1
|
Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. NATURE: NEW BIOLOGY 1971; 231:232-5. [PMID: 5284360 DOI: 10.1038/newbio231232a0] [Citation(s) in RCA: 4950] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
54 |
4950 |
2
|
Abstract
Cranial radiation therapy causes a progressive decline in cognitive function that is linked to impaired neurogenesis. Chronic inflammation accompanies radiation injury, suggesting that inflammatory processes may contribute to neural stem cell dysfunction. Here, we show that neuroinflammation alone inhibits neurogenesis and that inflammatory blockade with indomethacin, a common nonsteroidal anti-inflammatory drug, restores neurogenesis after endotoxin-induced inflammation and augments neurogenesis after cranial irradiation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
1831 |
3
|
Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985; 313:54-6. [PMID: 3917554 DOI: 10.1038/313054a0] [Citation(s) in RCA: 1606] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel peptide, calcitonin gene-related peptide (CGRP), has been predicted to result from alternative processing of the primary RNA transcript of the calcitonin gene in the rat. Several lines of evidence suggest that CGRP is a transmitter in the central and peripheral nervous system. Human CGRP has been isolated and characterized, and shown to have potent effects on the heart. The observations presented here indicate that human and rat CGRP also have potent effects on blood vessels. Intradermal injection of CGRP in femtomole doses induces microvascular dilatation resulting in increased blood flow, which we have detected in the rabbit by using a 133Xe clearance technique. In human skin, CGRP induces persistent local reddening. Microscopic observation of the hamster cheek pouch in vivo revealed that topical application of CGRP induces dilatation of arterioles. Furthermore, CGRP relaxes strips of rat aorta in vitro by an endothelial cell-dependent mechanism. Therefore, we suggest that local extravascular release of CGRP may be involved in the physiological control of blood flow and that circulating CGRP may contribute to hyperaemia in certain pathological conditions.
Collapse
|
|
40 |
1606 |
4
|
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996; 384:644-8. [PMID: 8967954 DOI: 10.1038/384644a0] [Citation(s) in RCA: 1311] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prostaglandins and glucocorticoids are potent mediators of inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) exert their effects by inhibition of prostaglandin production. The pharmacological target of NSAIDs is cyclooxygenase (COX, also known as PGH synthase), which catalyses the first committed step in arachidonic-acid metabolism. Two isoforms of the membrane protein COX are known: COX-1, which is constitutively expressed in most tissues, is responsible for the physiological production of prostaglandins; and COX-2, which is induced by cytokines, mitogens and endotoxins in inflammatory cells, is responsible for the elevated production of prostaglandins during inflammation. The structure of ovine COX-1 complexed with several NSAIDs has been determined. Here we report the structures of unliganded murine COX-2 and complexes with flurbiprofen, indomethacin and SC-558, a selective COX-2 inhibitor, determined at 3.0 to 2.5 A resolution. These structures explain the structural basis for the selective inhibition of COX-2, and demonstrate some of the conformational changes associated with time-dependent inhibition.
Collapse
|
|
29 |
1311 |
5
|
Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103:1345-52. [PMID: 10225978 PMCID: PMC408356 DOI: 10.1172/jci5703] [Citation(s) in RCA: 1302] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IL-17 is a newly discovered T cell-derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17-induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 increased prostaglandin E2 (PGE2) synthesis in cocultures of bone marrow cells and osteoblasts and in single cultures of osteoblasts, but not in single cultures of bone marrow cells. In addition, IL-17 dose-dependently induced expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts. ODF is a membrane-associated protein that transduces an essential signal(s) to osteoclast progenitors for differentiation into osteoclasts. Osteoclastogenesis inhibitory factor (OCIF), a decoy receptor of ODF, completely inhibited IL-17-induced osteoclast differentiation in the cocultures. Levels of IL-17 in synovial fluids were significantly higher in rheumatoid arthritis (RA) patients than osteoarthritis (OA) patients. Anti-IL-17 antibody significantly inhibited osteoclast formation induced by culture media of RA synovial tissues. These findings suggest that IL-17 first acts on osteoblasts, which stimulates both COX-2-dependent PGE2 synthesis and ODF gene expression, which in turn induce differentiation of osteoclast progenitors into mature osteoclasts, and that IL-17 is a crucial cytokine for osteoclastic bone resorption in RA patients.
