1
|
Takagi J, Strokovich K, Springer TA, Walz T. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 2003; 22:4607-15. [PMID: 12970173 PMCID: PMC212714 DOI: 10.1093/emboj/cdg445] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.
Collapse
|
research-article |
22 |
281 |
2
|
Weigel-Kelley KA, Yoder MC, Srivastava A. Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood 2003; 102:3927-33. [PMID: 12907437 DOI: 10.1182/blood-2003-05-1522] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Replication of the pathogenic human parvovirus B19 is restricted to erythroid progenitor cells. Although blood group P antigen has been reported to be the cell surface receptor for parvovirus B19, a number of nonerythroid cells, which express P antigen, are not permissive for parvovirus B19 infection. We have documented that P antigen is necessary for parvovirus B19 binding but not sufficient for virus entry into cells. To test whether parvovirus B19 utilizes a cell surface coreceptor for entry, we used human erythroleukemia cells (K562), which allow parvovirus B19 binding but not entry. We report here that upon treatment with phorbol esters, K562 cells become adherent and permissive for parvovirus B19 entry, which is mediated by alpha 5 beta 1 integrins, but only in their high-affinity conformation. Mature human red blood cells (RBCs), which express high levels of P antigen, but not alpha 5 beta 1 integrins, bind parvovirus B19 but do not allow viral entry. In contrast, primary human erythroid progenitor cells express high levels of both P antigen and alpha 5 beta 1 integrins and allow beta1 integrin-mediated entry of parvovirus B19. Thus, in a natural course of infection, RBCs are likely exploited for a highly efficient systemic dissemination of parvovirus B19.
Collapse
|
|
22 |
184 |
3
|
Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N. Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 2004; 279:19747-19754. [PMID: 14998999 DOI: 10.1074/jbc.m311627200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme beta1,4-N-acetylglucosaminyltransferase III (GnT-III) catalyzes the addition of a bisecting GlcNAc residue to glycoproteins, resulting in a modulation in biological function. Our previous studies showed that the transfection of the GnT-III gene into B16 melanoma cells results in a suppression of invasive ability and lung colonization. The suppression has been postulated to be due to an increased level of E-cadherin expression on the cell surface, which in turn leads to the up-regulation of cell-cell adhesion. In this study, we report on the effects of overexpression of GnT-III on cell-matrix adhesion. The overexpression of GnT-III, but not that of an enzymatic inactive GnT-III (D323A), inhibits cell spreading and migration on fibronectin, a specific ligand for integrin alpha(5)beta(1), and the focal adhesion kinase phosphorylation. E(4)-PHA lectin blot analyses showed that the levels of bisecting GlcNAc structures on the integrin alpha(5) subunit as well as alpha(2) and alpha(3) subunits immunoprecipitated from GnT-III transfectants were substantially increased. In addition, the affinity of the binding of integrin alpha(5)beta(1) to fibronectin was significantly reduced by the introduction of the bisecting GlcNAc, to the alpha(5) subunit. These findings suggest that the modification of N-glycan of integrin by GnT-III inhibits its ligand binding ability, subsequently leading to the down-regulation of integrin-mediated signaling.
