1
|
Jeschke P. The unique role of fluorine in the design of active ingredients for modern crop protection. Chembiochem 2004; 5:571-89. [PMID: 15122630 DOI: 10.1002/cbic.200300833] [Citation(s) in RCA: 1040] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The task of inventing and developing active ingredients with useful biological activities requires a search for novel chemical substructures. This process may trigger the discovery of whole classes of chemicals of potential commercial interest. Similar biological effects can often be achieved by completely different compounds. However, compounds within a given structural family may exhibit quite different biological activities depending on their interactions with different intracellular proteins like enzymes or receptors. By varying the functional groups and structural elements of a lead compound, its interaction with the active site of the target protein, as well as its physicochemical, pharmacokinetic, and dynamic properties can be improved. In this context, the introduction of fluorine into active ingredients has become an important concept in the quest for a modern crop protection product with optimal efficacy, environmental safety, user friendliness, and economic viability. Fluorinated organic compounds represent an important and growing family of commercial agrochemicals. A number of recently developed agrochemical candidates represent novel classes of chemical compounds with new modes of action; several of these compounds contain new fluorinated substituents. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of fluorine can lead to either an increase or a decrease in the efficacy of a compound depending on its changed mode of action, physicochemical properties, target interaction, or metabolic susceptibility and transformation. Therefore, it is still difficult to predict the sites in a molecule at which fluorine substitution will result in optimal desired effects.
Collapse
|
Review |
21 |
1040 |
2
|
Abstract
Although global morbidity and mortality have decreased substantially, malaria, a parasite infection of red blood cells, still kills roughly 2000 people per day, most of whom are children in Africa. Two factors largely account for these decreases; increased deployment of insecticide-treated bednets and increased availability of highly effective artemisinin combination treatments. In large trials, parenteral artesunate (an artemisinin derivative) reduced severe malaria mortality by 22·5% in Africa and 34·7% in Asia compared with quinine, whereas adjunctive interventions have been uniformly unsuccessful. Rapid tests have been an important addition to microscopy for malaria diagnosis. Chemopreventive strategies have been increasingly deployed in Africa, notably intermittent sulfadoxine-pyrimethamine treatment in pregnancy, and monthly amodiaquine-sulfadoxine-pyrimethamine during the rainy season months in children aged between 3 months and 5 years across the sub-Sahel. Enthusiasm for malaria elimination has resurfaced. This ambitious but laudable goal faces many challenges, including the worldwide economic downturn, difficulties in elimination of vivax malaria, development of pyrethroid resistance in some anopheline mosquitoes, and the emergence of artemisinin resistance in Plasmodium falciparum in southeast Asia. We review the epidemiology, clinical features, pathology, prevention, and treatment of malaria.
Collapse
|
Review |
11 |
768 |
3
|
Ranson H, N'guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 2011; 27:91-8. [PMID: 20843745 DOI: 10.1016/j.pt.2010.08.004] [Citation(s) in RCA: 746] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/19/2022]
|
|
14 |
746 |
4
|
Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007; 49:423-35. [PMID: 17198720 PMCID: PMC1857359 DOI: 10.1016/j.toxicon.2006.11.022] [Citation(s) in RCA: 685] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022]
Abstract
Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
685 |
5
|
Sparks TC, Nauen R. IRAC: Mode of action classification and insecticide resistance management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:122-8. [PMID: 26047120 DOI: 10.1016/j.pestbp.2014.11.014] [Citation(s) in RCA: 603] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 05/05/2023]
Abstract
Insecticide resistance is a long standing and expanding problem for pest arthropod control. Effective insecticide resistance management (IRM) is essential if the utility of current and future insecticides is to be preserved. Established in 1984, the Insecticide Resistance Action Committee (IRAC) is an international association of crop protection companies. IRAC serves as the Specialist Technical Group within CropLife International focused on ensuring the long term efficacy of insect, mite and tick control products through effective resistance management for sustainable agriculture and improved public health. A key function of IRAC is the continued development of the Mode of Action (MoA) classification scheme, which provides up-to-date information on the modes of action of new and established insecticides and acaricides and which serves as the basis for developing appropriate IRM strategies for crop protection and vector control. The IRAC MoA classification scheme covers more than 25 different modes of action and at least 55 different chemical classes. Diversity is the spice of resistance management by chemical means and thus it provides an approach to IRM providing a straightforward means to identify potential rotation/alternation options.
