1
|
Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 2001; 293:1107-12. [PMID: 11498583 DOI: 10.1126/science.1062844] [Citation(s) in RCA: 1080] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 17/genetics
- Cytoplasm/enzymology
- Female
- Gene Expression Regulation, Enzymologic
- Genetic Linkage
- Humans
- Hypertension/enzymology
- Hypertension/genetics
- Hypertension/physiopathology
- Intercellular Junctions/enzymology
- Intracellular Signaling Peptides and Proteins
- Introns
- Kidney Tubules, Collecting/enzymology
- Kidney Tubules, Collecting/ultrastructure
- Kidney Tubules, Distal/enzymology
- Kidney Tubules, Distal/ultrastructure
- Male
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Minor Histocompatibility Antigens
- Molecular Sequence Data
- Mutation
- Mutation, Missense
- Pedigree
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pseudohypoaldosteronism/enzymology
- Pseudohypoaldosteronism/genetics
- Pseudohypoaldosteronism/physiopathology
- Sequence Deletion
- Signal Transduction
- WNK Lysine-Deficient Protein Kinase 1
- Zonula Occludens-1 Protein
Collapse
|
|
24 |
1080 |
2
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
|
|
20 |
376 |
3
|
Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 1999; 274:19347-51. [PMID: 10383446 DOI: 10.1074/jbc.274.27.19347] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-cadherins are surface adhesion molecules localized at the level of adherens junctions, which play a major role in cell adhesiveness by mediating calcium-dependent homophylic interactions at sites of cell-cell contacts. Recently, E-cadherins have been also implicated in a number of biological processes, including cell growth and differentiation, cell recognition, and sorting during developmental morphogenesis, as well as in aggregation-dependent cell survival. As phosphatidylinositol (PI) 3-kinase and Akt play a critical role in survival pathways in response to both growth factors and extracellular stimuli, these observations prompted us to explore whether E-cadherins could affect intracellular molecules regulating the activity of the PI 3-kinase/Akt signaling cascade. Using Madin-Darby canine kidney cells as a model system, we show here that engagement of E-cadherins in homophylic calcium-dependent cell-cell interactions results in a rapid PI 3-kinase-dependent activation of Akt and the subsequent translocation of Akt to the nucleus. Moreover, we demonstrate that the activation of PI 3-kinase in response to cell-cell contact formation involves the phosphorylation of PI 3-kinase in tyrosine residues, and the concomitant recruitment of PI 3-kinase to E-cadherin-containing protein complexes. These findings indicate that E-cadherins can initiate outside-in signal transducing pathways that regulate the activity of PI 3-kinase and Akt, thus providing a novel molecular mechanism whereby the interaction among neighboring cells and their adhesion status may ultimately control the fate of epithelial cells.
Collapse
|
|
26 |
216 |
4
|
Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 2002; 115:3565-73. [PMID: 12186943 DOI: 10.1242/jcs.00032] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that aPKC interacts with cell polarity proteins PAR-3 and PAR-6 and plays an indispensable role in cell polarization in the C. elegans one-cell embryo as well as in mammalian epithelial cells. Here, to clarify the molecular basis underlying this aPKC function in mammalian epithelial cells, we analyzed the localization of aPKC and PAR-3 during the cell repolarization process accompanied by wound healing of MTD1-A epithelial cells. Immunofluorescence analysis revealed that PAR-3 and aPKClambda translocate to cell-cell contact regions later than the formation of the primordial spot-like adherens junctions (AJs) containing E-cadherin and ZO-1. Comparison with three tight junction (TJ) membrane proteins, JAM, occludin and claudin-1, further indicates that aPKClambda is one of the last TJ components to be recruited. Consistently, the expression of a dominant-negative mutant of aPKClambda (aPKClambdakn) in wound healing cells does not inhibit the formation of the spot-like AJs; rather, it blocks their development into belt-like AJs. These persistent spot-like AJs in aPKClambda-expressing cells contain all TJ membrane proteins and PAR-3, indicating that aPKC kinase activity is not required for their translocation to these premature junctional complexes but is indispensable for their further differentiation into belt-like AJs and TJs. Cortical bundle formation is also blocked at the intermediate step where fine actin bundles emanating from premature cortical bundles link the persistent spot-like AJs at apical tips of columnar cells. These results suggest that aPKC contributes to the establishment of epithelial cell polarity by promoting the transition of fibroblastic junctional structures into epithelia-specific asymmetric ones.