Collapse
|
|
21 |
140 |
4
|
Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80:8961-9. [PMID: 16940508 PMCID: PMC1563945 DOI: 10.1128/jvi.00843-06] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins have been implicated as coreceptors in the infectious pathways of several nonenveloped viruses. For example, adenoviruses are known to interact with alphaV integrins by virtue of a high-affinity arginine-glycine-aspartate (RGD) domain present in the penton bases of the capsids. In the case of adeno-associated virus type 2 (AAV2), which lacks this RGD motif, integrin alphaVbeta5 has been identified as a coreceptor for cellular entry. However, the molecular determinants of AAV2 capsid-integrin interactions and the potential exploitation of alternative integrins as coreceptors by AAV2 have not been established thus far. In this report, we demonstrate that integrin alpha5beta1 serves as an alternative coreceptor for AAV2 infection in human embryonic kidney 293 cells. Such interactions appear to be mediated by a highly conserved domain that contains an asparagine-glycine-arginine (NGR) motif known to bind alpha5beta1 integrin with moderate affinity. The mutation of this domain reduces transduction efficiency by an order of magnitude relative to that of wild-type AAV2 vectors in vitro and in vivo. Further characterization of mutant and wild-type AAV2 capsids through transduction assays in cell lines lacking specific integrins, cell adhesion studies, and cell surface/solid-phase binding assays confirmed the role of the NGR domain in promoting AAV2-integrin interactions. Molecular modeling studies suggest that NGR residues form a surface loop close to the threefold axis of symmetry adjacent to residues previously implicated in binding heparan sulfate, the primary receptor for AAV2. The aforementioned results suggest that the internalization of AAV2 in 293 cells might follow a "click-to-fit" mechanism that involves the cooperative binding of heparan sulfate and alpha5beta1 integrin by the AAV2 capsids.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
139 |
5
|
Yokosaki Y, Tanaka K, Higashikawa F, Yamashita K, Eboshida A. Distinct structural requirements for binding of the integrins alphavbeta6, alphavbeta3, alphavbeta5, alpha5beta1 and alpha9beta1 to osteopontin. Matrix Biol 2005; 24:418-27. [PMID: 16005200 DOI: 10.1016/j.matbio.2005.05.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/29/2022]
Abstract
The extracellular matrix protein, osteopontin, is a ligand for several members of the integrin family, including alpha5beta1, alphavbeta3, alphavbeta5 and alpha9beta1. Osteopontin is a substrate for a number of extracellular proteases, including thrombin and the metalloproteases MMP-3 and MMP-7, which cleave osteopontin at sites close to or within the mapped integrin binding sites. Using affinity chromatography and cell adhesion assays, we now identify the integrin alphavbeta6 as an additional osteopontin receptor. Utilizing a series of recombinant forms of osteopontin, we compared the structural requirements for alphavbeta6 binding with those for the 4 other osteopontin-binding integrins. Like alpha5beta1, alphavbeta3 and alphavbeta5 (but not alpha9beta1), alphavbeta6 binds to the RGD site in osteopontin, since RGD peptide or mutation of this site to RAA completely inhibits alphavbeta6-mediated cell adhesion. For both alpha9beta1 and alpha5beta1, the N-terminal fragment generated by thrombin cleavage is a much better ligand than full length osteopontin, whereas thrombin-cleavage does not appear to be required for optimal adhesion to alphavbeta3, alphavbeta5 or alphavbeta6. A recombinant fragment predicted to be generated by MMP cleavage no longer supported alpha5beta1 or alpha9beta1-mediated adhesion, but adhesion mediated by alphavbeta5 or alphavbeta6 was unaffected. Finally, adhesion of alphavbeta5 or alphavbeta6 was inhibited by mutation of two aspartic acid residues upstream of the RGD site, whereas adhesion mediated by alphavbeta3, alpha5beta1 or alpha9beta1 was unaffected by these mutations. These results suggest that the hierarchy of integrin interactions with osteopontin can undergo complex regulation at least in part through the action of extracellular proteases.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
129 |
6
|
Kong F, Li Z, Parks WM, Dumbauld DW, García AJ, Mould AP, Humphries MJ, Zhu C. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 2013; 49:1060-8. [PMID: 23416109 PMCID: PMC3615084 DOI: 10.1016/j.molcel.2013.01.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 11/12/2012] [Accepted: 01/11/2013] [Indexed: 12/11/2022]
Abstract
Cells regulate adhesion in response to internally generated and externally applied forces. Integrins connect the extracellular matrix to the cytoskeleton and provide cells with mechanical anchorages and signaling platforms. Here we show that cyclic forces applied to a fibronectin-integrin α5β1 bond switch the bond from a short-lived state with 1 s lifetime to a long-lived state with 100 s lifetime. We term this phenomenon "cyclic mechanical reinforcement," as the bond strength remembers the history of force application and accumulates over repeated cycles, but does not require force to be sustained. Cyclic mechanical reinforcement strengthens the fibronectin-integrin α5β1 bond through the RGD binding site of the ligand with the synergy binding site greatly facilitating the process. A flexible integrin hybrid domain is also important for cyclic mechanical reinforcement. Our results reveal a mechanical regulation of receptor-ligand interactions and identify a molecular mechanism for cell adhesion strengthening by cyclic forces.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
