type and mutant was verified by Northern blotting. Their consistent response to additional inducing conditions (cellulose) confirms their interconnection with cellulase formation.
Collapse
|
Journal Article |
21 |
56 |
19
|
Druzhinina IS, Komoń-Zelazowska M, Atanasova L, Seidl V, Kubicek CP. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 2010; 5:e9191. [PMID: 20169200 PMCID: PMC2820547 DOI: 10.1371/journal.pone.0009191] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage) of the common pantropical ascomycete Hypocrea jecorina. METHODOLOGY/PRINCIPAL FINDINGS We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster) barcode in fact comprise several species: i) H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages) found on dead wood and the wild-type strain of T. reesei QM 6a; ii) T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii) and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. CONCLUSIONS Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour--T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation within saprotrophic fungi, with divergent ecophysiological adaptations and reproductive strategies.
Collapse
|
research-article |
15 |
56 |
20
|
Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS. Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 2008; 8:4. [PMID: 18186925 PMCID: PMC2253510 DOI: 10.1186/1471-2148-8-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/10/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi. Their main function is to confer hydrophobicity to fungal surfaces in contact with air or during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or themselves resulting in morphogenetic signals. Based on their hydropathy patterns and solubility characteristics, hydrophobins are divided into two classes (I and II), the latter being found only in ascomycetes. RESULTS We have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three draft sequenced genomes (H. jecorina = T. reesei, H. atroviridis = T. atroviride; H. virens = T. virens) an additional 14,000 ESTs from six other Trichoderma spp. (T. asperellum, H. lixii = T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, respectively. Ten is the highest number found in any ascomycete so far. All the hydrophobins we examined had the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these hydrophobins (HFBs)contained an extended N-terminus rich in either proline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades containing duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2-4) from each species, and most were from Sordariomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other Sordariomycetes occurred in shared clades. CONCLUSION Our study shows that the genus Trichoderma/Hypocrea has a proliferated arsenal of class II hydrophobins which arose by birth-and-death evolution followed by purifying selection.
Collapse
|
research-article |
17 |
55 |
21
|
Würleitner E, Pera L, Wacenovsky C, Cziferszky A, Zeilinger S, Kubicek CP, Mach RL. Transcriptional regulation of xyn2 in Hypocrea jecorina. EUKARYOTIC CELL 2003; 2:150-8. [PMID: 12582132 PMCID: PMC141161 DOI: 10.1128/ec.2.1.150-158.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The xylanase system of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) consists of two specific xylanases, Xyn1 and Xyn2, which are simultaneously expressed during growth on xylan but respond differentially to low-molecular-weight inducers. Using in vivo footprinting analysis of xylan-induced and noninduced mycelia, we detected two adjacent nucleotide sequences (5'-AGAA-3' on the noncoding strand and 5'-GGGTAAATTGG-3', referred to as the xylanase-activating element [XAE], on the coding strand, respectively) to bind proteins. Among these, binding to the AGAA-box is only observed under noninduced conditions, whereas binding to XAE is constitutive. Electrophoretic mobility shift assay with heterologously expressed components of the H. jecorina Hap2/3/5 protein complex and the cellulase regulator Ace2 suggests that these two transactivators form the protein complex binding to XAE. H. jecorina transformants, containing correspondingly mutated versions of the xyn2 promoter fused to the Aspergillus niger goxA gene as a reporter, revealed that the elimination of protein binding to the AGAA-box resulted in a threefold increase in both basal and induced transcription, whereas elimination of Ace2 binding to its target in XAE completely eliminated transcription under both conditions. Destruction of the CCAAT-box by insertion of a point mutation prevents binding of the Hap2/3/5 complex in vitro and results in a slight increase in both basal and induced transcription. These data support a model of xyn2 regulation based on the interplay of Hap2/3/5, Ace2 and the AGAA-box binding repressor.
Collapse
|
research-article |
22 |
52 |
22
|
Seiboth B, Hartl L, Pail M, Kubicek CP. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase. EUKARYOTIC CELL 2003; 2:867-75. [PMID: 14555469 PMCID: PMC219359 DOI: 10.1128/ec.2.5.867-875.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022]
Abstract
With the goal of the genetic characterization of the D-xylose pathway in Hypocrea jecorina (anamorph: Trichoderma reesei), we cloned the xdh1 gene, encoding NAD-xylitol dehydrogenase, which catalyzes the second step of fungal D-xylose catabolism. This gene encodes a 363-amino-acid protein which has a mass of 38 kDa, belongs to the zinc-containing alcohol dehydrogenase family, exhibits high sequence identity to the published sequences of xylitol dehydrogenases from yeast origins, but contains a second, additional binding site for Zn2+. The enzyme catalyzed the NAD-dependent oxidation of xylitol and D-sorbitol and the NADH-dependent reduction of D-xylulose and D-fructose. No activity was observed with NADP, L-arabinose, or L-arabinitol. A single 1.4-kb transcript was formed during growth on xylan, D-xylose, L-arabinose, L-arabinitol and, at a lower abundance, xylitol, D-galactose, galactitol, and lactose but not on D-glucose and glycerol. xdh1 deletion mutants exhibited 50% reduced growth rates on D-xylose, whereas growth rates on xylitol remained unaltered. These mutants contained 30% of the xylitol dehydrogenase activity of the parent strain, indicating the presence of a second xylitol dehydrogenase. This activity was shown to be due to lad1-encoded L-arabinitol-4-dehydrogenase, because H. jecorina xdh1 lad1 double-deletion strains failed to grow on D-xylose or xylitol. In contrast, lad1 deletion strains of H. jecorina grew normally on these carbon sources. These results show that H. jecorina contains a single xylitol dehydrogenase which is encoded by xdh1 and is involved in the metabolism of D-xylose and that lad1-encoded L-arabinitol-4-dehydrogenase can compensate for it partially in mutants with a loss of xdh1 function.