Collapse
|
|
23 |
199 |
5
|
Nelson CM, Chen CS. Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett 2002; 514:238-42. [PMID: 11943158 DOI: 10.1016/s0014-5793(02)02370-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report a novel mechanism of cellular growth control. Increasing the density of endothelial or smooth muscle cells in culture increased cell-cell contact and decreased cell spreading, leading to growth arrest. Using a new method to independently control cell-cell contact and cell spreading, we found that introducing cell-cell contact positively regulates proliferation, but that contact-mediated proliferation can be masked by changes in cell spreading: Round cells with many contacts proliferated less than spread cells with none. Physically blocking cell-cell contact or inhibiting PI3K signaling abrogated cell-cell induced proliferation, but inhibiting diffusible paracrine signaling did not. Thus, direct cell-cell contact induces proliferation in these cells.
Collapse
|
|
23 |
190 |
6
|
Genova JL, Fehon RG. Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 2003; 161:979-89. [PMID: 12782686 PMCID: PMC2172966 DOI: 10.1083/jcb.200212054] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the alpha and beta subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron-glial interactions in the mammalian nervous system.
Collapse
|
research-article |
22 |
189 |
7
|
Wang S, Jayaram SA, Hemphälä J, Senti KA, Tsarouhas V, Jin H, Samakovlis C. Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr Biol 2006; 16:180-5. [PMID: 16431370 DOI: 10.1016/j.cub.2005.11.074] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 11/21/2022]
Abstract
The function of tubular epithelial organs like the kidney and lung is critically dependent on the length and diameter of their constituting branches. Genetic analysis of tube size control during Drosophila tracheal development has revealed that epithelial septate junction (SJ) components and the dynamic chitinous luminal matrix coordinate tube growth. However, the underlying molecular mechanisms controlling tube expansion so far remained elusive. Here, we present the analysis of two luminal chitin binding proteins with predicted polysaccharide deacetylase activities (ChLDs). ChLDs are required to assemble the cable-like extracellular matrix (ECM) and restrict tracheal tube elongation. Overexpression of native, but not of mutated, ChLD versions also interferes with the structural integrity of the intraluminal ECM and causes aberrant tube elongation. Whereas ChLD mutants have normal SJ structure and function, the luminal deposition of the ChLD requires intact cellular SJs. This identifies a new molecular function for SJs in the apical secretion of ChLD and positions ChLD downstream of the SJs in tube length control. The deposition of the chitin luminal matrix first promotes and coordinates radial tube expansion. We propose that the subsequent structural modification of chitin by chitin binding deacetylases selectively instructs the termination of tube elongation to the underlying epithelium.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
184 |
8
|
Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C. Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol 2001; 533:433-45. [PMID: 11389203 PMCID: PMC2278647 DOI: 10.1111/j.1469-7793.2001.0433a.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The role of intracellular Ca(2+) mobilization in the mechanism of increased endothelial permeability was studied. Human umbilical vein endothelial cells (HUVECs) were exposed to thapsigargin or thrombin at concentrations that resulted in similar increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). The rise in [Ca(2+)](i) in both cases was due to release of Ca(2+) from intracellular stores and influx of extracellular Ca(2+). 2. Both agents decreased endothelial cell monolayer electrical resistance (a measure of endothelial cell shape change) and increased transendothelial (125)I-albumin permeability. Thapsigargin induced activation of PKCalpha and discontinuities in VE-cadherin junctions without formation of actin stress fibres. Thrombin also induced PKCalpha activation and similar alterations in VE-cadherin junctions, but in association with actin stress fibre formation. 3. Thapsigargin failed to promote phosphorylation of the 20 kDa myosin light chain (MLC(20)), whereas thrombin induced MLC(20) phosphorylation consistent with formation of actin stress fibres. 4. Calphostin C pretreatment prevented the disruption of VE-cadherin junctions and the decrease in transendothelial electrical resistance caused by both agents. Thus, the increased [Ca(2+)](i) elicited by thapsigargin and thrombin may activate a calphostin C-sensitive PKC pathway that signals VE-cadherin junctional disassembly and increased endothelial permeability. 5. Results suggest a critical role for Ca(2+) signalling and activation of PKCalpha in mediating the disruption of VE-cadherin junctions, and thereby in the mechanism of increased endothelial permeability.