123 |
7
|
Takagi J. Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans 2004; 32:403-6. [PMID: 15157147 DOI: 10.1042/bst0320403] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the discovery of the RGD sequence motif as the essential cell attachment site in Fn (fibronectin), RGD-dependent ligand recognition by integrins has been the major focus of many integrin researches. Although many integrins recognize RGD-containing ligands, it is believed that residues outside the RGD motif provide specificity as well as high affinity for each integrin–ligand pair. These ‘secondary’ sites are generally assumed to interact directly with the α subunit of integrin, whereas the RGD motif binds primarily to the β subunit. This necessitates that the integrin–ligand interface comprises a relatively large, or even scattered, area. Molecular electron microscopy and single-particle analysis were performed on a headpiece fragment of integrin α5β1 in the presence and absence of bound ligand (Fn fragment), and revealed a marked shape change of the β subunit hybrid and I-like domains that is linked with the ligand docking. Furthermore, electron microscopy images revealed a focal rather than a large contact area at the α5β1–Fn interface, raising a question about ‘2-site docking model’. Kinetic analysis of real-time binding data showed that the synergy site greatly enhances kon but has little effect on the stability or koff of the complex, suggesting that the synergy site exerts its positive effect on α5β1 binding by facilitating the initial encounter, rather than by contributing to the protein–protein interaction surface. Thus the ligand recognition mechanism by integrins needs further refinement through more structural analyses of the complexes as well as kinetic analysis of binding data.
Collapse
|
|
21 |
118 |
8
|
Li J, Su Y, Xia W, Qin Y, Humphries MJ, Vestweber D, Cabañas C, Lu C, Springer TA. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J 2017; 36:629-645. [PMID: 28122868 PMCID: PMC5331762 DOI: 10.15252/embj.201695803] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
We show that the three conformational states of integrin α5β1 have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000-fold higher affinity of the extended-open state than the bent-closed and extended-closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α5β1 On the surface of K562 cells, α5β1 is 99.8% bent-closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N-glycans and leg domains in each subunit that connect the ligand-binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single-span transmembrane domains.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
111 |
9
|
Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, Xiong JP, Humphries MJ, Chapman HA. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. ACTA ACUST UNITED AC 2005; 168:501-11. [PMID: 15684035 PMCID: PMC2171741 DOI: 10.1083/jcb.200404112] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Urokinase-type plasminogen activator receptors (uPARs), up-regulated during tumor progression, associate with β1 integrins, localizing urokinase to sites of cell attachment. Binding of uPAR to the β-propeller of α3β1 empowers vitronectin adhesion by this integrin. How uPAR modifies other β1 integrins remains unknown. Using recombinant proteins, we found uPAR directly binds α5β1 and rather than blocking, renders fibronectin (Fn) binding by α5β1 Arg-Gly-Asp (RGD) resistant. This resulted from RGD-independent binding of α5β1–uPAR to Fn type III repeats 12–15 in addition to type III repeats 9–11 bound by α5β1. Suppression of endogenous uPAR by small interfering RNA in tumor cells promoted weaker, RGD-sensitive Fn adhesion and altered overall α5β1 conformation. A β1 peptide (res 224NLDSPEGGF232) that models near the known α-chain uPAR-binding region, or a β1-chain Ser227Ala point mutation, abrogated effects of uPAR on α5β1. Direct binding and regulation of α5β1 by uPAR implies a modified “bent” integrin conformation can function in an alternative activation state with this and possibly other cis-acting membrane ligands.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
100 |
10
|
Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ. Focal adhesions are sites of integrin extension. J Cell Biol 2010; 188:891-903. [PMID: 20231384 PMCID: PMC2845069 DOI: 10.1083/jcb.200907174] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/23/2010] [Indexed: 12/05/2022] Open
Abstract
Integrins undergo global conformational changes that specify their activation state. Current models portray the inactive receptor in a bent conformation that upon activation converts to a fully extended form in which the integrin subunit leg regions are separated to enable ligand binding and subsequent signaling. To test the applicability of this model in adherent cells, we used a fluorescent resonance energy transfer (FRET)-based approach, in combination with engineered integrin mutants and monoclonal antibody reporters, to image integrin alpha5beta1 conformation. We find that restricting leg separation causes the integrin to adopt a bent conformation that is unable to respond to agonists and mediate cell spreading. By measuring FRET between labeled alpha5beta1 and the cell membrane, we find extended receptors are enriched in focal adhesions compared with adjacent regions of the plasma membrane. These results demonstrate definitely that major quaternary rearrangements of beta1-integrin subunits occur in adherent cells and that conversion from a bent to extended form takes place at focal adhesions.