Collapse
|
|
10 |
603 |
6
|
Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:78-87. [PMID: 26047114 DOI: 10.1016/j.pestbp.2015.04.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 05/19/2023]
Abstract
The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.
Collapse
|
Review |
10 |
590 |
7
|
Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. ANNUAL REVIEW OF ENTOMOLOGY 2003; 48:339-64. [PMID: 12208819 DOI: 10.1146/annurev.ento.48.091801.112731] [Citation(s) in RCA: 569] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
Collapse
|
Review |
22 |
569 |
8
|
Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2001; 22:573-80. [PMID: 11698101 DOI: 10.1016/s0165-6147(00)01820-4] [Citation(s) in RCA: 567] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Imidacloprid is increasingly used worldwide as an insecticide. It is an agonist at nicotinic acetylcholine receptors (nAChRs) and shows selective toxicity for insects over vertebrates. Recent studies using binding assays, molecular biology and electrophysiology suggest that both alpha- and non-alpha-subunits of nAChRs contribute to interactions of these receptors with imidacloprid. Electrostatic interactions of the nitroimine group and bridgehead nitrogen in imidacloprid with particular nAChR amino acid residues are likely to have key roles in determining the selective toxicity of imidacloprid. Chemical calculation of atomic charges of the insecticide molecule and a site-directed mutagenesis study support this hypothesis.
Collapse
|
Review |
24 |
567 |
9
|
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:537-59. [PMID: 25564745 DOI: 10.1146/annurev-ento-010814-020828] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mosquito-borne diseases, the most well known of which is malaria, are among the leading causes of human deaths worldwide. Vector control is a very important part of the global strategy for management of mosquito-associated diseases, and insecticide application is the most important component in this effort. However, mosquito-borne diseases are now resurgent, largely because of the insecticide resistance that has developed in mosquito vectors and the drug resistance of pathogens. A large number of studies have shown that multiple, complex resistance mechanisms-in particular, increased metabolic detoxification of insecticides and decreased sensitivity of the target proteins-or genes are likely responsible for insecticide resistance. Gene overexpression and amplification, and mutations in protein-coding-gene regions, have frequently been implicated as well. However, no comprehensive understanding of the resistance mechanisms or regulation involved has yet been developed. This article reviews current knowledge of the molecular mechanisms, genes, gene interactions, and gene regulation governing the development of insecticide resistance in mosquitoes and discusses the potential impact of the latest research findings on the basic and practical aspects of mosquito resistance research.
Collapse
|
Review |
10 |
567 |
10
|
Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 2000; 54:138-53. [PMID: 10746941 DOI: 10.1093/toxsci/54.1.138] [Citation(s) in RCA: 554] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have utilized a validated (standardized) estrogen receptor (ER) competitive-binding assay to determine the ER affinity for a large, structurally diverse group of chemicals. Uteri from ovariectomized Sprague-Dawley rats were the ER source for the competitive-binding assay. Initially, test chemicals were screened at high concentrations to determine whether a chemical competed with [3H]-estradiol for the ER. Test chemicals that exhibited affinity for the ER in the first tier were subsequently assayed using a wide range of concentrations to characterize the binding curve and to determine each chemical's IC50 and relative binding affinity (RBA) values. Overall, we assayed 188 chemicals, covering a 1 x 10(6)-fold range of RBAs from several different chemical or use categories, including steroidal estrogens, synthetic estrogens, antiestrogens, other miscellaneous steroids, alkylphenols, diphenyl derivatives, organochlorines, pesticides, alkylhydroxybenzoate preservatives (parabens), phthalates, benzophenone compounds, and a number of other miscellaneous chemicals. Of the 188 chemicals tested, 100 bound to the ER while 88 were non-binders. Included in the 100 chemicals that bound to the ER were 4-benzyloxyphenol, 2,4-dihydroxybenzophenone, and 2,2'-methylenebis(4-chlorophenol), compounds that have not been shown previously to bind the ER. It was also evident that certain structural features, such as an overall ring structure, were important for ER binding. The current study provides the most structurally diverse ER RBA data set with the widest range of RBA values published to date.
Collapse
|
|
25 |
554 |
11
|
Mansvelder HD, Keath JR, McGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002; 33:905-19. [PMID: 11906697 DOI: 10.1016/s0896-6273(02)00625-6] [Citation(s) in RCA: 550] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.