Collapse
|
research-article |
26 |
1302 |
6
|
Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 1989; 86:3375-8. [PMID: 2497467 PMCID: PMC287135 DOI: 10.1073/pnas.86.9.3375] [Citation(s) in RCA: 1206] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endothelium-derived nitric oxide in the regulation of blood pressure in the anesthetized rabbit was studied with N omega-monomethyl-L-arginine (L-NMMA), a specific inhibitor of its formation from L-arginine. L-NMMA (3-100 mg.kg-1), but not its D-enantiomer, induced a dose-dependent long-lasting (15-90 min) increase in mean systemic arterial blood pressure. L-NMMA (100 mg.kg-1) also inhibited significantly the hypotensive action of acetylcholine, without affecting that of glyceryl trinitrate. Both these actions of L-NMMA were reversed by L-arginine (300 mg.kg-1), but not by D-arginine (300 mg.kg-1), indomethacin (1 mg.kg-1), prazosin (0.3 mg.kg-1), or by vagotomy. The effects of L-NMMA in vivo were associated with a significant inhibition of the release of nitric oxide from perfused aortic segments ex vivo. This inhibition was reversed by infusing L-arginine through the aortic segments. These results indicate that nitric oxide formation from L-arginine by the vascular endothelium plays a role in the regulation of blood pressure and in the hypotensive actions of acetylcholine.
Collapse
|
research-article |
36 |
1206 |
7
|
Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A 1993; 90:11693-7. [PMID: 8265610 PMCID: PMC48050 DOI: 10.1073/pnas.90.24.11693] [Citation(s) in RCA: 1096] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Constitutive cyclooxygenase (COX-1; prostaglandin-endoperoxide synthase, EC 1.14.99.1) is present in cells under physiological conditions, whereas COX-2 is induced by some cytokines, mitogens, and endotoxin presumably in pathological conditions, such as inflammation. Therefore, we have assessed the relative inhibitory effects of some nonsteroidal antiinflammatory drugs on the activities of COX-1 (in bovine aortic endothelial cells) and COX-2 (in endotoxin-activated J774.2 macrophages) in intact cells, broken cells, and purified enzyme preparations (COX-1 in sheep seminal vesicles; COX-2 in sheep placenta). Similar potencies of aspirin, indomethacin, and ibuprofen against the broken cell and purified enzyme preparations indicated no influence of species. Aspirin, indomethacin, and ibuprofen were more potent inhibitors of COX-1 than COX-2 in all models used. The relative potencies of aspirin and indomethacin varied only slightly between models, although the IC50 values were different. Ibuprofen was more potent as an inhibitor of COX-2 in intact cells than in either broken cells or purified enzymes. Sodium salicylate was a weak inhibitor of both COX isoforms in intact cells and was inactive against COX in either broken cells or purified enzyme preparations. Diclofenac, BW 755C, acetaminophen, and naproxen were approximately equipotent inhibitors of COX-1 and COX-2 in intact cells. BF 389, an experimental drug currently being tested in humans, was the most potent and most selective inhibitor of COX-2 in intact cells. Thus, there are clear pharmacological differences between the two enzymes. The use of such models of COX-1 and COX-2 activity will lead to the identification of selective inhibitors of COX-2 with presumably less side effects than present therapies. Some inhibitors had higher activity in intact cells than against purified enzymes, suggesting that pure enzyme preparations may not be predictive of therapeutic action.
Collapse
|
research-article |
32 |
1096 |
8
|
Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 1994; 91:12013-7. [PMID: 7991575 PMCID: PMC45366 DOI: 10.1073/pnas.91.25.12013] [Citation(s) in RCA: 1082] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonsteroidal antiinflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory diseases, but significant side effects such as gastrointestinal erosion and renal damage limit their use. NSAIDs inhibit the enzyme cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostaglandins (PGs) and thromboxane. Two forms of COX have been identified--COX-1, which is constitutively expressed in most tissues and organs, and the inducible enzyme, COX-2, which has been localized primarily to inflammatory cells and tissues. In an animal model of acute inflammation (injection of carrageenan into the footpad), edema was produced that was associated with marked accumulation of COX-2 mRNA and thromboxane. A selective inhibitor of COX-2 (SC-58125) inhibited edema at the inflammatory site and was analgesic but had no effect on PG production in the stomach and did not cause gastric toxicity. These data suggest that selective inhibition of COX-2 may produce superior antiinflammatory drugs with substantial safety advantages over existing NSAIDs.
