1
|
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92:573-85. [PMID: 9491897 DOI: 10.1016/s0092-8674(00)80949-6] [Citation(s) in RCA: 3968] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a central role in the integrated control of feeding and energy homeostasis. We have identified two novel neuropeptides, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors. These peptides, termed orexin-A and -B, have no significant structural similarities to known families of regulatory peptides. prepro-orexin mRNA and immunoreactive orexin-A are localized in neurons within and around the lateral and posterior hypothalamus in the adult rat brain. When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior.
Collapse
|
|
27 |
3968 |
2
|
Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Civelli O. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995; 270:792-4. [PMID: 7481766 DOI: 10.1126/science.270.5237.792] [Citation(s) in RCA: 1478] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A heptadecapeptide was identified and purified from porcine brain tissue as a ligand for an orphan heterotrimeric GTP-binding protein (G protein)-coupled receptor (LC132) that is similar in sequence to opioid receptors. This peptide, orphanin FQ, has a primary structure reminiscent of that of opioid peptides. Nanomolar concentrations of orphanin FQ inhibited forskolin-stimulated adenylyl cyclase activity in cells transfected with LC132. This inhibitory activity was not affected by the addition of opioid ligands, nor did the peptide activate opioid receptors. Orphanin FQ bound to its receptor in a saturable manner and with high affinity. When injected intracerebroventricularly into mice, orphanin FQ caused a decrease in locomotor activity but did not induce analgesia in the hot-plate test. However, the peptide produced hyperalgesia in the tail-flick assay. Thus, orphanin FQ may act as a transmitter in the brain by modulating nociceptive and locomotor behavior.
Collapse
|
|
30 |
1478 |
3
|
Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6:991-7. [PMID: 10973318 DOI: 10.1038/79690] [Citation(s) in RCA: 1415] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
Collapse
|
Case Reports |
25 |
1415 |
4
|
Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 1995; 359:154-94. [PMID: 8557845 DOI: 10.1002/cne.903590111] [Citation(s) in RCA: 976] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GABAA-receptors display an extensive structural heterogeneity based on the differential assembly of a family of at least 15 subunits (alpha 1-6, beta 1-3, gamma 1-3, delta, rho 1-2) into distinct heteromeric receptor complexes. The subunit composition of receptor subtypes is expected to determine their physiological properties and pharmacological profiles, thereby contributing to flexibility in signal transduction and allosteric modulation. In heterologous expression systems, functional receptors require a combination of alpha-, beta-, and gamma-subunit variants, the gamma 2-subunit being essential to convey a classical benzodiazepine site to the receptor. The subunit composition and stoichiometry of native GABAA-receptor subtypes remain unknown. The aim of this study was to identify immunohistochemically the main subunit combinations expressed in the adult rat brain and to allocate them to identified neurons. The regional and cellular distribution of seven major subunits (alpha 1, alpha 2, alpha 3, alpha 5, beta 2,3, gamma 2, delta) was visualized by immunoperoxidase staining with subunit-specific antibodies (the beta 2- and beta 3-subunits were covisualized with the monoclonal antibody bd-17). Putative receptor subtypes were identified on the basis of colocalization of subunits within individual neurons, as analyzed by confocal laser microscopy in double- and triple-immunofluorescence staining experiments. The results reveal an extraordinary heterogeneity in the distribution of GABAA-receptor subunits, as evidenced by abrupt changes in immunoreactivity along well-defined cytoarchitectonic boundaries and by pronounced differences in the cellular distribution of subunits among various types of neurons. Thus, functionally and morphologically diverse neurons were characterized by a distinct GABAA-receptor subunit repertoire. The multiple staining experiments identified 12 subunit combinations in defined neurons. The most prevalent combination was the triplet alpha 1/beta 2,3/gamma 2, detected in numerous cell types throughout the brain. An additional subunit (alpha 2, alpha 3, or delta) sometimes was associated with this triplet, pointing to the existence of receptors containing four subunits. The triplets alpha 2/beta 2,3/gamma 2, alpha 3/beta 2,3/gamma 2, and alpha 5/beta 2,3/gamma 2 were also identified in discrete cell populations. The prevalence of these seven combinations suggest that they represent major GABAA-receptor subtypes. Five combinations also apparently lacked the beta 2,3-subunits, including one devoid of gamma 2-subunit (alpha 1/alpha 2/gamma 2, alpha 2/gamma 2, alpha 3/gamma 2, alpha 2/alpha 3/gamma 2, alpha 2/alpha 5/delta).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Comparative Study |
30 |
976 |
5
|
Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001; 15:1748-57. [PMID: 11579207 DOI: 10.1210/mend.15.10.0706] [Citation(s) in RCA: 522] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Brain-derived neurotrophic factor has been associated previously with the regulation of food intake. To help elucidate the role of this neurotrophin in weight regulation, we have generated conditional mutants in which brain-derived neurotrophic factor has been eliminated from the brain after birth through the use of the cre-loxP recombination system. Brain-derived neurotrophic factor conditional mutants were hyperactive after exposure to stressors and had higher levels of anxiety when evaluated in the light/dark exploration test. They also had mature onset obesity characterized by a dramatic 80-150% increase in body weight, increased linear growth, and elevated serum levels of leptin, insulin, glucose, and cholesterol. In addition, the mutants had an abnormal starvation response and elevated basal levels of POMC, an anorexigenic factor and the precursor for alpha-MSH. Our results demonstrate that brain derived neurotrophic factor has an essential maintenance function in the regulation of anxiety-related behavior and in food intake through central mediators in both the basal and fasted state.