Collapse
|
|
23 |
550 |
12
|
Gill RJ, Ramos-Rodriguez O, Raine NE. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 2012; 491:105-8. [PMID: 23086150 PMCID: PMC3495159 DOI: 10.1038/nature11585] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/13/2012] [Indexed: 11/08/2022]
Abstract
Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production. Bees contribute approximately 80% of insect pollination, so it is important to understand and mitigate the causes of current declines in bee populations . Recent studies have implicated the role of pesticides in these declines, as exposure to these chemicals has been associated with changes in bee behaviour and reductions in colony queen production. However, the key link between changes in individual behaviour and the consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of many individual workers. Thus, although field-level pesticide concentrations can have subtle or sublethal effects at the individual level, it is not known whether bee societies can buffer such effects or whether it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means that bees are exposed to numerous pesticides when foraging, yet the possible combinatorial effects of pesticide exposure have rarely been investigated. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found that worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail.
Collapse
|
research-article |
13 |
544 |
13
|
Bowers WS, Ohta T, Cleere JS, Marsella PA. Discovery of insect anti-juvenile hormones in plants.?2U. Science 1976; 193:542-7. [PMID: 986685 DOI: 10.1126/science.986685] [Citation(s) in RCA: 542] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two simple chromenes with anti-JH activity have been isolated and identified from the bedding plant Ageratum houstoianum. By contact and fumigation these compounds induce precocious metamorphosis and sterilization in several hemipteran species of insects. Certain holometabolous species are sterilized, forced into diapause, or both. Each of these biological actions is equivalent to removal of the corpora allata, which produce the JH's, and is reversible by treatment with exogenous JH. Thus, the action of these compounds is to stop the production or depress the titer of the JH's. To our knowledge, this is the first discovery of anti-JH, and we hope it will guide the way to the emergence of a fourth generation of safe and insect-specific pesticides.
Collapse
|
|
49 |
542 |
14
|
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11:e0005625. [PMID: 28727779 PMCID: PMC5518996 DOI: 10.1371/journal.pntd.0005625] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
Collapse
|
Review |
8 |
461 |
15
|
Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management: problems, progress, and prospects. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:517-41. [PMID: 23020617 DOI: 10.1146/annurev-ento-120811-153605] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Agricultural intensification and greater production of Brassica vegetable and oilseed crops over the past two decades have increased the pest status of the diamondback moth (DBM), Plutella xylostella L., and it is now estimated to cost the world economy US$4-5 billion annually. Our understanding of some fundamental aspects of DBM biology and ecology, particularly host plant relationships, tritrophic interactions, and migration, has improved considerably but knowledge of other aspects, e.g., its global distribution and relative abundance, remains surprisingly limited. Biological control still focuses almost exclusively on a few species of hymenopteran parasitoids. Although these can be remarkably effective, insecticides continue to form the basis of management; their inappropriate use disrupts parasitoids and has resulted in field resistance to all available products. Improved ecological understanding and the availability of a series of highly effective selective insecticides throughout the 1990s provided the basis for sustainable and economically viable integrated pest management (IPM) approaches. However, repeated reversion to scheduled insecticide applications has resulted in resistance to these and more recently introduced compounds and the breakdown of IPM programs. Proven technologies for the sustainable management of DBM currently exist, but overcoming the barriers to their sustained adoption remains an enormous challenge.
Collapse
|
Review |
12 |
435 |
16
|
Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. INSECT MOLECULAR BIOLOGY 2000; 9:491-497. [PMID: 11029667 DOI: 10.1046/j.1365-2583.2000.00209.x] [Citation(s) in RCA: 435] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A field trial of permethrin-impregnated bednets and curtains was initiated in Western Kenya in 1990, and a strain of Anopheles gambiae showing reduced susceptibility to permethrin was colonized from this site in 1992. A leucine-phenylalanine substitution at position 1014 of the voltage-gated sodium channel is associated with resistance to permethrin and DDT in many insect species, including Anopheles gambiae from West Africa. We cloned and sequenced a partial sodium channel cDNA from the Kenyan permethrin-resistant strain and we identified an alternative substitution (leucine to serine) at the same position, which is linked to the inheritance of permethrin resistance in the F(2) progeny of genetic crosses between susceptible and resistant individuals. The diagnostic polymerase chain reaction (PCR) developed by Martinez-Torres et al. [(1998) Insect Mol Biol 7: 179-184] to detect kdr alleles in field populations of An. gambiae will not detect the Kenyan allele and hence reliance on this assay may lead to an underestimate of the prevalence of pyrethroid resistance in this species. We adapted the diagnostic PCR to detect the leucine-serine mutation and with this diagnostic we were able to demonstrate that this kdr allele was present in individuals collected from the Kenyan trial site in 1986, prior to the introduction of pyrethroid-impregnated bednets. The An. gambiae sodium channel was physically mapped to chromosome 2L, division 20C. This position corresponds to the location of a major quantitative trait locus determining resistance to permethrin in the Kenyan strain of An. gambiae.