Collapse
|
research-article |
31 |
1082 |
9
|
Abstract
Cyclooxygenase (Cox), also known as prostaglandin (PG) H synthase (EC 1.14.99.1), catalyzes the rate-limiting step in the formation of inflammatory PGs. A major regulatory step in PG biosynthesis is at the level of Cox: growth factors, cytokines, and tumor promoters induce Cox activity. We have cloned the second form of the Cox gene (Cox-2) from human umbilical vein endothelial cells (HUVEC). The cDNA encodes a polypeptide of 604 amino acids that is 61% identical to the previously isolated human Cox-1 polypeptide. In vitro translation of the human (h)Cox-2 transcript in rabbit reticulocyte lysates resulted in the synthesis of a 70-kDa protein that is immunoprecipitated by antiserum to ovine Cox. Expression of the hCox-2 open reading frame in Cos-7 monkey kidney cells results in the elaboration of cyclooxygenase activity. hCox-2 cDNA hybridizes to a 4.5-kilobase mRNA species in HUVEC, whereas the hCox-1 cDNA hybridizes to 3- and 5.3-kilobase species. Both Cox-1 and Cox-2 mRNAs are expressed in HUVEC, vascular smooth muscle cells, monocytes, and fibroblasts. Cox-2 mRNA was preferentially induced by phorbol 12-myristate 13-acetate and lipopolysaccharide in human endothelial cells and monocytes. Together, these data demonstrate that the Cox enzyme is encoded by at least two genes that are expressed and differentially regulated in a variety of cell types. High-level induction of the hCox-2 transcript in mesenchymal-derived inflammatory cells suggests a role in inflammatory conditions.
Collapse
|
research-article |
33 |
1042 |
10
|
Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001; 414:212-6. [PMID: 11700559 DOI: 10.1038/35102591] [Citation(s) in RCA: 1023] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiological studies have documented a reduced prevalence of Alzheimer's disease among users of nonsteroidal anti-inflammatory drugs (NSAIDs). It has been proposed that NSAIDs exert their beneficial effects in part by reducing neurotoxic inflammatory responses in the brain, although this mechanism has not been proved. Here we report that the NSAIDs ibuprofen, indomethacin and sulindac sulphide preferentially decrease the highly amyloidogenic Abeta42 peptide (the 42-residue isoform of the amyloid-beta peptide) produced from a variety of cultured cells by as much as 80%. This effect was not seen in all NSAIDs and seems not to be mediated by inhibition of cyclooxygenase (COX) activity, the principal pharmacological target of NSAIDs. Furthermore, short-term administration of ibuprofen to mice that produce mutant beta-amyloid precursor protein (APP) lowered their brain levels of Abeta42. In cultured cells, the decrease in Abeta42 secretion was accompanied by an increase in the Abeta(1-38) isoform, indicating that NSAIDs subtly alter gamma-secretase activity without significantly perturbing other APP processing pathways or Notch cleavage. Our findings suggest that NSAIDs directly affect amyloid pathology in the brain by reducing Abeta42 peptide levels independently of COX activity and that this Abeta42-lowering activity could be optimized to selectively target the pathogenic Abeta42 species.
Collapse
|
|
24 |
1023 |
11
|
Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 1999; 5:698-701. [PMID: 10371510 DOI: 10.1038/9550] [Citation(s) in RCA: 970] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cyclooxygenase (COX) has two isoforms. Generally, COX 1 is constitutively expressed in most tissues, where it maintains physiological processes; inducible COX 2 is considered a pro-inflammatory enzyme and a chief target for the treatment of inflammatory diseases. Here we present evidence that COX 2 may have anti-inflammatory properties. In carrageenin-induced pleurisy in rats, the predominant cells at 2 hours are polymorphonuclear leucocytes, whereas mononuclear cells dominate from 24 hours until resolution at 48 hours. In this model, COX 2 protein expression peaked initially at 2 hours, associated with maximal prostaglandin E2 synthesis. However, at 48 hours there was a second increase in COX 2 expression, 350% greater than that at 2 hours. Paradoxically, this coincided with inflammatory resolution and was associated with minimal prostaglandin E2 synthesis. In contrast, levels of prostaglandin D2, and 15deoxy delta(12-14)prostaglandin J2 were high at 2 hours, decreased as inflammation increased, but were increased again at 48 hours. The selective COX 2 inhibitor NS-398 and the dual COX 1/COX 2 inhibitor indomethacin inhibited inflammation at 2 hours but significantly exacerbated inflammation at 48 hours. This exacerbation was associated with reduced exudate prostaglandin D2 and 15deoxy delta(12-14)prostaglandin J2 concentrations, and was reversed by replacement of these prostaglandins. Thus, COX 2 may be pro-inflammatory during the early phase of a carrageenin-induced pleurisy, dominated by polymorphonuclear leucocytes, but may aid resolution at the later, mononuclear cell-dominated phase by generating an alternative set of anti-inflammatory prostaglandins.