Collapse
|
|
24 |
522 |
6
|
Abstract
To study the organization and distribution of the inhibitory amino acid neurotransmitter GABA in the medial hypothalamus, we used a postembedding immunocytochemical approach with colloidal gold. Quantitative analysis showed that half (49%) of all synapsing boutons studied were immunoreactive for GABA, based on immunogold staining of the suprachiasmatic, arcuate, supraoptic, and paraventricular nuclei. This was corroborated with pre-embedding peroxidase immunostaining with antisera against glutamate decarboxylase, the GABA synthetic enzyme. These data suggest that GABA is the numerically dominant neurotransmitter in the hypothalamus, and emphasize the importance of inhibitory circuits in the hypothalamus. Serial ultrathin sections were used to reconstruct GABA immunoreactive boutons and axons in three dimensions. With this type of analysis we found less morphological heterogeneity between GABA immunoreactive boutons than with single ultrathin sections. Single sections sometimes showed boutons containing only small clear vesicles, and other with both clear vesicles and small dense core vesicles. However, with serial sections through individual boutons, dense core vesicles were consistently found at the periphery of the pre-synaptic GABA immunoreactive boutons, suggesting probable co-localization of GABA with unidentified peptides in most if not all boutons throughout the hypothalamus. A positive correlation was found between the density of small clear vesicles and the intensity of immunostaining with colloidal gold particles. GABA immunoreactive axons generally made symmetrical type synaptic specializations, although a small percentage made strongly asymmetrical synaptic specializations. Vesicles in GABA immunoreactive boutons were slightly smaller than those in non-reactive boutons. Synaptic efficacy is related to the position of the synapse on the post-synaptic neuron. While the majority of GABA immunoreactive axons made synaptic contact with dendrites, the distribution of GABA immunoreactive synapses on somata and dendrites was the same as would be expected from a random distribution of all boutons. No preferential innervation of cell bodies by GABA immunoreactive terminals was found. Serial ultrathin sections showed that a GABA immunoreactive axon would sometimes make repeated synaptic contacts with a single postsynaptic neuron, indicating a high degree of direct control by the presynaptic GABAergic cell. Other immunoreactive axons made synaptic contact with a number of adjacent dendrites and cells, suggesting a role for GABA in synchronizing the activity of hypothalamic neurons. Based on the density of immunogold particles per unit area, varying concentrations of immunoreactive GABA were found in different presynaptic boutons in the hypothalamus.
Collapse
|
|
35 |
444 |
7
|
Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 2007; 193:311-21. [PMID: 17470522 DOI: 10.1677/joe-07-0017] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G protein-coupled receptor 30 (GPR 30) has been identified as the non-genomic estrogen receptor, and G-1, the specific ligand for GPR30. With the use of a polyclonal antiserum directed against the human C-terminus of GPR30, immunohistochemical studies revealed GPR30-immunoreactivity (irGPR30) in the brain of adult male and non-pregnant female rats. A high density of irGPR30 was noted in the Islands of Calleja and striatum. In the hypothalamus, irGPR30 was detected in the paraventricular nucleus and supraoptic nucleus. The anterior and posterior pituitary contained numerous irGPR30 cells and terminal-like endings. Cells in the hippocampal formation as well as the substantia nigra were irGPR30. In the brainstem, irGPR30 cells were noted in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus; a cluster of cells were prominently labeled in the nucleus ambiguus. Tissue sections processed with pre-immune serum showed no irGPR30, affirming the specificity of the antiserum. G-1 (100 nM) caused a large increase of intracellular calcium concentrations [Ca(2+) ](i) in dissociated and cultured rat hypothalamic neurons, as assessed by microfluorometric Fura-2 imaging. The calcium response to a second application of G-1 showed a marked homologous desensitization. Our result shows a high expression of irGPR30 in the hypothalamic-pituitary axis, hippocampal formation, and brainstem autonomic nuclei; and the activation of GPR30 by G-1 is associated with a mobilization of calcium in dissociated and cultured rat hypothalamic neurons.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