Collapse
|
|
25 |
435 |
17
|
Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 2006; 102:175-9. [PMID: 17088055 DOI: 10.1016/j.jsbmb.2006.09.017] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A wide variety of environmental contaminants have been shown to exert estrogenic actions in wildlife and laboratory animals through binding to nuclear estrogen receptors (ERs) and subsequent transcription of estrogen responsive genes. We show here that several of these environmental estrogens also bind to the novel seven-transmembrane estrogen receptor, GPR30, to activate alternative estrogen signaling pathways in an ER-negative cell line (HEK293) stably transfected with the receptor. Genestein was the most effective competitor for the receptor (IC(50) 133 nM), with a relative binding affinity (RBA) 13% that of estradiol-17beta (E2). Bisphenol A, zearalonone, and nonylphenol also had relatively high binding affinities for GPR30 with RBAs of 2-3%. Kepone, p,p'-DDT, 2,2',5',-PCB-4-OH and o,p'-DDE had lower affinities with RBAs of 0.25-1.3%, whereas o,p'-DDT, p,p'-DDE, methoxychlor and atrazine caused less than 50% displacement of [(3)H]-E2 at concentrations up to 10 microM. Overall, the binding affinities of these compounds for GPR30 are broadly similar to their affinities to the ERs. Environmental estrogens with relatively high binding affinities for GPR30 (genestein, bisphenol A, nonylphenol and Kepone) also displayed estrogen agonist activities in an in vitro assay of membrane-bound adenylyl cyclase activity, a GPR30-dependent signaling pathway activated by estrogens. The results indicate that nontraditional estrogen actions mediated through GPR30 are potentially susceptible to disruption by a variety of environmental estrogens.
Collapse
|
|
19 |
431 |
18
|
Dhadialla TS, Carlson GR, Le DP. New insecticides with ecdysteroidal and juvenile hormone activity. ANNUAL REVIEW OF ENTOMOLOGY 1998; 43:545-569. [PMID: 9444757 DOI: 10.1146/annurev.ento.43.1.545] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrochemical research over the last two decades has resulted in the discovery of chemically novel insecticides that mimic the action of the two insect growth and developmental hormones, the steroidal 20-hydroxyecdysone (20E) and the sesquiterpenoid juvenile hormone (JH). Bisacylhydrazines are non-steroidal agonists of 20E and exhibit their insecticidal activity via interaction with the ecdysteroid receptor proteins. Interestingly, two of the bisacylhydrazine (tebufenozide and RH-2485) insecticides are very selectively toxic to lepidopteran pests. These insecticides are safe to beneficial insects and have a benign ecotoxicological profile. Aromatic non-terpenoidal insecticides (fenoxycarb and pyriproxyfen) mimic the action of JHs. However, like the JHs, their exact mode of action is not well understood. These insecticides are toxic to a broad spectrum of insects during their embryonic, last larval, or reproductive stages. The insecticidal, ecotoxicological properties and the mode of action of the two groups of insecticides are reviewed in this article.
Collapse
|
Review |
27 |
423 |
19
|
Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta 2006; 366:1-13. [PMID: 16337171 DOI: 10.1016/j.cca.2005.10.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Organophosphates (OPs) are one of the main classes of insecticides, in use since the mid 1940s. OPs can exert significant adverse effects in non-target species including humans. Because of the phosphorylation of acetylcholinesterase, they exert primarily a cholinergic toxicity, however, some can also cause a delayed polyneuropathy. Currently debated and investigated issues in the toxicology of OPs are presented in this review. These include: 1) possible long-term effects of chronic low-level exposures; 2) genetic susceptibility to OP toxicity; 3) developmental toxicity and neurotoxicity; 4) common mechanism of action; 5) mechanisms of delayed neurotoxicity; and 6) possible additional OP targets. Continuing and recent debates, and molecular advances in these areas, and their contributions to our understanding of the toxicology of OPs are discussed.