Collapse
|
|
22 |
52 |
23
|
Seiboth B, Hartl L, Salovuori N, Lanthaler K, Robson GD, Vehmaanperä J, Penttilä ME, Kubicek CP. Role of the bga1-encoded extracellular {beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl Environ Microbiol 2005; 71:851-7. [PMID: 15691940 PMCID: PMC546727 DOI: 10.1128/aem.71.2.851-857.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactose is the only soluble and economically feasible carbon source for the production of cellulases or heterologous proteins regulated by cellulase expression signals by Hypocrea jecorina (Trichoderma reesei). We investigated the role of the major beta-galactosidase of H. jecorina in lactose metabolism and cellulase induction. A genomic copy of the bga1 gene was cloned, and this copy encodes a 1,023-amino-acid protein with a 20-amino-acid signal sequence. This protein has a molecular mass of 109.3 kDa, belongs to glycosyl hydrolase family 35, and is the major extracellular beta-galactosidase during growth on lactose. Its transcript was abundant during growth on l-arabinose and l-arabinitol but was much less common when the organism was grown on lactose, d-galactose, galactitol, d-xylose, and xylitol. Deltabga1 strains grow more slowly and accumulate less biomass on lactose, but the cellobiohydrolase I and II gene expression and the final cellulase yields were comparable to those of the parental strain. Overexpression of bga1 under the control of the pyruvate kinase promoter reduced the lag phase, increased growth on lactose, and limited transcription of cellobiohydrolases. We detected an additional extracellular beta-galactosidase activity that was not encoded by bga1 but no intracellular beta-galactosidase activity. In conclusion, cellulase production on lactose occurs when beta-galactosidase activity levels are low but decreases as the beta-galactosidase activities increase. The data indicate that bga1-encoded beta-galactosidase activity is a critical factor for cellulase production on lactose.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
51 |
24
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, Nakari-Setälä T, Penttilä M, von Döhren H. Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J 2007; 274:841-52. [PMID: 17288563 DOI: 10.1111/j.1742-4658.2007.05636.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intact-cell MS (ICMS) was applied for the direct detection of hydrophobins in various species and strains of Hypocrea/Trichoderma. In both mycelia and spores, dominating peaks were identified as hydrophobins by detecting mass shifts of 8 Da of reduced and unreduced forms, the analysis of knockout mutants, and comparison with protein databases. Strain-specific processing was observed in the case of Hypocrea jecorina (anamorph Trichoderma reesei). An analysis of 32 strains comprising 29 different species of Trichoderma and Hypocrea showed hydrophobin patterns that were specific at both at the species and isolate (subspecies) levels. The method therefore permits rapid and direct detection of hydrophobin class II compositions and may also provide a means to identify Trichoderma (and other fungal) species and strains from microgram amounts of biomass without prior cultivation.
Collapse
|
|
18 |
47 |
25
|
Hartl L, Seiboth B. Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 2005; 48:204-11. [PMID: 16091959 DOI: 10.1007/s00294-005-0011-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 06/28/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
In Hypocrea jecorina (anamorph: Trichoderma reesei) multiple gene deletions are limited by the number of readily available selection markers. We have therefore constructed a blaster cassette which enables successive gene knock-outs in H. jecorina. This 3.5 kb pyr4 blaster cassette contains the H. jecorina pyr4 marker gene encoding orotidine-5'-monophosphate (OMP) decarboxylase flanked by two direct repeats of the Streptoalloteichus hindustanus bleomycin gene (Sh ble), which facilitate the excision of the blaster cassette by homologous recombination after each round of deletion. Functionality of this pyr4 blaster cassette was demonstrated by deletion of the glk1 encoding glucokinase and hxk1 encoding hexokinase. 1.4-1.8 kb of the non-coding flanking regions of both target genes were cloned into the respective blaster cassettes and transformation of a pyr4 negative H. jecorina strain with the two cassettes resulted in 10-13% of the transformants in the deletion of one of the two kinase genes. For excision of the pyr4 blaster cassettes, Deltaglk1 strains were selected for growth in the presence of 5-fluoroorotic acid. Recombination between the two Sh ble elements resulted in uridine auxotrophic strains which retained their respective glucokinase negative phenotype. Subsequent transformation of one of these auxotrophic Deltaglk1 strains with the hexokinase blaster cassette resulted in pyr4 prototrophic strains deleted in both glk1 and hxk1. Deltaglk1 strains showed reduced growth on d-glucose and d-fructose whereas Deltahxkl strains showed reduced compact growth on d-glucose but were unable to grow on d-fructose as carbon source. The double Deltaglk1Deltahxk1 deletion strain was completely unable to grow on either d-glucose or d-fructose.
Collapse
|
|
20 |
46 |