Collapse
|
research-article |
24 |
173 |
9
|
Aicher B, Lerch MM, Müller T, Schilling J, Ullrich A. Cellular redistribution of protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. J Cell Biol 1997; 138:681-96. [PMID: 9245795 PMCID: PMC2141638 DOI: 10.1083/jcb.138.3.681] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most receptor-like protein tyrosine phosphatases (PTPases) display a high degree of homology with cell adhesion molecules in their extracellular domains. We studied the functional significance of processing for the receptor-like PTPases LAR and PTPsigma. PTPsigma biosynthesis and intracellular processing resembled that of the related PTPase LAR and was expressed on the cell surface as a two-subunit complex. Both LAR and PTPsigma underwent further proteolytical processing upon treatment of cells with either calcium ionophore A23187 or phorbol ester TPA. Induction of LAR processing by TPA in 293 cells did require overexpression of PKCalpha. Induced proteolysis resulted in shedding of the extracellular domains of both PTPases. This was in agreement with the identification of a specific PTPsigma cleavage site between amino acids Pro821 and Ile822. Confocal microscopy studies identified adherens junctions and desmosomes as the preferential subcellular localization for both PTPases matching that of plakoglobin. Consistent with this observation, we found direct association of plakoglobin and beta-catenin with the intracellular domain of LAR in vitro. Taken together, these data suggested an involvement of LAR and PTPsigma in the regulation of cell contacts in concert with cell adhesion molecules of the cadherin/catenin family. After processing and shedding of the extracellular domain, the catalytically active intracellular portions of both PTPases were internalized and redistributed away from the sites of cell-cell contact, suggesting a mechanism that regulates the activity and target specificity of these PTPases. Calcium withdrawal, which led to cell contact disruption, also resulted in internalization but was not associated with prior proteolytic cleavage and shedding of the extracellular domain. We conclude that the subcellular localization of LAR and PTPsigma is regulated by at least two independent mechanisms, one of which requires the presence of their extracellular domains and one of which involves the presence of intact cell-cell contacts.
Collapse
|
research-article |
28 |
132 |
10
|
|
|
51 |
121 |
11
|
Altman A, Isakov N, Baier G. Protein kinase Ctheta: a new essential superstar on the T-cell stage. IMMUNOLOGY TODAY 2000; 21:567-73. [PMID: 11094261 DOI: 10.1016/s0167-5699(00)01749-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have identified protein kinase Cθ (PKCtheta), a member of the Ca(2+)-independent PKC family, as an essential component of the T-cell synapse that cooperates with calcineurin to activate the interleukin-2 (IL-2) gene. Several selective functions of PKCtheta involved in the activation and survival of T cells are reviewed herein. Among these, the nuclear factor-kappaB (NF-kappaB) signaling cascade appears to be the most critical target of PKCtheta in the T-cell receptor/CD28 costimulatory pathway that leads to T-cell activation.