Collapse
|
|
19 |
415 |
20
|
Pope CN. Organophosphorus pesticides: do they all have the same mechanism of toxicity? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 1999; 2:161-81. [PMID: 10230392 DOI: 10.1080/109374099281205] [Citation(s) in RCA: 405] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organophosphorus (OP) pesticides are used extensively to control agricultural, household and structural pests. These pesticides constitute a diverse group of chemical structures exhibiting a wide range of physicochemical properties, with their primary toxicological action arising from inhibition of the enzyme acetylcholinesterase (AChE, EC 3.1.1.7). Historically, risk characterizations for these toxicants have been based on hazard and exposure data pertaining to individual chemicals. The Food Quality Protection Act of 1996 now requires, however, that combined risk assessments be performed with pesticides having a common mechanism of toxicity. It is therefore critical to consider whether OP pesticides all exert toxicity through a common mechanism. This brief review evaluates the comparative toxicity of the 38 OP AChE inhibitors currently registered for use as pesticides in the United States and examines the data which suggest that some OP pesticides have toxicologically relevant sites of action in addition to AChE. It is concluded that all OP anticholinesterases potentially have a mechanism of toxicity in common, that is, phosphorylation of AChE causing accumulation of acetylcholine, overstimulation of cholinergic receptors, and consequent clinical signs of cholinergic toxicity. Additional macromolecular targets for some OP pesticides, however, may alter the cascade of events following AChE phosphorylation and thereby modify that common mechanism. Furthermore, other macromolecular targets of some OP pesticides appear capable of altering noncholinergic neurochemical processes. These additional actions may contribute to qualitative and quantitative differences in toxicity sometimes noted in the presence of similar levels of AChE inhibition induced by different OP pesticides. Further investigation of these additional sites of action may allow subclassification and influence the decision to perform combined risk assessments on this class of pesticides based on common mechanism of toxicity.
Collapse
|
Review |
26 |
405 |
21
|
Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:824-32. [PMID: 19815067 DOI: 10.1016/j.ibmb.2009.09.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/28/2009] [Accepted: 09/28/2009] [Indexed: 05/03/2023]
Abstract
A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3' untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3' UTR of the gamma-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.
Collapse
|
|
16 |
383 |
22
|
Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci 2000; 54:154-67. [PMID: 10746942 DOI: 10.1093/toxsci/54.1.154] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Considerable attention has recently been focused on environmental chemicals that disrupt the reproductive system by altering steroid receptor function. Although numerous in vitro and in vivo methods have been shown to be useful approaches for identifying chemicals that can disrupt reproduction through a direct interaction with the estrogen receptor, it is imperative that the protocols selected be capable of detecting chemicals with a broad range of estrogenic activity. Here we evaluate the reliability of the 3-day uterotrophic assay for detecting chemicals with strong or weak estrogenic activity in both prepubertal and ovariectomized adult Long Evans rats. These data were compared to additional measures of estrogenic activity, which included the age of vaginal opening, the induction of cornified vaginal epithelial cells in ovariectomized adult rats, and estrous cyclicity in intact adult rats. Test chemicals selected for these studies included 17-beta-estradiol, ethynyl estradiol, methoxychlor, 4-tert-octylphenol, 4-nonylphenol and bisphenol A. Data from in vitro receptor binding assays compared the ability of the test chemicals to compete with [3H]-estradiol or [3H]-promegestone for binding to estrogen or progesterone receptors. As expected, the binding affinities for the estrogen receptor ranged from high to low, as reflected by Ki concentrations of 0.4 nM for 17-beta-estradiol and ethynyl estradiol, and 0.05-65 microM for 4-tert-octyphenol, 4-nonylphenol, and methoxychlor. Although none of the test chemicals demonstrated a high affinity for binding to the progesterone receptor, 4-tert-octylphenol and 4-nonylphenol exhibited a weak affinity, with Ki concentrations ranging from 1.2 to 3.8 microM. In vivo studies indicated that the 3-day uterotrophic assay in prepubertal rats was the best method for detecting estrogenic activity when compared with all other end points, based upon the dose-response data for ethynyl estradiol (0.01-0.1 mg/kg), 4-tert-octylphenol (50-200 mg/kg, oral), and 4-nonylphenol (25-100 mg/kg, oral). Although oral doses of ethynyl estradiol (0.01 mg/kg) and 4-nonylphenol (50 mg/kg) induced a significant increase in uterine weight in the prepubertal rats, these doses were ineffective for stimulating a similar response in ovariectomized adult rats. The age of vaginal opening was advanced following oral exposure from postnatal days 21-35 to ethynyl estradiol (0.01 mg/kg), methoxychlor (50 mg/kg), 4-tert-octylphenol (200 mg/kg), and 4-nonylphenol (50 mg/kg). Although bisphenol A (200 mg/kg, oral) induced a significant uterotrophic response within 3 days in prepubertal rats, doses up to 400 mg/kg failed to advance the age of vaginal opening. Monitoring changes in the vaginal epithelium of ovariectomized adult rats was the least effective method for detecting estrogenic activity for 4-tert-octylphenol and bisphenol A. The number of 4-5 day estrous cycles was reduced during a 25-day exposure to ethynyl estradiol (0.01 mg/kg), methoxychlor (50 mg/ kg), 4-tert-octylphenol (200 mg/kg), 4-nonylphenol (100 mg/kg), and bisphenol A (100 mg/kg) by oral gavage. Although long periods of extended diestrus (7-14 days) were generally correlated with exposure to ethynyl estradiol and 4-tert-octylphenol, the cycling patterns following exposure to methoxychlor, 4-nonylphenol and bisphenol A were not as clearly defined, with shorter periods of extended diestrus (4-7 days) and/or estrus (3-5 days) intermittently observed throughout the exposure period. Together these data provide a comparison of the 3-day uterotrophic assay with alternative measures of estrogenic activity for a group of test chemicals with a broad range of affinities for the estrogen receptor. These data can be useful during the assessment and validation of methods for screening environmental chemicals for endocrine disrupting activity.