Collapse
|
|
26 |
970 |
12
|
Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 1993; 90:7240-4. [PMID: 7688473 PMCID: PMC47112 DOI: 10.1073/pnas.90.15.7240] [Citation(s) in RCA: 962] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have evaluated the role of nitric oxide (NO) on the activity of the constitutive and induced forms of cyclooxygenase (COX; COX-1 and COX-2, respectively). Induction of NO synthase (NOS) and COX (COX-2) in the mouse macrophage cell line RAW264.7 by Escherichia coli lipopolysaccharide (1 microgram/ml, 18 h) caused an increase in the release of nitrite (NO2-) and prostaglandin E2 (PGE2), products of NOS and COX, respectively. Production of both NO2- and PGE2 was blocked by the NOS inhibitors NG-monomethyl-L-arginine or aminoguanidine. The effects of NG-monomethyl-L-arginine or aminoguanidine were reversed by coincubation with L-Arg, the precursor for NO synthesis, but not by D-Arg. RAW264.7 cells stimulated for 18 h with lipopolysaccharide in L-Arg-free medium (to reduce NO generation by the endogenous NOS pathway) failed to release NO2- and accumulated at least 4-fold less PGE2 when compared to cells in the presence of L-Arg. PGE2 production elicited by a 15-min arachidonic acid treatment of lipopolysaccharide-induced RAW264.7 cells in L-Arg-deficient medium was decreased 3-fold when compared to the release obtained with cells induced in medium containing L-Arg. To examine the NO activation of the induced form of COX in the absence of an endogenous L-Arg, human fetal fibroblasts were first stimulated for 18 h with interleukin 1 beta. These cells released PGE2 but not NO2-, consistent with the induction of COX but not NOS in the fibroblast. Exogenous NO either as a gaseous solution or released by a NO donor, sodium nitroprusside or glyceryl trinitrate, increased COX activity in the interleukin 1 beta-stimulated fibroblasts by 5-fold; these effects were abolished by coincubation with hemoglobin (10 microM), which binds and inactivates NO, but not by methylene blue, an inhibitor of the soluble guanylate cyclase. Furthermore, sodium nitroprusside (0.25-1 mM) increased arachidonic acid-stimulated PGE2 production by murine recombinant COX-1 and COX-2. These results demonstrate that NO enhances COX activity through a mechanism independent of cGMP and suggest that, in conditions in which both the NOS and COX systems are present, there is an NO-mediated increase in the production of proinflammatory prostaglandins that may result in an exacerbated inflammatory response. The data suggest that NO directly interacts with COX to cause an increase in the enzymatic activity.
Collapse
|
research-article |
32 |
962 |
13
|
Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci U S A 1994; 91:3228-32. [PMID: 8159730 PMCID: PMC43549 DOI: 10.1073/pnas.91.8.3228] [Citation(s) in RCA: 953] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs.
Collapse
|
research-article |
31 |
953 |
14
|
Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 2000; 192:1197-204. [PMID: 11034610 PMCID: PMC2195872 DOI: 10.1084/jem.192.8.1197] [Citation(s) in RCA: 893] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 07/27/2000] [Indexed: 12/14/2022] Open
Abstract
Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with omega-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 omega-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX(5) and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as omega-5 and omega-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2-nonsteroidal antiinflammatory drug-dependent oxygenations and cell-cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of omega-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.