396 |
8
|
Abstract
It has recently been reported that Parkinson’s disease (PD) is preceded and accompanied by daytime sleep attacks, nocturnal insomnia, REM sleep behaviour disorder, hallucinations and depression, symptoms which are frequently as troublesome as the motor symptoms of PD. All these symptoms are present in narcolepsy, which is linked to a selective loss of hypocretin (Hcrt) neurons. In this study, the Hcrt system was examined to determine if Hcrt cells are damaged in PD. The hypothalamus of 11 PD (mean age 79±4) and 5 normal (mean age 77±3) brains was examined. Sections were immunostained for Hcrt-1, melanin concentrating hormone (MCH) and alpha synuclein and glial fibrillary acidic protein (GFAP). The substantia nigra of 10 PD brains and 7 normal brains were used for a study of neuromelanin pigmented cell loss. The severity of PD was assessed using the Hoehn and Yahr scale and the level of neuropathology was assessed using the Braak staging criteria. Cell number, distribution and size were determined with stereologic techniques on a one in eight series. We found an increasing loss of hypocretin cells with disease progression. Similarly, there was an increased loss of MCH cells with disease severity. Hcrt and MCH cells were lost throughout the anterior to posterior extent of their hypothalamic distributions. The percentage loss of Hcrt cells was minimal in stage I (23%) and was maximal in stage V (62%). Similarly, the percentage loss of MCH cells was lowest in stage I (12%) and was highest in stage V (74%). There was a significant increase (P=0.0006, t=4.25, df=15) in the size of neuromelanin containing cells in PD patients, but no difference in the size of surviving Hcrt (P=0.18, t=1.39, df=14) and MCH (P=0.28, t=1.39, df=14) cells relative to controls. In summary, we found that PD is characterized by a massive loss of Hcrt neurons. Thus, the loss of Hcrt cells may be a cause of the narcolepsy-like symptoms of PD and may be ameliorated by treatments aimed at reversing the Hcrt deficit. We also saw a substantial loss of hypothalamic MCH neurons. The losses of Hcrt and MCH neurons are significantly correlated with the clinical stage of PD, not disease duration, whereas the loss of neuromelanin cells is significantly correlated only with disease duration. The significant correlations that we found between the loss of Hcrt and MCH neurons and the clinical stage of PD, in contrast to the lack of a relationship of similar strength between loss of neuromelanin containing cells and the clinical symptoms of PD, suggests a previously unappreciated relationship between hypothalamic dysfunction and the time course of the overall clinical picture of PD.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
372 |
9
|
Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 2004; 24:11439-48. [PMID: 15601950 PMCID: PMC6730356 DOI: 10.1523/jneurosci.3459-04.2004] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 11/04/2004] [Accepted: 11/10/2004] [Indexed: 12/31/2022] Open
Abstract
The hypothalamic neuropeptides hypocretins (orexins) play a crucial role in the stability of arousal and alertness. We tested whether the hypocretinergic system is a critical component of the stress response activated by the corticotropin-releasing factor (CRF). Our results show that CRF-immunoreactive terminals make direct contact with hypocretin-expressing neurons in the lateral hypothalamus and that numerous hypocretinergic neurons express the CRF-R1/2 receptors. We also demonstrate that application of CRF to hypothalamic slices containing identified hypocretin neurons depolarizes membrane potential and increases firing rate in a subpopulation of hypocretinergic cells. CRF-induced depolarization was tetrodotoxin insensitive and was blocked by the peptidergic CRF-R1 antagonist astressin. Moreover, activation of hypocretinergic neurons in response to acute stress was severely impaired in CRF-R1 knock-out mice. Together, our data provide evidence of a direct neuroanatomical and physiological input from CRF peptidergic system onto hypocretin neurons. We propose that, after stressor stimuli, CRF stimulates the release of hypocretins and that this circuit contributes to activation and maintenance of arousal associated with the stress response.