Collapse
|
|
25 |
381 |
23
|
N'Guessan R, Corbel V, Akogbéto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 2007; 13:199-206. [PMID: 17479880 PMCID: PMC2725864 DOI: 10.3201/eid1302.060631] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These tools may no longer be effective for malaria control in parts of Benin. The pyrethroid knockdown resistance gene (kdr) has become widespread in Anopheles gambiae in West Africa. A trial to test the continuing efficacy of insecticide-treated nets (ITN) and indoor residual spraying (IRS) was undertaken in experimental huts at 2 sites in Benin, 1 where kdr is present at high frequency (Ladji), the other where An. gambiae is susceptible (Malanville). Holes were made in the nets to mimic worn nets. At Malanville, 96% of susceptible An. gambiae were inhibited from blood-feeding, whereas at Ladji feeding was uninhibited by ITNs. The mortality rate of An. gambiae in ITN huts was 98% in Malanville but only 30% at Ladji. The efficacy of IRS was equally compromised. Mosquitoes at Ladji had higher oxidase and esterase activity than a laboratory-susceptible strain, but this fact did not seem to contribute to resistance. Pyrethroid resistance in An. gambiae appears to threaten the future of ITN and IRS in Benin.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
364 |
24
|
Arnold SF, Klotz DM, Collins BM, Vonier PM, Guillette LJ, McLachlan JA. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science 1996; 272:1489-92. [PMID: 8633243 DOI: 10.1126/science.272.5267.1489] [Citation(s) in RCA: 353] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Certain chemicals in the environment are estrogenic. The low potencies of these compounds, when studied singly, suggest that they may have little effect on biological systems. The estrogenic potencies of combinations of such chemicals were screened in a simple yeast estrogen system (YES) containing human estrogen receptor (hER). Combinations of two weak environmental estrogens, such as dieldrin, endosulfan, or toxaphene, were 1000 times as potent in hER-mediated transactivation as any chemical alone. Hydroxylated polychlorinated biphenyls shown previously to synergistically alter sexual development in turtles also synergized in the YES. The synergistic interaction of chemical mixtures with the estrogen receptor may have profound environmental implications. These results may represent a previously uncharacterized level of regulation of estrogen-associated responses.
Collapse
|
Retracted Publication |
29 |
353 |
25
|
Stebbing AR. Hormesis--the stimulation of growth by low levels of inhibitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 1982; 22:213-34. [PMID: 7043732 DOI: 10.1016/0048-9697(82)90066-3] [Citation(s) in RCA: 352] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hormesis is the name given to the stimulatory effects caused by low levels of potentially toxic agents. When this phenomenon was first identified it was called the Arndt-Schulz Law or Hueppe's Rule because it was thought to occur generally. Although this generalisation is not accepted today, there has never been more evidence in its support, justifying a re-examination of the phenomenon. Evidence from the literature shows that not only has growth hormesis been observed in a range of taxa after exposure to a variety of agents, but also that the dose-response data have a consistent form. While there are a number of separate hypotheses to explain specific instances of hormesis, the evidence presented here suggests that different examples might have a common explanation, and the possibility of a general theory is considered.
Collapse
|
Review |
43 |
352 |