Collapse
|
research-article |
15 |
93 |
11
|
Heckmann D, Meyer A, Marinelli L, Zahn G, Stragies R, Kessler H. Probing integrin selectivity: rational design of highly active and selective ligands for the alpha5beta1 and alphavbeta3 integrin receptor. Angew Chem Int Ed Engl 2007; 46:3571-4. [PMID: 17394271 DOI: 10.1002/anie.200700008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
Journal Article |
18 |
86 |
12
|
Mardilovich A, Craig JA, McCammon MQ, Garg A, Kokkoli E. Design of a novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3259-64. [PMID: 16548586 DOI: 10.1021/la052756n] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The interaction of the alpha5beta1 integrin with its ligand, fibronectin, supports numerous adhesive functions and has an important role in health and disease. In recent years, there has been a considerable effort in designing fibronectin-mimetic peptides to target the integrin. However, to date, the therapeutic use of these peptides has been limited, as they cannot accurately mimic fibronectin's binding affinity for alpha5beta1. A peptide-amphiphile (PR_b) was synthesized with a peptide headgroup composed of four building blocks: a spacer; RGDSP, the primary recognition site for alpha5beta1; PHSRN, the synergy binding site; and a linker. The linker was designed to mimic two important criteria: the distance and the hydrophobicity/hydrophilicity between PHSRN and RGD in fibronectin. Human umbilical vein endothelial cells were seeded on different substrates and evaluated in terms of adhesion, spreading, specificity, cytoskeleton organization, focal adhesions, and secretion of extracellular fibronectin. This peptide was shown to perform comparably to fibronectin, indicating that a biomimetic approach can result in the design of novel peptides with therapeutic potential for biomaterial functionalization.
Collapse
|
|
19 |
82 |
13
|
Marinelli L, Meyer A, Heckmann D, Lavecchia A, Novellino E, Kessler H. Ligand binding analysis for human alpha5beta1 integrin: strategies for designing new alpha5beta1 integrin antagonists. J Med Chem 2005; 48:4204-7. [PMID: 15974570 DOI: 10.1021/jm040224i] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a three-dimensional model of the alpha5beta1 integrin headgroup bound to the most potent and selective ligand (SJ749) known to date. The model was built using the comparative protein modeling method, and it is consistent with experimental data. From this study, we identified two potentially important regions in the alpha5beta1 receptor that are peculiar to this integrin and might be worth considering for drug targeting.
Collapse
|
Journal Article |
20 |
63 |
14
|
Mardilovich A, Kokkoli E. Biomimetic Peptide−Amphiphiles for Functional Biomaterials: The Role of GRGDSP and PHSRN. Biomacromolecules 2004; 5:950-7. [PMID: 15132686 DOI: 10.1021/bm0344351] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study we present involves the use of a biomimetic system that allows us to study specific interactions in the alpha(5)beta(1) receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes that mimic the adhesion domain of the extracellular matrix protein fibronectin are constructed from peptide-amphiphiles. A novel peptide-amphiphile is designed that contains both GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro, the primary recognition site for alpha(5)beta(1)) and PHSRN (Pro-His-Ser-Arg-Asn, the synergy binding site for alpha(5)beta(1)) sequences in a single peptide formulation, separated by a spacer. Two different antibodies are used to immobilize and activate isolated alpha(5)beta(1) integrins on the AFM tip. The interaction measured between immobilized alpha(5)beta(1) integrins and peptide-amphiphiles is specific for integrin-peptide binding and is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha(5)beta(1) receptor. The strength of the PHSRN synergistic effect depends on the accessibility of this sequence to alpha(5)beta(1) integrins. An increase in adhesion is observed compared to surfaces displaying only GRGDSP peptides when the new biomimetic peptide-amphiphiles are diluted with lipidated poly(ethylene glycol), which provides more space for the peptide headgroups to bend and expose more of the PHSRN at the interface.