Collapse
|
Research Support, N.I.H., Extramural |
21 |
364 |
10
|
Fronczek R, Overeem S, Lee SYY, Hegeman IM, van Pelt J, van Duinen SG, Lammers GJ, Swaab DF. Hypocretin (orexin) loss in Parkinson's disease. Brain 2007; 130:1577-85. [PMID: 17470494 DOI: 10.1093/brain/awm090] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hypothalamic hypocretin (orexin) system plays a central role in the regulation of various functions, including sleep/wake regulation and metabolism. There is a growing interest in hypocretin function in Parkinson's disease (PD), given the high prevalence of non-motor symptoms such as sleep disturbances in this disorder. However, studies measuring CSF hypocretin levels have yielded contradictory results. In PD patients and matched controls, we (i) estimated the number of hypocretin neurons in post-mortem hypothalami using immunocytochemistry and an image analysis system (ii) quantified hypocretin levels in post-mortem ventricular CSF and (iii) prefrontal cortex using a radioimmunoassay. Furthermore, presence of Lewy bodies was verified in the hypothalamic hypocretin cell area. Data are presented as median (25th-75th percentile). We showed a significant decrease between PD patients and controls in (i) the number of hypocretin neurons (PD: 20 276 (13 821-31 229); controls: 36 842 (32 546-50 938); P = 0.016); (ii) the hypocretin-1 concentration in post-mortem ventricular CSF (PD: 365.5 pg/ml (328.0-448.3); controls: 483.5 (433.5-512.3); P = 0.012) and (iii) the hypocretin-1 concentrations in prefrontal cortex (PD: 389.6 pg/g (249.2-652.2); controls: 676.6 (467.5-883.9); P = 0.043). Hypocretin neurotransmission is affected in PD. The hypocretin-1 concentration in the prefrontal cortex was almost 40% lower in PD patients, while ventricular CSF levels were almost 25% reduced. The total number of hypocretin neurons was almost half compared to controls.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
307 |
11
|
Koylu EO, Couceyro PR, Lambert PD, Ling NC, DeSouza EB, Kuhar MJ. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J Neuroendocrinol 1997; 9:823-33. [PMID: 9419833 DOI: 10.1046/j.1365-2826.1997.00651.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CART peptide specific polyclonal antisera were raised in rabbits. The antisera were raised to CART peptide fragments that span most of the predicted CART protein. The specificity of each antisera was demonstrated by blockade of immunostaining by the immunizing peptide but not by the other CART peptide fragments. In the hypothalamus and pituitary of colchicine and noncolchicine treated rats, immunostaining was observed in cell bodies, fibers and varicosities. Clusters of cells were also stained in the adrenal medulla. It is noteworthy that cellular immunostaining was only found in areas previously shown to express CART mRNA. These findings indicate the presence of CART peptide(s) in the hypothalamus, pituitary, and adrenal gland. Furthermore, we also present evidence for the possible processing of the CART pro-peptide into smaller peptide fragments. These neuroanatomical findings suggest a role of CART peptides in hypothalamic, pituitary and adrenal function.
Collapse
|
|
28 |
306 |
12
|
Ruat M, Molliver ME, Snowman AM, Snyder SH. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci U S A 1995; 92:3161-5. [PMID: 7724534 PMCID: PMC42125 DOI: 10.1073/pnas.92.8.3161] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.
Collapse
|
research-article |
30 |
282 |
13
|
Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Vergé D. Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 1996; 365:289-305. [PMID: 8822171 DOI: 10.1002/(sici)1096-9861(19960205)365:2<289::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Specific anti-rat 5-hydroxytryptamine1A (serotonin1A) receptor antibodies raised in a rabbit injected with a synthetic peptide corresponding to a highly selective portion of the third intracellular loop of the receptor protein (El Mestikawy et al. [1990] Neurosci. Lett. 118:189-192) were used for immunohistochemical mapping of serotonin1A receptors in the brain and spinal cord of adult rats. The highest density of immunostaining was found in limbic areas (lateral septum, CA1 area of Ammon's horn and dentate gyrus in the hippocampus, and frontal and entorhinal cortices), in the anterior raphe nuclei, and in the interpeduncular nucleus, in agreement with previous autoradiographic studies with selective radioligands showing the enrichment of these regions in serotonin1A receptor binding sites. Serotonin1A receptor-like immunoreactivity was also present, but at a moderate level, in the neocortex, in some thalamic and hypothalamic nuclei, in the nucleus of the solitary tract, in the dorsal tegmentum, in the nucleus of the spinal tract of the trigeminal nerve, and in the superficial layers of the dorsal horn in the spinal cord. In contrast, extrapyramidal areas, including the caudate putamen, the globus pallidus, and the substantia nigra as well as the cerebellum, exhibited very low to no immunostaining by antiserotonin1A receptor antibodies. At the cellular level, both the plasma membrane of neuronal perikarya and fine neuronal processes probably corresponding to dendritic fields were found to bind antiserotonin1A receptor antibodies. Regional differences were noted regarding these two types of immunostaining, because only dendrites bound antibodies within the hippocampus and the lateral septum, whereas both dendrites and neuronal cell bodies were immunoreactive in the medial septum, in the diagonal band of Broca, and in the dorsal and median raphe nuclei. Therefore, differential addressing of serotonin1A receptors could occur from one neuron to another. In general, the distribution and density of serotonin1A receptor-like immunoreactivity in the whole brain and in spinal cord were consistent with the mapping of serotonin1A receptor binding sites and serotonin1A receptor mRNA previously established by immunoautoradiographic and in situ hybridization procedures.