Collapse
|
research-article |
25 |
893 |
15
|
Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci U S A 1974; 71:3400-4. [PMID: 4215079 PMCID: PMC433780 DOI: 10.1073/pnas.71.9.3400] [Citation(s) in RCA: 862] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arachidonic acid incubated with human platelets was converted into three compounds, 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, 12L-hydroxy-5,8,10-heptadecatrienoic acid, and the hemiacetal derivative of 8-(1-hydroxy-3-oxopropyl)-9,12L-dihydroxy-5,10-heptadecadienoic acid. The formation of the two latter compounds from arachidonic acid proceeded by pathways involving the enzyme, fatty acid cyclo-oxygenase, in the initial step and with the prostaglandin endoperoxide, PGG(2), as an intermediate. The first mentioned compound was formed from 12L-hydroperoxy-5,8,10,14-eicosatetraenoic acid, which in turn was formed from arachidonic acid by the action of a novel lipoxygenase. Aspirin and indomethacin inhibited the fatty acid cyclo-oxygenase but not the lipoxygenase, whereas 5,8,11,14-eicosatetraynoic acid inhibited both enzymes. The almost exclusive transformation of the endoperoxide structure into non-prostaglandin derivatives supports the hypothesis that the endoperoxides can participate directly and not by way of the classical prostaglandins in regulation of cell functions. The observed transformations of arachidonic acid in platelets also explain the aggregating effect of this acid.
Collapse
|
research-article |
51 |
862 |
16
|
Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272:3406-10. [PMID: 9013583 DOI: 10.1074/jbc.272.6.3406] [Citation(s) in RCA: 843] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) and cyclooxygenase inhibitor that is frequently used as a research tool to study the process of adipocyte differentiation. Treatment of various preadipocyte cell lines with micromolar concentrations of indomethacin in the presence of insulin promotes their terminal differentiation. However, the molecular basis for the adipogenic actions of indomethacin had remained unclear. In this report, we show that indomethacin binds and activates peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor known to play a pivotal role in adipogenesis. The concentration of indomethacin required to activate PPARgamma is in good agreement with that required to induce the differentiation of C3H10T1/2 cells to adipocytes. We demonstrate that several other NSAIDs, including fenoprofen, ibuprofen, and flufenamic acid, are also PPARgamma ligands and induce adipocyte differentiation of C3H10T1/2 cells. Finally, we show that the same NSAIDs that activate PPARgamma are also efficacious activators of PPARalpha, a liver-enriched PPAR subtype that plays a key role in peroxisome proliferation. Interestingly, several NSAIDs have been reported to induce peroxisomal activity in hepatocytes both in vitro and in vivo. Our findings define a novel group of PPARgamma ligands and provide a molecular basis for the biological effects of these drugs on adipogenesis and peroxisome activity.
Collapse
|
|
28 |
843 |
17
|
Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92:639-46. [PMID: 3322462 PMCID: PMC1853691 DOI: 10.1111/j.1476-5381.1987.tb11367.x] [Citation(s) in RCA: 841] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
1. The interactions between endothelium-derived nitric oxide (NO) and prostacyclin as inhibitors of platelet aggregation were examined. 2. Porcine aortic endothelial cells treated with indomethacin and stimulated with bradykinin (10-100 nM) released NO in quantities sufficient to account for the inhibition of platelet aggregation attributed to endothelium-derived relaxing factor (EDRF). 3. In the absence of indomethacin, stimulation of the cells with bradykinin (1-3 nM) released small amounts of prostacyclin and EDRF which synergistically inhibited platelet aggregation. 4. EDRF and authentic NO also caused disaggregation of platelets aggregated either with collagen or with U46619. 5. A reciprocal potentiation of both the anti- and the dis-aggregating activity was also observed between low concentrations of prostacyclin and authentic NO or EDRF released from endothelial cells. 6. It is likely that interactions between prostacyclin and NO released by the endothelium play a role in the homeostatic regulation of platelet-vessel wall interactions.
