1
|
Abstract
Herbivorous insects use diverse feeding strategies to obtain nutrients from their host plants. Rather than acting as passive victims in these interactions, plants respond to herbivory with the production of toxins and defensive proteins that target physiological processes in the insect. Herbivore-challenged plants also emit volatiles that attract insect predators and bolster resistance to future threats. This highly dynamic form of immunity is initiated by the recognition of insect oral secretions and signals from injured plant cells. These initial cues are transmitted within the plant by signal transduction pathways that include calcium ion fluxes, phosphorylation cascades, and, in particular, the jasmonate pathway, which plays a central and conserved role in promoting resistance to a broad spectrum of insects. A detailed understanding of plant immunity to arthropod herbivores will provide new insights into basic mechanisms of chemical communication and plant-animal coevolution and may also facilitate new approaches to crop protection and improvement.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1328 |
2
|
De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M, Pieterse CMJ. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:923-37. [PMID: 16167763 DOI: 10.1094/mpmi-18-0923] [Citation(s) in RCA: 583] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plant's defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response.
Collapse
|
Comparative Study |
20 |
583 |
3
|
Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko E, Bażant W, Belnap R, Blevins AS, Böhme U, Brestelli J, Brunk BP, Caddick M, Callan D, Campbell L, Christensen M, Christophides G, Crouch K, Davis K, DeBarry J, Doherty R, Duan Y, Dunn M, Falke D, Fisher S, Flicek P, Fox B, Gajria B, Giraldo-Calderón GI, Harb OS, Harper E, Hertz-Fowler C, Hickman M, Howington C, Hu S, Humphrey J, Iodice J, Jones A, Judkins J, Kelly SA, Kissinger JC, Kwon DK, Lamoureux K, Lawson D, Li W, Lies K, Lodha D, Long J, MacCallum RM, Maslen G, McDowell MA, Nabrzyski J, Roos DS, Rund SC, Schulman S, Shanmugasundram A, Sitnik V, Spruill D, Starns D, Stoeckert C, Tomko SS, Wang H, Warrenfeltz S, Wieck R, Wilkinson PA, Xu L, Zheng J. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res 2022; 50:D898-D911. [PMID: 34718728 PMCID: PMC8728164 DOI: 10.1093/nar/gkab929] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
277 |
4
|
Hogenhout SA, Bos JIB. Effector proteins that modulate plant--insect interactions. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:422-8. [PMID: 21684190 DOI: 10.1016/j.pbi.2011.05.003] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/20/2011] [Accepted: 05/10/2011] [Indexed: 05/17/2023]
Abstract
Insect herbivores have highly diverse life cycles and feeding behaviors. They establish close interactions with their plant hosts and suppress plant defenses. Chewing herbivores evoke characteristic defense responses distinguishable from general mechanical damage. In addition, piercing-sucking hemipteran insects display typical feeding behavior that suggests active suppression of plant defense responses. Effectors that modulate plant defenses have been identified in the saliva of these insects. Tools for high-throughput effector identification and functional characterization have been developed. In addition, in some insect species it is possible to silence gene expression by RNAi. Together, this technological progress has enabled the identification of insect herbivore effectors and their targets that will lead to the development of novel strategies for pest resistances in plants.
Collapse
|
Review |
14 |
277 |
5
|
Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A 2011; 108:5455-60. [PMID: 21402917 PMCID: PMC3069164 DOI: 10.1073/pnas.1014714108] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phytoalexins constitute a broad category of pathogen- and insect-inducible biochemicals that locally protect plant tissues. Because of their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses, which include insect-inducible monoterpene and sesquiterpene volatiles. Rice also produces a complex array of pathogen-inducible diterpenoid phytoalexins. Despite the demonstration of fungal-induced ent-kaur-15-ene production in maize over 30 y ago, the identity of functionally analogous maize diterpenoid phytoalexins has remained elusive. In response to stem attack by the European corn borer (Ostrinia nubilalis) and fungi, we observed the induced accumulation of six ent-kaurane-related diterpenoids, collectively termed kauralexins. Isolation and identification of the predominant Rhizopus microsporus-induced metabolites revealed ent-kaur-19-al-17-oic acid and the unique analog ent-kaur-15-en-19-al-17-oic acid, assigned as kauralexins A3 and B3, respectively. Encoding an ent-copalyl diphosphate synthase, fungal-induced An2 transcript accumulation precedes highly localized kauralexin production, which can eventually exceed 100 μg · g(-1) fresh weight. Pharmacological applications of jasmonic acid and ethylene also synergize the induced accumulation of kauralexins. Occurring at elevated levels in the scutella of all inbred lines examined, kauralexins appear ubiquitous in maize. At concentrations as low as 10 μg · mL(-1), kauralexin B3 significantly inhibited the growth of the opportunistic necrotroph R. microsporus and the causal agent of anthracnose stalk rot, Colletotrichum graminicola. Kauralexins also exhibited significant O. nubilalis antifeedant activity. Our work establishes the presence of diterpenoid defenses in maize and enables a more detailed analysis of their biosynthetic pathways, regulation, and crop defense function.