Collapse
|
Review |
25 |
121 |
12
|
Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. ACTA ACUST UNITED AC 2007; 176:719-27. [PMID: 17312022 PMCID: PMC2064028 DOI: 10.1083/jcb.200609008] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated permeability of the endothelium is thought to be crucial in atherogenesis because it allows circulating lipoproteins to access subendothelial monocytes. Both local hemodynamics and cytokines may govern endothelial permeability in atherosclerotic plaque. We recently found that p21-activated kinase (PAK) regulates endothelial permeability. We now report that onset of fluid flow, atherogenic flow profiles, oxidized LDL, and proatherosclerotic cytokines all stimulate PAK phosphorylation and recruitment to cell-cell junctions. Activation of PAK is higher in cells plated on fibronectin (FN) compared to basement membrane proteins in all cases. In vivo, PAK is activated in atherosclerosis-prone regions of arteries and correlates with FN in the subendothelium. Inhibiting PAK in vivo reduces permeability in atherosclerosis-prone regions. Matrix-specific PAK activation therefore mediates elevated vascular permeability in atherogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
119 |
13
|
van Nieuw Amerongen GP, van Hinsbergh VWM. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol 2002; 39:257-72. [PMID: 12747965 DOI: 10.1016/s1537-1891(03)00014-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many diseases share the common feature of vascular leakage, and endothelial barrier dysfunction is often the underlying cause. The subsequent stages of endothelial barrier dysfunction contribute to endothelial hyperpermeability. Vasoactive agents induce loss of junctional integrity, a process that involves actin-myosin interaction. Subsequently, the interaction of leukocytes amplifies leakage by the leukocyte-derived mediators. The processes mainly occur at the postcapillary venules. The whole microvascular bed, including the capillaries, becomes involved in vascular leakage by the induction of angiogenesis. Plasma leakage results from gaps between endothelial cells as well as by the induction of transcellular transport pathways. Several mechanisms can improve endothelial barrier function, depending on the tissue affected and the cause of hyperpermeability. They include blockade of specific receptors and elevation of cyclic AMP (cAMP) by agents such as beta(2)-adrenergic agents. However, current therapies based on these principles often fail. Recent research has identified several new promising targets for pharmacological therapy. Endogenous compounds were also found with barrier-improving characteristics. Important insights were obtained in the different pathways involved in barrier dysfunction. Such insights regard the regulation of endothelial contraction and endothelial junction integrity: inhibitors of RhoA activation and Rho kinase represent a potentially valuable group of agents with endothelial hyperpermeability reducing properties, and strategies to target vascular endothelial growth factor (VEGF)-mediated edema are under current investigation. In clinical practice, not only tools to improve an impaired endothelial barrier function are necessary. Sometimes, a controlled, temporal, and local increase in permeability can also be desired, for example, with the aim to enhance drug delivery. Therefore, vessel leakiness is also being exploited to enable tissue access of liposomes, viral vectors, and other therapeutic agents that do not readily cross healthy endothelium. This review discusses strategies for targeting signaling molecules in therapies for diseases involving altered endothelial permeability.
Collapse
|
Review |
23 |
111 |
14
|
Samarin SN, Ivanov AI, Flatau G, Parkos CA, Nusrat A. Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol Biol Cell 2007; 18:3429-39. [PMID: 17596509 PMCID: PMC1951751 DOI: 10.1091/mbc.e07-04-0315] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Apical junctional complex (AJC) plays a vital role in regulation of epithelial barrier function. Disassembly of the AJC is observed in diverse physiological and pathological states; however, mechanisms governing this process are not well understood. We previously reported that the AJC disassembly is driven by the formation of apical contractile acto-myosin rings. In the present study, we analyzed the signaling pathways regulating acto-myosin-dependent disruption of AJC by using a model of extracellular calcium depletion. Pharmacological inhibition analysis revealed a critical role of Rho-associated kinase (ROCK) in AJC disassembly in calcium-depleted epithelial cells. Furthermore, small interfering RNA (siRNA)-mediated knockdown of ROCK-II, but not ROCK-I, attenuated the disruption of the AJC. Interestingly, AJC disassembly was not dependent on myosin light chain kinase and myosin phosphatase. Calcium depletion resulted in activation of Rho GTPase and transient colocalization of Rho with internalized AJC proteins. Pharmacological inhibition of Rho prevented AJC disassembly. Additionally, Rho guanine nucleotide exchange factor (GEF)-H1 translocated to contractile F-actin rings after calcium depletion, and siRNA-mediated depletion of GEF-H1 inhibited AJC disassembly. Thus, our findings demonstrate a central role of the GEF-H1/Rho/ROCK-II signaling pathway in the disassembly of AJC in epithelial cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
18 |
104 |
15
|
Greenbaum MP, Ma L, Matzuk MM. Conversion of midbodies into germ cell intercellular bridges. Dev Biol 2007; 305:389-96. [PMID: 17383626 PMCID: PMC2717030 DOI: 10.1016/j.ydbio.2007.02.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
93 |
16
|