Collapse
|
|
21 |
56 |
15
|
Kokkoli E, Ochsenhirt SE, Tirrell M. Collective and single-molecule interactions of alpha5beta1 integrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:2397-2404. [PMID: 15835701 DOI: 10.1021/la035597l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel biomimetic system was used to study collective and single-molecule interactions of the alpha5beta1 receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes, which display peptides that mimic the cell adhesion domain of the extracellular matrix protein fibronectin, are constructed from peptide-amphiphiles. The interaction measured with the immobilized alpha5beta1 integrins and GRGDSP peptide-amphiphiles is specifically related to the integrin-peptide binding. It is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha5beta1 receptor. The recognition of the immobilized receptor was significantly increased for a surface that presented both the primary recognition site (GRGDSP) and the synergy site (PHSRN) compared to the adhesion measured with surfaces that displayed only the GRGDSP peptide. At the collective level, the separation process of the receptor-ligand pairs is a combination of multiple unbinding and stretching events that can accurately be described by the wormlike chain (WLC) model of polymer elasticity. In contrast, stretching was not observed at the single-molecule level. The dissociation of single alpha5beta1-GRGDSP pairs under loading rates of 1-305 nN/s revealed the presence of two activation energy barriers in the unbinding process. The high-strength regime above 59 nN/s maps the inner barrier at a distance of 0.09 nm along the direction of the force. Below 59 nN/s a low-strength regime appears with an outer barrier at 2.77 nm and a much slower transition rate that defines the dissociation rate (off-rate) in the absence of force (k(off) degrees = 0.015 s(-1)).
Collapse
|
Research Support, N.I.H., Extramural |
21 |
53 |
16
|
Stragies R, Osterkamp F, Zischinsky G, Vossmeyer D, Kalkhof H, Reimer U, Zahn G. Design and synthesis of a new class of selective integrin alpha5beta1 antagonists. J Med Chem 2007; 50:3786-94. [PMID: 17616113 DOI: 10.1021/jm070002v] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting from the structure of integrin alphavbeta3 in a complex with a peptidic ligand plus SAR data on nonpeptidic ligands, we derived a new class of integrin alpha5beta1 antagonists (1). Several synthesis strategies were applied to evaluate the chemical space around the essential pharmacophore groups R1 to R3 to obtain highly active and selective pyrrolidine derivatives as integrin alpha5beta1 antagonists. Integrin selectivity was controlled by switching from a sulfonamide moiety to a mesitylene amide moiety for R3. This finding represents a general feature for modulating selectivity toward other related integrin receptors. On the basis of the encouraging results from various in vitro studies, the most active compounds were selected for further in vivo studies in animal models and preclinical development.
Collapse
|
Journal Article |
18 |
53 |
17
|
Abstract
Integrins are a family of heterodimeric, transmembrane receptors that mediate a range of cell-cell and cell-extracellular matrix interactions in an array of physiological and pathophysiological situations. Integrin-mediated cell adhesion is dynamically regulated in vivo to facilitate cell anchorage and movement, but prevents aberrant trafficking and aggregation. Following ligand engagement, integrin signalling imposes a spatial constraint on the assembly of signalling complexes and controls the transduction of mechanical force to the cytoskeleton. This transmembrane passage of signals via integrins is achieved both by clustering of receptors, which makes the ligand and effector engagement more favourable kinetically, and by induction of conformational changes, that theoretically creates ligand and effector binding sites de novo. Clustering and conformational changes can be triggered both from the inside of the cell (resulting in acquisition of ligand-competent conformers) and from the outside (ligand-induced signalling). In this paper, these processes will be described and distinguished by the terms priming and activation, respectively. Although both clustering and conformation are important for integrin function, the latter will be the main focus of this article; in particular, the importance of monoclonal antibodies for the study of integrin shape changes.