Collapse
|
research-article |
14 |
183 |
6
|
Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E10768-E10777. [PMID: 30348775 PMCID: PMC6233084 DOI: 10.1073/pnas.1811828115] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plant immune responses mediated by the hormone jasmonoyl-l-isoleucine (JA-Ile) are metabolically costly and often linked to reduced growth. Although it is known that JA-Ile activates defense responses by triggering the degradation of JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor proteins, expansion of the JAZ gene family in vascular plants has hampered efforts to understand how this hormone impacts growth and other physiological tasks over the course of ontogeny. Here, we combined mutations within the 13-member Arabidopsis JAZ gene family to investigate the effects of chronic JAZ deficiency on growth, defense, and reproductive output. A higher-order mutant (jaz decuple, jazD) defective in 10 JAZ genes (JAZ1-7, -9, -10, and -13) exhibited robust resistance to insect herbivores and fungal pathogens, which was accompanied by slow vegetative growth and poor reproductive performance. Metabolic phenotypes of jazD discerned from global transcript and protein profiling were indicative of elevated carbon partitioning to amino acid-, protein-, and endoplasmic reticulum body-based defenses controlled by the JA-Ile and ethylene branches of immunity. Resource allocation to a strong defense sink in jazD leaves was associated with increased respiration and hallmarks of carbon starvation but no overt changes in photosynthetic rate. Depletion of the remaining JAZ repressors in jazD further exaggerated growth stunting, nearly abolished seed production and, under extreme conditions, caused spreading necrotic lesions and tissue death. Our results demonstrate that JAZ proteins promote growth and reproductive success at least in part by preventing catastrophic metabolic effects of an unrestrained immune response.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
163 |
7
|
Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 2007; 18:100-6. [PMID: 17169550 DOI: 10.1016/j.copbio.2006.12.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Transgene expression from the chloroplast (plastid) genome offers several attractions to plant biotechnologists, including high-level accumulation of foreign proteins, transgene stacking in operons and a lack of epigenetic interference with the stability of transgene expression. In addition, the technology provides an environmentally benign method of plant genetic engineering, because plastids and their genetic information are maternally inherited in most crops and thus are largely excluded from pollen transmission. During the past few years, researchers in both the public and private sectors have begun to explore possible areas of application of plastid transformation in plant biotechnology as a viable alternative to conventional nuclear transgenic technologies. Recent proof-of-concept studies highlight the potential of plastid genome engineering for the expression of resistance traits, the production of biopharmaceuticals and metabolic pathway engineering in plants.
Collapse
|
|
18 |
161 |
8
|
Abstract
Thrips are among the stealthiest of insect invaders due to their small size and cryptic habits. Many invasive thrips are notorious for causing extensive crop damage, vectoring viral diseases, and permanently destabilizing IPM systems owing to irruptive outbreaks that require remediation with insecticides, leading to the development of insecticide resistance. Several challenges surface when attempting to manage incursive thrips species. Foremost among these is early recognition, followed by rapid and accurate identification of emergent pest species, elucidation of the region of origin, development of a management program, and the closing of conduits for global movement of thrips. In this review, we examine factors facilitating invasion by thrips, damage caused by these insects, pre- and post-invasion management tactics, and challenges looming on the horizon posed by invasive Thysanoptera, which continually challenge the development of sustainable management practices.