Collapse
|
|
29 |
282 |
14
|
Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 2007; 117:627-35. [PMID: 17318265 PMCID: PMC1797602 DOI: 10.1172/jci28253] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 01/02/2007] [Indexed: 11/17/2022] Open
Abstract
In humans, inactivating mutations in the gene of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8; SLC16A2) lead to severe forms of psychomotor retardation combined with imbalanced thyroid hormone serum levels. The MCT8-null mice described here, however, developed without overt deficits but also exhibited distorted 3,5,3'-triiodothyronine (T3) and thyroxine (T4) serum levels, resulting in increased hepatic activity of type 1 deiodinase (D1). In the mutants' brains, entry of T4 was not affected, but uptake of T3 was diminished. Moreover, the T4 and T3 content in the brain of MCT8-null mice was decreased, the activity of D2 was increased, and D3 activity was decreased, indicating the hypothyroid state of this tissue. In the CNS, analysis of T3 target genes revealed that in the mutants, the neuronal T3 uptake was impaired in an area-specific manner, with strongly elevated thyrotropin-releasing hormone transcript levels in the hypothalamic paraventricular nucleus and slightly decreased RC3 mRNA expression in striatal neurons; however, cerebellar Purkinje cells appeared unaffected, since they did not exhibit dendritic outgrowth defects and responded normally to T3 treatment in vitro. In conclusion, the circulating thyroid hormone levels of MCT8-null mice closely resemble those of humans with MCT8 mutations, yet in the mice, CNS development is only partially affected.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
260 |
15
|
Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y. Neurosteroid quantification in human brain regions: comparison between Alzheimer's and nondemented patients. J Clin Endocrinol Metab 2002; 87:5138-43. [PMID: 12414884 DOI: 10.1210/jc.2002-020878] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Some neurosteroids have been shown to display beneficial effects on neuroprotection in rodents. To investigate the physiopathological significance of neurosteroids in Alzheimer's disease (AD), we compared the concentrations of pregnenolone, pregnenolone sulfate (PREGS), dehydroepiandrosterone, dehydroepiandrosterone sulfate (DHEAS), progesterone, and allopregnanolone, measured by gas chromatography-mass spectrometry, in individual brain regions of AD patients and aged nondemented controls, including hippocampus, amygdala, frontal cortex, striatum, hypothalamus, and cerebellum. A general trend toward decreased levels of all steroids was observed in all AD patients' brain regions compared with controls: PREGS and DHEAS were significantly lower in the striatum and cerebellum, and DHEAS was also significantly reduced in the hypothalamus. A significant negative correlation was found between the levels of cortical beta-amyloid peptides and those of PREGS in the striatum and cerebellum and between the levels of phosphorylated tau proteins and DHEAS in the hypothalamus. This study provides reference values for steroid concentrations determined by gas chromatography-mass spectrometry in various regions of the aged human brain. High levels of key proteins implicated in the formation of plaques and neurofibrillary tangles were correlated with decreased brain levels of PREGS and DHEAS, suggesting a possible neuroprotective role of these neurosteroids in AD.
Collapse
|
|
23 |
249 |
16
|
Lovenberg TW, Chalmers DT, Liu C, De Souza EB. CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 1995; 136:4139-42. [PMID: 7544278 DOI: 10.1210/endo.136.9.7544278] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently described the cloning and characterization of a novel corticotropin-releasing factor receptor subtype (CRF2) from rat brain that exists in two alternatively spliced forms, CRF2 alpha and CRF2 beta. These forms differ in their N-terminal coding sequence which results in the production of two distinct receptors of 411 and 431 amino acids, respectively. To assess whether these two forms might represent distinct targets for CRF action, RNase protection and in situ hybridization studies were performed using specific N-terminal cRNA probes. The results showed a differential distribution of the mRNAs for these two receptor forms in the rat. The mRNA for CRF2 alpha is found almost exclusively in the brain, particularly in the hypothalamus, lateral septum, and olfactory bulb, whereas the mRNA for CRF2 beta appears to be both in the brain and in the periphery, with the greatest abundance in the heart and skeletal muscle. Thus, the data suggest that these alternatively spliced forms of the CRF2 receptor may represent functionally distinct CRF receptors. In addition, it highlights the importance of probe specificity for in situ hybridization studies.