Collapse
|
Review |
20 |
49 |
18
|
Yan LM, Lin B, Zhu LC, Hao YY, Qi Y, Wang CZ, Gao S, Liu SC, Zhang SL, Iwamori M. Enhancement of the adhesive and spreading potentials of ovarian carcinoma RMG-1 cells due to increased expression of integrin α5β1 with the Lewis Y-structure on transfection of the α1,2-fucosyltransferase gene. Biochimie 2010; 92:852-7. [PMID: 20172014 DOI: 10.1016/j.biochi.2010.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/12/2010] [Indexed: 11/16/2022]
|
|
15 |
42 |
19
|
Abstract
The adhesion of cells is mediated by the binding of several cell-surface receptors to ligands found in the extracellular matrix. These receptors often have overlapping specificities for the peptide ligands, making it difficult to understand the roles for discrete receptors in cell adhesion, migration, and differentiation as well as to direct the selective adhesion of cell types in tissue-engineering applications. To overcome these limitations, we developed a strategy to rewire the receptor-ligand interactions between a cell and substrate to ensure that adhesion is mediated by a single receptor with unique specificity. The strategy combines a genetic approach to engineer the cell surface with a chimeric integrin receptor having a unique ligand binding domain with a surface chemistry approach to prepare substrates that present ligands that are bound by the new binding domain. We show that Chinese hamster ovary cells that are engineered with a chimeric beta1 integrin adhere, signal, and even migrate on a synthetic matrix.
Collapse
|
|
21 |
39 |
20
|
Prystopiuk V, Feuillie C, Herman-Bausier P, Viela F, Alsteens D, Pietrocola G, Speziale P, Dufrêne YF. Mechanical Forces Guiding Staphylococcus aureus Cellular Invasion. ACS NANO 2018; 12:3609-3622. [PMID: 29633832 DOI: 10.1021/acsnano.8b00716] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Staphylococcus aureus can invade various types of mammalian cells, thereby enabling it to evade host immune defenses and antibiotics. The current model for cellular invasion involves the interaction between the bacterial cell surface located fibronectin (Fn)-binding proteins (FnBPA and FnBPB) and the α5β1 integrin in the host cell membrane. While it is believed that the extracellular matrix protein Fn serves as a bridging molecule between FnBPs and integrins, the fundamental forces involved are not known. Using single-cell and single-molecule experiments, we unravel the molecular forces guiding S. aureus cellular invasion, focusing on the prototypical three-component FnBPA-Fn-integrin interaction. We show that FnBPA mediates bacterial adhesion to soluble Fn via strong forces (∼1500 pN), consistent with a high-affinity tandem β-zipper, and that the FnBPA-Fn complex further binds to immobilized α5β1 integrins with a strength much higher than that of the classical Fn-integrin bond (∼100 pN). The high mechanical stability of the Fn bridge favors an invasion model in which Fn binding by FnBPA leads to the exposure of cryptic integrin-binding sites via allosteric activation, which in turn engage in a strong interaction with integrins. This activation mechanism emphasizes the importance of protein mechanobiology in regulating bacterial-host adhesion. We also find that Fn-dependent adhesion between S. aureus and endothelial cells strengthens with time, suggesting that internalization occurs within a few minutes. Collectively, our results provide a molecular foundation for the ability of FnBPA to trigger host cell invasion by S. aureus and offer promising prospects for the development of therapeutic approaches against intracellular pathogens.