Collapse
|
Review |
19 |
153 |
9
|
Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. Cues from chewing insects - the intersection of DAMPs, HAMPs, MAMPs and effectors. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:80-6. [PMID: 26123394 DOI: 10.1016/j.pbi.2015.05.029] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
Chewing herbivores cause massive damage when crushing plant tissues with their mandibles, thus releasing a vast array of cues that may be perceived by the plant to mobilize defenses. Besides releasing damage cues in wounded tissues, herbivores deposit abundant cues from their saliva, regurgitant and feces that trigger herbivore specific responses in plants. Herbivores can manipulate the perception mechanisms and defense signals to suppress plant defenses by secreting effectors and/or by exploiting their associated oral microbes. Recent studies indicate that both the composition of herbivore cues and the plant's ability to recognize them are highly dependent upon the specific plant-herbivore system. There is a growing amount of work on identifying herbivore elicitors and effectors, but the most significant bottleneck in the discipline is the identification and characterization of plant receptors that perceive these herbivore-specific cues.
Collapse
|
Review |
10 |
150 |
10
|
Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:919-30. [PMID: 18533832 DOI: 10.1094/mpmi-21-7-0919] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.
Collapse
|
|
17 |
116 |
11
|
Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C, and D, from the insect pathogenic fungus Paecilomyces militaris. JOURNAL OF NATURAL PRODUCTS 2003; 66:378-383. [PMID: 12662096 DOI: 10.1021/np020430y] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three yellow pigments were isolated from a mycelial extract of the entomopathogenic fungus Paecilomyces militaris. With the aid of spectroscopic means, one compound was identified as a new pyridone alkaloid, militarinone D (1). The two other metabolites were characterized as two novel 3-acyl tetramic acids, militarinones B (2) and C (3). In contrast to the structurally related pyridone militarinone A (4), compounds 1-3 showed only negliable neuritogenic activity in PC-12 cells, whereas militarinone D (1) exhibited cytotoxicity. On the basis of a co-occurrence of 3-acyl tetramic acids and biogenetically related pyridone alkaloids in P. militaris, a revised biosynthetic pathway for pyridone alkaloids is proposed.
Collapse
|
|
22 |
102 |
12
|
Raviv M, Antignus Y. UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 2004; 79:219-26. [PMID: 15115293 DOI: 10.1562/si-03-14.1] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Production of high-value crops is often performed under protected cultivation. In recent years various spectral modifications have been made in greenhouse covers. Two of the main reasons to modify the spectral characteristics of greenhouse covers have been to suppress the proliferation of several foliar diseases and to protect crops from insects and insect-borne virus diseases of greenhouse-grown crops. These goals were achieved by complete or partial absorption of solar UV radiation, which interrupts the life cycle of several fungal pathogens and alters the visual behavior of many insects. Examples of these management strategies are described in this article.
Collapse
|
Review |
21 |
101 |
13
|
Nghiem LTP, Soliman T, Yeo DCJ, Tan HTW, Evans TA, Mumford JD, Keller RP, Baker RHA, Corlett RT, Carrasco LR. Economic and environmental impacts of harmful non-indigenous species in southeast Asia. PLoS One 2013; 8:e71255. [PMID: 23951120 PMCID: PMC3739798 DOI: 10.1371/journal.pone.0071255] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022] Open
Abstract
Harmful non-indigenous species (NIS) impose great economic and environmental impacts globally, but little is known about their impacts in Southeast Asia. Lack of knowledge of the magnitude of the problem hinders the allocation of appropriate resources for NIS prevention and management. We used benefit-cost analysis embedded in a Monte-Carlo simulation model and analysed economic and environmental impacts of NIS in the region to estimate the total burden of NIS in Southeast Asia. The total annual loss caused by NIS to agriculture, human health and the environment in Southeast Asia is estimated to be US$33.5 billion (5th and 95th percentile US$25.8–39.8 billion). Losses and costs to the agricultural sector are estimated to be nearly 90% of the total (US$23.4–33.9 billion), while the annual costs associated with human health and the environment are US$1.85 billion (US$1.4–2.5 billion) and US$2.1 billion (US$0.9–3.3 billion), respectively, although these estimates are based on conservative assumptions. We demonstrate that the economic and environmental impacts of NIS in low and middle-income regions can be considerable and that further measures, such as the adoption of regional risk assessment protocols to inform decisions on prevention and control of NIS in Southeast Asia, could be beneficial.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
77 |
14
|