Wang Q, Doerschuk CM. The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. THE JOURNAL OF IMMUNOLOGY 2001; 166:6877-84. [PMID: 11359848 DOI: 10.4049/jimmunol.166.11.6877] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in the cytoskeleton of endothelial cells (ECs) play important roles in mediating neutrophil migration during inflammation. Previous studies demonstrated that neutrophil adherence to TNF-alpha-treated pulmonary microvascular ECs induced cytoskeletal remodeling in ECs that required ICAM-1 ligation and oxidant production and was mimicked by cross-linking ICAM-1. In this study, we examined the role of ICAM-1-induced signaling pathways in mediating actin cytoskeletal remodeling. Cross-linking ICAM-1 induced alterations in ICAM-1 distribution, as well as the filamentous actin rearrangements and stiffening of ECs shown previously. ICAM-1 cross-linking induced phosphorylation of the p38 mitogen-activated protein kinase (MAPK) that was inhibited by allopurinol and also induced an increase in the activity of the p38 MAPK that was inhibited by SB203580. However, SB203580 had no effect on oxidant production in ECs or ICAM-1 clustering. ICAM-1 cross-linking also induced phosphorylation of heat shock protein 27, an actin-binding protein that may be involved in filamentous actin polymerization. The time course of heat shock protein 27 phosphorylation paralleled that of p38 MAPK phosphorylation and was completely inhibited by SB203580. In addition, SB203580 blocked the EC stiffening response induced by either neutrophil adherence or ICAM-1 cross-linking. Moreover, pretreatment of ECs with SB203580 reduced neutrophil migration toward EC junctions. Taken together, these data demonstrate that activation of p38 MAPK, mediated by xanthine oxidase-generated oxidant production, is required for cytoskeletal remodeling in ECs induced by ICAM-1 cross-linking or neutrophil adherence. These cytoskeletal changes in ECs may in turn modulate neutrophil migration toward EC junctions.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
88 |
17
|
Paul SM, Palladino MJ, Beitel GJ. A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 2007; 134:147-55. [PMID: 17164420 PMCID: PMC1955469 DOI: 10.1242/dev.02710] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heterodimeric Na,K-ATPase has been implicated in vertebrate and invertebrate epithelial cell junctions, morphogenesis and oncogenesis, but the mechanisms involved are unclear. We previously showed that the Drosophila Na,K-ATPase is required for septate junction (SJ) formation and that of the three beta-subunit loci, only Nrv2 isoforms support epithelial SJ barrier function and tracheal tube-size control. Here we show that Nrv1 is endogenously co-expressed with Nrv2 in the epidermis and tracheal system, but Nrv1 has a basolateral localization and appears to be excluded from the Nrv2-containing SJs. When the normally neuronal Nrv3 is expressed in epithelial cells, it does not associate with SJs. Thus, the beta-subunit is a key determinant of Na,K-ATPase subcellular localization as well as function. However, localization of the Na,K-ATPase to SJs is not sufficient for junctional activity because although several Nrv2/Nrv3 chimeric beta-subunits localize to SJs, only those containing the extracellular domain of Nrv2 have junctional activity. Junctional activity is also specific to different alpha-subunit isoforms, with only some isoforms from the major alpha-subunit locus being able to provide full barrier function and produce normal tracheal tubes. Importantly, mutations predicted to inactivate ATPalpha catalytic function do not compromise junctional activity, demonstrating that the Drosophila Na,K-ATPase has an ion-pump-independent role in junction formation and tracheal morphogenesis. These results define new functions for the intensively studied Na,K-ATPase. Strikingly, the rat alpha1 isoform has full junctional activity and can rescue Atpalpha-null mutants to viability, suggesting that the Na,K-ATPase has an evolutionarily conserved role in junction formation and function.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
82 |
18
|
Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. J Biol Chem 2000; 275:32289-98. [PMID: 10921917 DOI: 10.1074/jbc.m003172200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell volume affects diverse functions including cytoskeletal organization, but the underlying signaling pathways remained undefined. We have shown previously that shrinkage induces Fyn-dependent tyrosine phosphorylation of the cortical actin-binding protein, cortactin. Because FER kinase was implicated in the direct phosphorylation of cortactin, we investigated the osmotic responsiveness of FER and its relationship to Fyn and cortactin. Shrinkage increased FER activity and tyrosine phosphorylation. These effects were abolished by the Src family inhibitor PP2 and strongly mitigated in Fyn-deficient but not in Src-deficient cells. FER overexpression caused cortactin phosphorylation that was further enhanced by hypertonicity. Exchange of tyrosine residues 421, 466, and 482 for phenylalanine prevented cortactin phosphorylation by hypertonicity and strongly decreased it upon FER overexpression, suggesting that FER targets primarily the same osmo-sensitive tyrosines. Because constituents of the cell-cell contacts are substrates of Fyn and FER, we investigated the effect of shrinkage on the adherens junctions. Hypertonicity provoked Fyn-dependent tyrosine phosphorylation in beta-catenin, alpha-catenin, and p120(Cas) and caused the dissociation of beta-catenin from the contacts. This process was delayed in Fyn-deficient or PP2-treated cells. Thus, FER is a volume-sensitive kinase downstream from Fyn, and the Fyn/FER pathway may contribute to the cell size-dependent reorganization of the cytoskeleton and the cell-cell contacts.