Collapse
|
research-article |
38 |
841 |
18
|
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403:316-21. [PMID: 10659851 DOI: 10.1038/35002090] [Citation(s) in RCA: 835] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The release of glutamate during brain anoxia or ischaemia triggers the death of neurons, causing mental or physical handicap. The mechanism of glutamate release is controversial, however. Four release mechanisms have been postulated: vesicular release dependent on external calcium or Ca2+ released from intracellular stores; release through swelling-activated anion channels; an indomethacin-sensitive process in astrocytes; and reversed operation of glutamate transporters. Here we have mimicked severe ischaemia in hippocampal slices and monitored glutamate release as a receptor-gated current in the CA1 pyramidal cells that are killed preferentially in ischaemic hippocampus. Using blockers of the different release mechanisms, we demonstrate that glutamate release is largely by reversed operation of neuronal glutamate transporters, and that it plays a key role in generating the anoxic depolarization that abolishes information processing in the central nervous system a few minutes after the start of ischaemia. A mathematical model incorporating K+ channels, reversible uptake carriers and NMDA (N-methyl-D-aspartate) receptor channels reproduces the main features of the response to ischaemia. Thus, transporter-mediated glutamate homeostasis fails dramatically in ischaemia: instead of removing extracellular glutamate to protect neurons, transporters release glutamate, triggering neuronal death.
Collapse
|
|
25 |
835 |
19
|
Langenbach R, Morham SG, Tiano HF, Loftin CD, Ghanayem BI, Chulada PC, Mahler JF, Lee CA, Goulding EH, Kluckman KD, Kim HS, Smithies O. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 1995; 83:483-92. [PMID: 8521478 DOI: 10.1016/0092-8674(95)90126-4] [Citation(s) in RCA: 812] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclooxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis and the target enzymes for the widely used nonsteroidal anti-inflammatory drugs. To study the physiological roles of the individual isoforms, we have disrupted the mouse Ptgs1 gene encoding COX-1. Homozygous Ptgs1 mutant mice survive well, have no gastric pathology, and show less indomethacin-induced gastric ulceration than wild-type mice, even though their gastric prostaglandin E2 levels are about 1% of wild type. The homozygous mutant mice have reduced platelet aggregation and a decreased inflammatory response to arachidonic acid, but not to tetradecanoyl phorbol acetate. Ptgs1 homozygous mutant females mated to homozygous mutant males produce few live offspring. COX-1-deficient mice provide a useful model to distinguish the physiological roles of COX-1 and COX-2.
Collapse
|
|
30 |
812 |
20
|
Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983; 306:378-80. [PMID: 6606132 DOI: 10.1038/306378a0] [Citation(s) in RCA: 728] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many activities are now ascribed to the monokine interleukin 1 including enhancement of immune responses, stimulation of thymocyte proliferation, activation of B cells, stimulation of proteinase and prostaglandin production by connective tissue cells, stimulation of the production of acute phase proteins, induction of fever and the induction of neutrophilia. These activities were thought to be due to various different factors, but are now considered probably due to very similar, if not identical, molecules. The term interleukin 1 (IL-1) was coined to describe the factor released by monocyte/macrophages which acts on T and B lymphocytes. Only after this definition had been accepted was it shown that target cells other than lymphocytes were affected by IL-1. Products of human blood monocytes (mononuclear cell factor, MCF) have been implicated in the pathogenesis of inflammatory diseases such as rheumatoid arthritis and periodontal disease. Bone resorption is often a feature of such diseases, and monocytes are frequently found at sites of localized bone resorption. Preliminary experiments with monocyte-conditioned medium indicated that MCF could stimulate bone resorption. We therefore undertook this study to verify these observations and to determine whether purified IL-1 could stimulate connective tissue breakdown in vitro.
Collapse
|
|
42 |
728 |
21
|
Bunting S, Gryglewski R, Moncada S, Vane JR. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. PROSTAGLANDINS 1976; 12:897-913. [PMID: 1005741 DOI: 10.1016/0090-6980(76)90125-8] [Citation(s) in RCA: 697] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fresh arterial tissue generates an unstable substance (prostablandin X) which relaxes vascular smooth muscle and potently inhibits platelet aggregation. The release of prostaglandin (PG) X can be stimulated by incubation with arachidonic acid or prostaglandin endoperoxides PGG2 or PGH2. The basal release of PGX or the release stimulated with arachidonic acid can be inhibited by previous treatment with indomethacin or by washing the tissue with a solution containing indomethacin. The formation of PGX from prostaglandin endoperoxides PGG2 or PGH2 is not inhibited by indomethacin. 15-hydroperoxy arachidonic acid (15-HPAA) inhibits the basal release of PGX as well as the release stimulated by arachidonic acid or prostaglandin endoperoxides (PGG2 or PGH2). Fresh arterial tissue obtained from control or indomethacin treated rabbits, when incubated with platelet rich plasma (PRP) generates PGX. This generation is inhibited by treating the tissue with 15-HPAA. A biochemical interaction between platelets and vessel wall is postulated by which platelets feed the vessel wall with prostaglandin endoperoxides which are utilized to form PGX. Formation of PGX could be the underlying mechanism which actively prevents, under normal conditions, the accumulation of platelets on the vessel wall.