Cho JY, Mizutani M, Shimizu BI, Kinoshita T, Ogura M, Tokoro K, Lin ML, Sakata K. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea "Oriental Beauty". Biosci Biotechnol Biochem 2007; 71:1476-86. [PMID: 17587678 DOI: 10.1271/bbb.60708] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oriental Beauty, which is made from tea leaves infested by the tea green leafhopper (Jacobiasca formosana) in Taiwan, has a unique aroma like ripe fruits and honey. To determine what occurs in the tea leaves during the oolong tea manufacturing process, the gene expression profiles and the chemical profiles were investigated. Tea samples were prepared from Camellia sinensis var. sinensis cv. Chin-shin Dah-pang while the tea leaves were attacked by the insect. The main volatile compounds, such as linalool-oxides, benzyl alcohol, 2-phenylethanol, and 2,6-dimethylocta-3,7-diene-2,6-diol, increased during manufacture. The gene expression profiles during manufacture were analyzed by differential screening between fresh leaves and tea leaves of the first turn over. Many up-regulated transcripts were found to encode various proteins homologous to stress response proteins. Accordingly, the endogenous contents of abscisic acid and raffinose increased during manufacture. Thus the traditional manufacturing method is a unique process that utilizes plant defense responses to elevate the production of volatile compounds and other metabolites.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
72 |
15
|
Block AK, Vaughan MM, Schmelz EA, Christensen SA. Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). PLANTA 2019; 249:21-30. [PMID: 30187155 DOI: 10.1007/s00425-018-2999-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 05/19/2023]
Abstract
Maize produces an array of herbivore-induced terpene volatiles that attract parasitoids to infested plants and a suite of pathogen-induced non-volatile terpenoids with antimicrobial activity to defend against pests. Plants rely on complex blends of constitutive and dynamically produced specialized metabolites to mediate beneficial ecological interactions and protect against biotic attack. One such class of metabolites are terpenoids, a large and structurally diverse class of molecules shown to play significant defensive and developmental roles in numerous plant species. Despite this, terpenoids have only recently been recognized as significant contributors to pest resistance in maize (Zea mays), a globally important agricultural crop. The current review details recent advances in our understanding of biochemical structures, pathways and functional roles of maize terpenoids. Dependent upon the lines examined, maize can harbor more than 30 terpene synthases, underlying the inherent diversity of maize terpene defense systems. Part of this defensive arsenal is the inducible production of volatile bouquets that include monoterpenes, homoterpenes and sesquiterpenes, which often function in indirect defense by enabling the attraction of parasitoids and predators. More recently discovered are a subset of sesquiterpene and diterpene hydrocarbon olefins modified by cytochrome P450s to produce non-volatile end-products such kauralexins, zealexins, dolabralexins and β-costic acid. These non-volatile terpenoid phytoalexins often provide effective defense against both microbial and insect pests via direct antimicrobial and anti-feedant activity. The diversity and promiscuity of maize terpene synthases, coupled with a variety of secondary modifications, results in elaborate defensive layers whose identities, regulation and precise functions are continuing to be elucidated.
Collapse
|
Review |
6 |
70 |
16
|
Datta K, Baisakh N, Thet KM, Tu J, Datta SK. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2002; 106:1-8. [PMID: 12582865 DOI: 10.1007/s00122-002-1014-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2002] [Accepted: 04/10/2002] [Indexed: 05/18/2023]
Abstract
Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.
Collapse
|
|
23 |
69 |
17
|
Das AJ, Stephenson NL, Flint A, Das T, van Mantgem PJ. Climatic correlates of tree mortality in water- and energy-limited forests. PLoS One 2013; 8:e69917. [PMID: 23936118 PMCID: PMC3723662 DOI: 10.1371/journal.pone.0069917] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/16/2013] [Indexed: 12/04/2022] Open
Abstract
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
66 |
18
|
Hilker M, Fatouros NE. Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:9-16. [PMID: 27267276 DOI: 10.1016/j.pbi.2016.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 05/07/2023]
Abstract
Plants can respond to attack by herbivorous insects very soon after herbivores start producing a new generation by depositing eggs onto their leaves. Egg-induced plant responses may result in killing the attacker in its egg stage. However, if the eggs do survive, they can also prime feeding-induced plant defenses against the larvae hatching from eggs. In this paper we focus first on egg-induced plant responses that resemble hypersensitive responses (HR) to phytopathogens and lead to egg desiccation or detachment from plants. We then summarize the current knowledge about egg-mediated effects on feeding-induced plant defenses against larvae. Finally, we discuss the insect species specificity of plant responses to eggs and the variability of insect susceptibility to these responses.