Collapse
|
|
25 |
80 |
19
|
Lane NJ, Treherne JE. Studies on perineural junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tissue Cell 1972; 4:427-36. [PMID: 4120704 DOI: 10.1016/s0040-8166(72)80019-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
53 |
78 |
20
|
Gingras AR, Liu JJ, Ginsberg MH. Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol 2012; 199:39-48. [PMID: 23007647 PMCID: PMC3461514 DOI: 10.1083/jcb.201205109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022] Open
Abstract
The products of genes that cause cerebral cavernous malformations (CCM1/KRIT1, CCM2, and CCM3) physically interact. CCM1/KRIT1 links this complex to endothelial cell (EC) junctions and maintains junctional integrity in part by inhibiting RhoA. Heart of glass (HEG1), a transmembrane protein, associates with KRIT1. In this paper, we show that the KRIT1 band 4.1, ezrin, radixin, and moesin (FERM) domain bound the HEG1 C terminus (K(d) = 1.2 µM) and solved the structure of this assembly. The KRIT1 F1 and F3 subdomain interface formed a hydrophobic groove that binds HEG1(Tyr(1,380)-Phe(1,381)), thus defining a new mode of FERM domain-membrane protein interaction. This structure enabled design of KRIT1(L717,721A), which exhibited a >100-fold reduction in HEG1 affinity. Although well folded and expressed, KRIT1(L717,721A) failed to target to EC junctions or complement the effects of KRIT1 depletion on zebrafish cardiovascular development or Rho kinase activation in EC. These data establish that this novel FERM-membrane protein interaction anchors CCM1/KRIT1 at EC junctions to support cardiovascular development.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
55 |
21
|
Hiiragi T, Sasaki H, Nagafuchi A, Sabe H, Shen SC, Matsuki M, Yamanishi K, Tsukita S. Transglutaminase type 1 and its cross-linking activity are concentrated at adherens junctions in simple epithelial cells. J Biol Chem 1999; 274:34148-54. [PMID: 10567386 DOI: 10.1074/jbc.274.48.34148] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase type 1 was identified as a tyrosine-phosphorylated protein from the isolated junctional fraction of the mouse liver. This enzyme was reported to be involved in the covalent cross-linking of proteins in keratinocytes, but its expression and activity in other cell types have not been examined. Northern blotting revealed that transglutaminase type 1 was expressed in large amounts in epithelial tissues (lung, liver, and kidney), which was also confirmed by immunoblotting with antibodies raised against mouse recombinant protein. Immunoblotting of the isolated junctional fraction revealed that transglutaminase type 1 was concentrated in the fraction not only as a 97-kDa form but also as forms of various molecular masses cross-linked to other proteins. In agreement with this finding, endogenous transglutaminase type 1 was immunofluorescently colocalized with E-cadherin in cultured simple epithelial cells. In the liver and kidney, immunoelectron microscopy revealed that transglutaminase type 1 was concentrated, albeit not exclusively, at cadherin-based adherens junctions. Furthermore, by in vitro and in vivo labeling, transglutaminase cross-linking activity was also shown to be concentrated at intercellular junctions of simple epithelial cells. These findings suggested that the formation of covalently cross-linked multimolecular complexes by transglutaminase type 1 is an important mechanism for maintenance of the structural integrity of simple epithelial cells, especially at cadherin-based adherens junctions.