Collapse
|
|
49 |
697 |
22
|
Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A 1975; 72:3073-6. [PMID: 810797 PMCID: PMC432922 DOI: 10.1073/pnas.72.8.3073] [Citation(s) in RCA: 680] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action.
Collapse
|
research-article |
50 |
680 |
23
|
Abstract
To assess the role of BAX in drug-induced apoptosis in human colorectal cancer cells, we generated cells that lack functional BAX genes. Such cells were partially resistant to the apoptotic effects of the chemotherapeutic agent 5-fluorouracil, but apoptosis was not abolished. In contrast, the absence of BAX completely abolished the apoptotic response to the chemopreventive agent sulindac and other nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibited the expression of the antiapoptotic protein Bcl-XL, resulting in an altered ratio of BAX to Bcl-XL and subsequent mitochondria-mediated cell death. These results establish an unambiguous role for BAX in apoptotic processes in human epithelial cancers and may have implications for cancer chemoprevention strategies.
Collapse
|
|
25 |
672 |
24
|
Abstract
A modified formalin test in mice was investigated. The pain response curve induced by 0.5% formalin was biphasic, having 2 peaks, from 0 to 5 min (first phase) and from 15 to 20 min (second phase). A low concentration of formalin was used, allowing the effects of weak analgesics to be detected. Centrally acting drugs such as narcotics inhibited both phases equally. Peripherally acting drugs such as aspirin, oxyphenbutazone, hydrocortisone and dexamethasone only inhibited the second phase. Aminopyrine and mefenamic acid which acted on both central and peripheral sites inhibited both phases, but the second phase was inhibited by lower doses. Thus, this method enables one to easily distinguish the site of action of analgesics. Furthermore, pain response in the first phase was inhibited by capsaicin-treated desensitization and Des-Arg9-(Leu8)-bradykinin (bradykinin inhibitor). The second phase was inhibited by compound 48/80 pretreatment, indomethacin and bradykinin inhibitor. Therefore, it is suggested that substance P and bradykinin participate in the manifestation of the first phase response, and histamine, serotonin, prostaglandin and bradykinin are involved in the second phase. These results indicate that the first and second phase responses induced by formalin have distinct characteristic properties, and it is a very useful method for examining pain, nociception and its modulation by pharmacological or other means.
Collapse
|
|
36 |
645 |
25
|
Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 1992; 107:660-4. [PMID: 1472964 PMCID: PMC1907751 DOI: 10.1111/j.1476-5381.1992.tb14503.x] [Citation(s) in RCA: 633] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. The hyperalgesic activities in rats of interleukin-1 beta (IL-1 beta), IL-6, IL-8, tumour necrosis factor alpha (TNF alpha) and carrageenin were investigated. 2. IL-6 activated the previously delineated IL-1/prostaglandin hyperalgesic pathway but not the IL-8/sympathetic mediated hyperalgesic pathway. 3. TNF alpha and carrageenin activated both pathways. 4. Antiserum neutralizing endogenous TNF alpha abolished the response to carrageenin whereas antisera neutralizing endogenous IL-1 beta, IL-6 and IL-8 each partially inhibited the response. 5. The combination of antisera neutralizing endogenous IL-1 beta + IL-8 or IL-6 + IL-8 abolished the response to carrageenin. 6. These results show that TNF alpha has an early and crucial role in the development of inflammatory hyperalgesia. 7. The delineation of the role of TNF alpha, IL-1 beta, IL-6 and IL-8 in the development of inflammatory hyperalgesia taken together with the finding that the production of these cytokines is inhibited by steroidal anti-inflammatory drugs provides a mechanism of action for these drugs in the treatment of inflammatory hyperalgesia.
Collapse
|
research-article |
33 |
633 |