Collapse
|
Review |
9 |
64 |
19
|
Bruce TJA, Pickett JA. Plant defence signalling induced by biotic attacks. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:387-92. [PMID: 17627867 DOI: 10.1016/j.pbi.2007.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 05/07/2023]
Abstract
Induced defence responses are elicited when plants are exposed to biotic stresses such as attack by herbivores or pathogens. In nature, plants are often subjected to attack by more than one organism, and defence responses elicited by one organism can thereby be modified by the presence of another. Below-ground attack can influence responses to above-ground attack and vice versa, due to systemic induction of defence metabolism. In some interactions defence is enhanced through prior attack by another organism, whereas in others there are conflicting signals. Recent research has shown how plants integrate these signals to coordinate defence by regulation of key metabolic pathways, although there is still much to be learnt.
Collapse
|
Review |
18 |
64 |
20
|
Bellincampi D, Camardella L, Delcour JA, Desseaux V, D'Ovidio R, Durand A, Elliot G, Gebruers K, Giovane A, Juge N, Sørensen JF, Svensson B, Vairo D. Potential physiological role of plant glycosidase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:265-74. [PMID: 14871667 DOI: 10.1016/j.bbapap.2003.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/23/2003] [Indexed: 11/22/2022]
Abstract
Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological applications.
Collapse
|
|
21 |
60 |
21
|
Abstract
Strepsiptera are obligate endoparasitoids that exhibit extreme sexual dimorphism and parasitize seven orders and 33 families of Insecta. The adult males and the first instar larvae in the Mengenillidia and Stylopidia are free-living, whereas the adult females in Mengenillidia are free-living but in the suborder Stylopidia they remain endoparasitic in the host. Parasitism occurs at the host larval/nymphal stage and continues in a mobile host until that host's adult stage. The life of the host is lengthened to allow the male strepsipteran to complete maturation and the viviparous female to release the first instar larvae when the next generation of the host's larvae/nymphs has been produced. The ability of strepsipterans to parasitize a wide range of hosts, in spite of being endoparasitoids, is perhaps due to their unique immune avoidance system. Aspects of virulence, heterotrophic heteronomy in the family Myrmecolacidae, cryptic species, genomics, immune response, and behavior of stylopized hosts are discussed in this chapter.
Collapse
|
Review |
16 |
55 |
22
|
Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J. A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. PLANT MOLECULAR BIOLOGY 2008; 66:401-14. [PMID: 18185911 DOI: 10.1007/s11103-007-9278-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 12/19/2007] [Indexed: 05/20/2023]
Abstract
OsLOX1 is a novel full-length cDNA isolated from developing rice seeds. We have examined its biochemical properties and expression patterns. The protein has dual positional specificity, as it releases both C-9 and C-13 oxidized products in a 4:3 ratio. OsLOX1 transcripts were detected at low abundance in immature seeds and newly germinated seedlings, but accumulate rapidly and transiently in response to wounding or brown planthopper (BPH) attack, reaching a peak 3 h after wounding and 6 h after insect feeding. We produced transgenic rice lines carrying either sense or antisense constructs under the control of a cauliflower mosaic virus 35S promoter, and these rice lines showed altered OsLOX1 activity. In all of the antisense lines and more than half of the sense lines the expression levels of OsLOX1, the levels of enzyme activity, and the levels of the endogenous OsLOX1 products (jasmonic acid, (Z)-3-hexenal and colneleic acid) at 6, 48, and 48 h after BPH feeding respectively, were below the levels found in non-transgenic control plants; yet, the levels in the remaining sense transformants were enhanced relative to controls. Transformants with a lower level of OsLOX1 expression were less able to tolerate BPH attack, while those with enhanced OsLOX1 expression were more resistant. Our data suggest that the OsLOX1 product is involved in tolerance of the rice plant to wounding and BPH attack.
Collapse
|
|
17 |
55 |
23
|
Broekgaarden C, Snoeren TAL, Dicke M, Vosman B. Exploiting natural variation to identify insect-resistance genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:819-25. [PMID: 21679292 DOI: 10.1111/j.1467-7652.2011.00635.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.
Collapse
|
Review |
14 |
53 |
24
|
Gutensohn M, Klempien A, Kaminaga Y, Nagegowda DA, Negre-Zakharov F, Huh JH, Luo H, Weizbauer R, Mengiste T, Tholl D, Dudareva N. Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:591-602. [PMID: 21284755 DOI: 10.1111/j.1365-313x.2011.04515.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.
Collapse
|
|
14 |
53 |
25
|
Agrawal A, Rajamani V, Reddy VS, Mukherjee SK, Bhatnagar RK. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology. Transgenic Res 2015; 24:791-801. [PMID: 25947089 DOI: 10.1007/s11248-015-9880-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.
Collapse
|
|
10 |
46 |