Collapse
|
|
7 |
39 |
21
|
Jensen TW, Hu BH, Delatore SM, Garcia AS, Messersmith PB, Miller WM. Lipopeptides incorporated into supported phospholipid monolayers have high specific activity at low incorporation levels. J Am Chem Soc 2005; 126:15223-30. [PMID: 15548019 DOI: 10.1021/ja048684o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability to present cell adhesion molecule (CAM) ligands in controlled amounts on a culture surface would greatly facilitate the control of cell growth and differentiation. Supported lipid monolayer/bilayer systems have previously been developed that allow for presentation of CAM ligands for cell interaction; however, these systems have employed peptide loadings much higher than those used in poly(ethylene glycol) (PEG)-based immobilization systems. We report the development of synthetic methods that can be used for the efficient and versatile creation of many linear and cyclic lipid-linked peptide moieties. Using RGD-based peptides for the alpha5beta1 integrin as a model system, we have demonstrated that these lipopeptides support efficient cell binding and spreading at CAM ligand loadings as low as 0.1 mol %, which is well below that previously reported for supported lipid systems. Engineered lipopeptide-based surfaces offer unique presentation options not possible with other immobilization systems, and the high activity at low loadings we have shown here may be extremely useful in presenting multiple CAM ligands for studying cell growth, differentiation, and signaling.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
33 |
22
|
Young J, Hua X, Somsel H, Reichart F, Kessler H, Spatz JP. Integrin Subtypes and Nanoscale Ligand Presentation Influence Drug Sensitivity in Cancer Cells. NANO LETTERS 2020; 20:1183-1191. [PMID: 31908168 PMCID: PMC7020138 DOI: 10.1021/acs.nanolett.9b04607] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer cell-matrix interactions have been shown to enhance cancer cell survival via the activation of pro-survival signaling pathways. These pathways are initiated at the site of interaction, i.e., integrins, and thus, their inhibition has been the target of therapeutic strategies. Individual roles for fibronectin-binding integrin subtypes αvβ3 and α5β1 have been shown for various cellular processes; however, a systematic comparison of their function in adhesion-dependent chemoresistance is lacking. Here, we utilize integrin subtype-specific peptidomimetics for αvβ3 and α5β1, both as blocking agents on fibronectin-coated surfaces and as surface-immobilized adhesion sites, in order to parse out their role in breast cancer cell survival. Block copolymer micelle nanolithography is utilized to immobilize peptidomimetics onto highly ordered gold nanoparticle arrays with biologically relevant interparticle spacings (35, 50, or 70 nm), thereby providing a platform for ascertaining the dependence of ligand spacing in chemoprotection. We show that several cellular properties-morphology, focal adhesion formation, and migration-are intricately linked to both the integrin subtype and their nanospacing. Importantly, we show that chemotherapeutic drug sensitivity is highly dependent on both parameters, with smaller ligand spacing generally hindering survival. Furthermore, we identify ligand type-specific patterns of drug sensitivity, with enhanced chemosurvival when cells engage αvβ3 vs α5β1 on fibronectin; however, this is heavily reliant on nanoscale spacing, as the opposite is observed when ligands are spaced at 70 nm. These data imply that even nanoscale alterations in extracellular matrix properties have profound effects on cancer cell survival and can thus inform future therapies and drug testing platforms.
Collapse
|
rapid-communication |
5 |
33 |
23
|
Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, Reita D, Etienne-Selloum N, Bruban V, Choulier L, Martin S, Dontenwill M. Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer. Chembiochem 2020; 22:1151-1160. [PMID: 33140906 DOI: 10.1002/cbic.202000626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.