Collapse
|
|
30 |
234 |
17
|
Komatsu Y, Nakao K, Suga S, Ogawa Y, Mukoyama M, Arai H, Shirakami G, Hosoda K, Nakagawa O, Hama N. C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 1991; 129:1104-6. [PMID: 1855454 DOI: 10.1210/endo-129-2-1104] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have established a specific radioimmunoassay (RIA) for C-type natriuretic peptide (CNP), the third member of the natriuretic peptide family, and have elucidated its tissue distribution and molecular form. In rats, high concentrations of CNP-like immunoreactivity (-LI) were detected in the anterior lobe (19.8 +/- 8.6 pmol/g) and neurointermediate lobe (4.64 +/- 0.74 pmol/g) of the pituitary gland. CNP-LI was present throughout the brain with its high concentrations in the hypothalamus and cerebellum. Small amounts of CNP-LI were also detected in the lower part of gastrointestinal tract and the kidney. However, no significant amount of CNP-LI was present in other organs including the heart. Considerable amounts of CNP-LI were detected throughout the human brain. High performance-gel permeation chromatography coupled with the RIA detected two peaks of CNP-LI in the rat brain; CNP and presumably its N-terminally elongated form with 53 amino-acid residues, CNP-53. These findings indicate that the tissue distribution and processing pattern of CNP are clearly different from those of atrial natriuretic peptide and brain natriuretic peptide and suggest possible roles of CNP as a neurotransmitter or neuromodulator rather than as a cardiac hormone.
Collapse
|
|
34 |
228 |
18
|
Abstract
The recent cloning of a second form of the estrogen receptor (ER-beta) has made it possible to map the distribution of ER-beta mRNA-containing perikarya in the rat hypothalamus. The present in situ hybridization histochemical studies have detected ER-beta mRNA in the medial preoptic area; the anterior periventricular, paraventricular, supraoptic, arcuate, medial tuberal and medial mammillary nuclei; the bed nucleus of the stria terminals, and zona incerta. As previously described for the classical ER (ER-alpha) mRNA, a dense accumulation of ER-beta mRNA-expressing perikarya is present in the medial preoptic area and bed nucleus of the stria terminalis. In contrast, ER-beta mRNA was also concentrated in the paraventricular and supraoptic nuclei, brain regions which contain little or no ER-alpha mRNA. Moreover, the arcuate and ventromedial nuclei, areas with abundant ER-alpha. contain only a weak level of ER-beta hybridization signal. The description of ER-beta mRNA-containing perikarya in the rat hypothalamus provides a foundation for further morphological and physiological studies aimed at elucidating the role of ER-beta in the hypothalamus.
Collapse
|
|
29 |
209 |
19
|
Abrahamson EE, Leak RK, Moore RY. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 2001; 12:435-40. [PMID: 11209963 DOI: 10.1097/00001756-200102120-00048] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) temporally organizes behavior in part by sustaining arousal during the wake period of the sleep/wake cycle to consolidate adaptive waking behavior. In this study, we demonstrate direct projections from the SCN, in both the rat and the human brains, to perikarya and proximal dendrites of two groups of posterior hypothalamic neurons with axonal projections that suggest they are important in the regulation of arousal, one producing hypocretins (HCT) and the other melanin-concentrating hormone (MCH). In addition, we demonstrate that both HCT and MCH-producing neurons are immunoreactive for glutamate (GLU). These observations support the hypothesis that direct projections from the SCN to the posterior hypothalamus mediate the arousal function of the circadian timing system.
Collapse
|
|
24 |
204 |
20
|
Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, Jeffrey P, Cutler L, Riba I, Johns A, Porter RA, Upton N, Hunter AJ, Parsons AA. Orexin-A, an hypothalamic peptide with analgesic properties. Pain 2001; 92:81-90. [PMID: 11323129 DOI: 10.1016/s0304-3959(00)00470-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hypothalamic peptide orexin-A and the orexin-1 receptor are localized in areas of the brain and spinal cord associated with nociceptive processing. In the present study, localization was confirmed in the spinal cord and demonstrated in the dorsal root ganglion for both orexin-A and the orexin-1 receptor. The link with nociception was extended when orexin-A was shown to be analgesic when given i.v. but not s.c. in mouse and rat models of nociception and hyperalgesia. The efficacy of orexin-A was similar to that of morphine in the 50 degrees C hotplate test and the carrageenan-induced thermal hyperalgesia test. However, involvement of the opiate system in these effects was ruled out as they were blocked by the orexin-1 receptor antagonist SB-334867 but not naloxone. Orexin-1 receptor antagonists had no effect in acute nociceptive tests but under particular inflammatory conditions were pro-hyperalgesic, suggesting a tonic inhibitory orexin drive in these circumstances. These data demonstrate that the orexinergic system has a potential role in the modulation of nociceptive transmission.