Collapse
|
Review |
5 |
30 |
24
|
Siegel A, Kimble-Hill A, Garg S, Jordan R, Naumann C. Native ligands change integrin sequestering but not oligomerization in raft-mimicking lipid mixtures. Biophys J 2011; 101:1642-50. [PMID: 21961590 PMCID: PMC3183796 DOI: 10.1016/j.bpj.2011.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/17/2011] [Accepted: 08/30/2011] [Indexed: 11/16/2022] Open
Abstract
Distinct lipid environments, including lipid rafts, are increasingly recognized as a crucial factor affecting membrane protein function in plasma membranes. Unfortunately, an understanding of their role in membrane protein activation and oligomerization has remained elusive due to the challenge of characterizing these often small and transient plasma membrane heterogeneities in live cells. To address this difficulty, we present an experimental model membrane platform based on polymer-supported lipid bilayers containing stable raft-mimicking domains (type I) and homogeneous cholesterol-lipid mixtures (type II) into which transmembrane proteins are incorporated (α(v)β(3) and α(5)β(1) integrins). These flexible lipid platforms enable the use of confocal fluorescence spectroscopy, including the photon counting histogram method, in tandem with epifluorescence microscopy to quantitatively probe the effect of the binding of native ligands from the extracellular matrix ligands (vitronectin and fibronectin for α(v)β(3) and α(5)β(1), respectively) on domain-specific protein sequestration and on protein oligomerization state. We found that both α(v)β(3) and α(5)β(1) sequester preferentially to nonraft domains in the absence of extracellular matrix ligands, but upon ligand addition, α(v)β(3) sequesters strongly into raft-like domains and α(5)β(1) loses preference for either raft-like or nonraft-like domains. A corresponding photon counting histogram analysis showed that integrins exist predominantly in a monomeric state. No change was detected in oligomerization state upon ligand binding in either type I or type II bilayers, but a moderate increase in oligomerization state was observed for increasing concentrations of cholesterol. The combined findings suggest a mechanism in which changes in integrin sequestering are caused by ligand-induced changes in integrin conformation and/or dynamics that affect integrin-lipid interactions without altering the integrin oligomerization state.
Collapse
|
research-article |
14 |
27 |
25
|
Chao JT, Gui P, Zamponi GW, Davis GE, Davis MJ. Spatial association of the Cav1.2 calcium channel with α5β1-integrin. Am J Physiol Cell Physiol 2011; 300:C477-89. [PMID: 21178109 PMCID: PMC3063962 DOI: 10.1152/ajpcell.00171.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/20/2010] [Indexed: 01/16/2023]
Abstract
Engagement of α(5)β(1)-integrin by fibronectin (FN) acutely enhances Cav1.2 channel (Ca(L)) current in rat arteriolar smooth muscle and human embryonic kidney cells (HEK293-T) expressing Ca(L). Using coimmunoprecipitation strategies, we show that coassociation of Ca(L) with α(5)- or β(1)-integrin in HEK293-T cells is specific and depends on cell adhesion to FN. In rat arteriolar smooth muscle, coassociations between Ca(L) and α(5)β(1)-integrin and between Ca(L) and phosphorylated c-Src are also revealed and enhanced by FN treatment. Using site-directed mutagenesis of Ca(L) heterologously expressed in HEK293-T cells, we identified two regions of Ca(L) required for these interactions: 1) COOH-terminal residues Ser(1901) and Tyr(2122), known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively; and 2) two proline-rich domains (PRDs) near the middle of the COOH terminus. Immunofluorescence confocal imaging revealed a moderate degree of wild-type Ca(L) colocalization with β(1)-integrin on the plasma membrane. Collectively, our results strongly suggest that 1) upon ligation by FN, Ca(L) associates with α(5)β(1)-integrin in a macromolecular complex including PKA, c-Src, and potentially other protein kinases; 2) phosphorylation of Ca(L) at Y(2122) and/or S(1901) is required for association of Ca(L) with α(5)β(1)-integrin; and 3) c-Src, via binding to PRDs that reside in the II-III linker region and/or the COOH terminus of Ca(L), mediates current potentiation following α(5)β(1)-integrin engagement. These findings provide new evidence for how interactions between α(5)β(1)-integrin and FN can modulate Ca(L) entry and consequently alter the physiological function of multiple types of excitable cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Cell Adhesion/genetics
- Cell Adhesion/physiology
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Epithelial Cells/chemistry
- Epithelial Cells/metabolism
- Fibronectins/genetics
- Fibronectins/metabolism
- Fibronectins/physiology
- HEK293 Cells
- Humans
- Integrin alpha5beta1/chemistry
- Integrin alpha5beta1/genetics
- Integrin alpha5beta1/physiology
- Microscopy, Confocal
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation/genetics
- Phosphorylation/physiology
- Rats
Collapse
|
Research Support, N.I.H., Extramural |
14 |
26 |