Collapse
|
|
24 |
204 |
21
|
Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 1997; 138:4445-55. [PMID: 9322962 DOI: 10.1210/endo.138.10.5270] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Within the central nervous system, glucagon-like peptide-1-(7-36) amide (GLP-1) acts as a transmitter, inhibiting feeding and drinking behavior. Hypothalamic neuroendocrine neurons are centrally involved in the regulatory mechanisms controlling these behaviors, and high densities of GLP-1 binding sites are present in the rat hypothalamus. In the present study we have, over a period of 4 h, followed the effect of centrally injected GLP-1 on plasma levels of the neurohypophysial hormones vasopressin and oxytocin. Plasma levels of corticosterone and glucose were also followed across time after central administration of GLP-1. In conscious, freely moving, and unstressed rats, central injection of GLP-1 significantly elevated plasma levels of vasopressin 15 and 30 min after administration (basal, 0.8 +/- 0.2 pg/ml; 15 min, 7.5 +/- 2.0 pg/ml; 30 min, 5.6 +/- 1.1 pg/ml; mean +/- SEM) and elevated corticosterone 15 min after administration (52 +/- 13 vs. 447 +/- 108 ng/ml, basal vs. 15 min; mean +/- SEM). In contrast, plasma oxytocin levels were unaffected by intracerebroventricular (icv) injections of GLP-1 over a period of 4 h after the injection. The animals given a central injection of GLP-1 developed transient hypoglycemia 20 min after the injection, which was fully restored to normal levels at 30 min. Furthermore, we used c-fos immunocytochemistry as an index of stimulated neuronal activity. The distribution and quantity of GLP-1-induced c-fos immunoreactivity were evaluated in a number of hypothalamic neuroendocrine areas, including the magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) nuclei and the parvicellular neurons of the medial parvicellular subregion of the PVN. The number of c-fos-expressing nuclei in those areas was assessed 30, 60, and 90 min after icv administration of GLP-1. Intracerebroventricular injection of GLP-1 induced c-fos expression in the medial parvicellular subregion of the PVN as well as in magnocellular neurons of the PVN and SON. A slight induction of c-fos expression was seen in the arcuate nucleus and the nucleus of the solitary tract, including the area postrema. In contrast, the subfornical organ, which is a rostrally situated circumventricular organ, was free of c-fos-positive cells after central administration of GLP-1. When the GLP-1 antagonist exendin-(9-39) was given before the GLP-1, c-fos expression in these neuroendocrine areas was almost completely abolished, suggesting that the effect of GLP-1 on c-fos expression is mediated via specific receptors. A dual labeling immunocytochemical technique was used to identify the phenotypes of some of the neurons containing c-fos-immunoreactive nuclei. Approximately 80% of the CRH-positive neurons in the hypophysiotropic medial parvicellular part of the PVN coexpressed c-fos 90 min after icv GLP-1 administration. In contrast, very few (approximately 10%) of the vasopressinergic magnocellular neurons of the PVN/SON contained c-fos-positive nuclei, whereas approximately 38% of the magnocellular oxytocinergic neurons expressed c-fos-positive nuclei in response to GLP-1 administration. This study demonstrates that central administration of the anorectic neuropeptide GLP-1 activates the central CRH-containing neurons of the hypothalamo-pituitary-adrenocortical axis as well as oxytocinergic neurons of the hypothalamo-neurohypophysial tract. Therefore, we conclude that GLP-1 activates the hypothalamo-pituitary-adrenocortical axis primarily through stimulation of CRH neurons, and this activation may also be responsible for the inhibition of feeding behavior.
Collapse
|
|
28 |
203 |
22
|
Köves K, Arimura A, Görcs TG, Somogyvári-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 1991; 54:159-69. [PMID: 1766552 DOI: 10.1159/000125864] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are structurally similar, share the same high affinity site in same peripheral tissues and increase the intracellular content of adenylate cyclase. To establish which neural circuits are signaling with each of these two peptides, we systematically compared the immunohistochemical distribution of PACAP and VIP in selected rat forebrain regions using previously characterized antiserum. The PACAP antiserum recognized both PACAP27 and PACAP38, and PACAP immunoreactivity was unaffected by preincubation with various other peptides. PACAP-immunoreactive perikarya and fibers were observed in both hypothalamic and extrahypothalamic regions. In the hypothalamus PACAP perikarya were located in the supraoptic, paraventricular, anterior commissural, periventricular, and perifornical nuclei. In intact rats PACAP immunolabeled fibers were present in the internal zone of the median eminence and posterior pituitary. One week after hypophysectomy the intensity of staining in the internal zone was enhanced and immunoreactive fibers appeared in the external zone of the median eminence. Two or 3 weeks later a dense fiber network was observed around the portal capillaries in the external zone, and immunoreactive material further accumulated in the fibers of the internal zone. PACAP-immunoreactive perikarya and fibers were also observed in several extrahypothalamic regions including central thalamic nuclei, amygdaloid complex, bed nucleus of stria terminalis, septum, hippocampus and cingulate, and entorhinal cortices. In the lateral septum and entorhinal cortex PACAP fibers surrounded unstained neuronal cell bodies and small blood vessels. In intact rats, VIP-immunoreactive perikarya were present in all regions of the cerebral cortex, hippocampus, amygdaloid complexus and in the suprachiasmatic nucleus, but not in the paraventricular and supraoptic nuclei. In colchicine-treated rats the VIP perikarya appeared in the preoptic area and paraventricular nucleus. The fibers were organized in two main pathways: the stria terminalis and an ascending pathway from the suprachiasmatic nucleus to the paraventricular area. Hypophysectomy induced the appearance of VIP-immunoreactive fibers in the internal zone of the median eminence and perikarya in the supraoptic and paraventricular nuclei in addition to the suprachiasmatic nucleus. The dissimilar distributions of PACAP and VIP suggest that PACAP neural circuits are independent of that of VIP in the rat forebrain. These findings support possible multifunctional roles for PACAP as a posterior pituitary hormone, a hypophysiotrophic factor, and a neurotransmitter/neuromodulator.
Collapse
|
Comparative Study |
34 |
200 |
23
|
Svensson M, Sköld K, Svenningsson P, Andren PE. Peptidomics-based discovery of novel neuropeptides. J Proteome Res 2003; 2:213-9. [PMID: 12716136 DOI: 10.1021/pr020010u] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern proteomic methodologies have significantly improved the possibilities of large-scale identification of proteins. However, these methodologies are limited by their inability to reliably detect endogenously expressed peptides. We describe a novel approach of combining sample preparation, comprising focused microwave irradiation and mass spectrometric peptide profiling that has enabled us to simultaneously detect more than 550 endogenous neuropeptides in 1 mg of hypothalamic extracts. Automatic switching tandem mass spectrometry and amino acid sequence determination of the peptides showed that they consist of both novel and previously described neuropeptides. The methodology includes virtual visualization of the peptides as two- and three-dimensional image maps. In addition, several novel and known post-translational modifications of the neuropeptides were identified. The peptidomic approach proved to be a powerful method for investigating endogenous peptides and their post-translational modifications in complex tissues such as the brain. It is anticipated that this approach will complement proteomic methods in the future.
Collapse
|
|
22 |
197 |
24
|
Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M. Isolation and cDNA cloning of a novel galanin-like peptide (GALP) from porcine hypothalamus. J Biol Chem 1999; 274:37041-5. [PMID: 10601261 DOI: 10.1074/jbc.274.52.37041] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galanin is a widely distributed neuropeptide with a variety of physiological functions. Three galanin receptor subtypes, GALR1, GALR2, and GALR3, have been reported. We isolated a novel galanin-like peptide (GALP) from porcine hypothalamus by observing its activity for increasing [(35)S]GTPgammaS binding to a membrane preparation of GALR2-transfected cells. The peptide had 60 amino acid residues and a non-amidated C terminus. The amino acid sequence of GALP-(9-21) was completely identical to that of galanin-(1-13). A cloned porcine GALP cDNA indicated that GALP was processed from a 120-amino acid GALP precursor protein. The structures of rat and human GALP-(1-60) were deduced from cloned cDNA, which indicated that the amino acid sequences 1-24 and 41-53 were highly conserved between humans, rats, and pigs. Receptor binding studies revealed that porcine GALP-(1-60) had a high affinity for the GALR2 receptor (IC(50) = 0.24 nM) and a lower affinity for the GALR1 receptor (IC(50) = 4.3 nM). In contrast, galanin showed high affinity for the GALR1 (IC(50) = 0.097 nM) and GALR2 receptors (IC(50) = 0.48 nM). GALP is therefore an endogenous ligand that preferentially binds the GALR2 receptor, whereas galanin is relatively non-selective.
Collapse
|
|
26 |
192 |
25
|
Abstract
Hypothalamic gonadotrophin-releasing hormone (GnRH I), which is of a variable structure in vertebrates, is the central regulator of the reproductive system through its stimulation of gonadotrophin release from the pituitary. A second form of GnRH (GnRH II) is ubiquitous and conserved in structure from fish to humans, suggesting that it has important functions and a discriminating receptor that selects against structural change. GnRH II is distributed in discrete regions of the central and peripheral nervous systems and in nonneural tissues. The cognate receptor for GnRH II has recently been cloned from amphibians and mammals. It is highly selective for GnRH II, has a similar distribution to GnRH II in the nervous system and, notably, in areas associated with sexual behaviour. It is also found in reproductive tissues. An established function of GnRH II is in the inhibition of M currents (K(+) channels) through the GnRH II receptor in the amphibian sympathetic ganglion, and it might act through this mechanism as a neuromodulator in the central nervous system. The conservation of structure over 500 million years and the wide tissue distribution of GnRH II suggest that it has a variety of reproductive and nonreproductive functions and will be a productive area of research.
Collapse
|
Review |
22 |
187 |