Collapse
|
|
26 |
51 |
22
|
Meyer TN, Hunt J, Schwesinger C, Denker BM. Galpha12 regulates epithelial cell junctions through Src tyrosine kinases. Am J Physiol Cell Physiol 2003; 285:C1281-93. [PMID: 12890651 DOI: 10.1152/ajpcell.00548.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation and assembly of the epithelial cell junctional complex involve multiple signaling mechanisms, including heterotrimeric G proteins. Recently, we demonstrated that Galpha12 binds to the tight junction scaffolding protein ZO-1 through the SH3 domain and that activated Galpha12 increases paracellular permeability in Madin-Darby canine kidney (MDCK) cells (Meyer et al. J Biol Chem 277: 24855-24858, 2002). In the present studies, we explore the effects of Galpha12 expression on tight and adherens junction proteins and examine downstream signaling pathways. By confocal microscopy, we detect disrupted tight and adherens junction proteins with increased actin stress fibers in constitutively active Galpha12 (QLalpha12)-expressing MDCK cells. The normal distribution of ZO-1 and Na-K-ATPase was altered in QLalpha12-expressing MDCK cells, consistent with loss of polarity. We found that the tyrosine kinase inhibitor genistein and the Src-specific inhibitor PP-2 reversibly abrogated the QLalpha12 phenotype on the junctional complex. Junctional protein localization was preserved in PP-2- or genistein-treated QLalpha12-expressing cells, and the increase in paracellular permeability as measured by transepithelial resistance and [3H]mannitol flux was prevented by the inhibitors. Src activity was increased in QLalpha12-expressing MDCK cells as assessed by Src autophosphorylation, and beta-catenin tyrosine phosphorylation was also increased, although there was no detectable increase in Rho activity. Taken together, these results indicate that Galpha12 regulates MDCK cell junctions, in part through Src tyrosine kinase pathways.
Collapse
|
|
22 |
51 |
23
|
Liu Y, Sweet DT, Irani-Tehrani M, Maeda N, Tzima E. Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation. J Cell Biol 2008; 182:185-96. [PMID: 18606845 PMCID: PMC2447891 DOI: 10.1083/jcb.200709176] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 06/12/2008] [Indexed: 01/25/2023] Open
Abstract
Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
50 |
24
|
Schmeiser K, Grand RJ. The fate of E- and P-cadherin during the early stages of apoptosis. Cell Death Differ 1999; 6:377-86. [PMID: 10381631 DOI: 10.1038/sj.cdd.4400504] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caspases are responsible for the proteolysis of many cytoskeletal proteins in apoptotic cells. It has been demonstrated here that during cisplatin-induced apoptosis of human embryo retinoblasts both E- and P-cadherin were degraded by caspases, giving initially major polypeptide products of apparent molecular weights 48 K and 104 K respectively. This proteolysis occurred over a similar time-scale to the observed degradation of PARP and to the onset of DNA fragmentation but appreciably later than p53 induction and cleavage of Mdm2 and p21. Addition of caspase inhibitors such as Z-VAD-FMK inhibited apoptosis and cadherin degradation. Co-immunoprecipitation studies carried out on viable cells confirmed previously observed complexes between cadherins and alpha and beta catenin and between the catenins themselves. These interactions were sustained in apoptotic cells as long as the protein components remained intact. Using confocal microscopy it has been shown that cytoskeletal changes associated with apoptosis precede degradation of catenins and cadherins by several hours. In particular, after addition of cisplatin relatively rapid (within 3 h) re-localization of adherens junction proteins from the cell periphery to the cytoplasm was observed whereas little cadherin or catenin degradation occurred until 10 h. We conclude that neither caspase-mediated degradation of cytoskeletal components nor disruption of adherens junction protein-protein interactions is required for morphological change.
Collapse
|
|
26 |
50 |
25
|
Therien HM, Mushynski WE. Isolation of synaptic junctional complexes of high structural integrity from rat brain. J Cell Biol 1976; 71:807-22. [PMID: 186464 PMCID: PMC2109788 DOI: 10.1083/jcb.71.3.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new method has been developed for isolating synaptic junctional complexes (SJC) of high structural integrity. The major step in the isolation involves homogenization of a synaptosomal membrane (SM) fraction in a biphasic system consisting of Freon 113 and an aqueous phase containing 0.2% Triton X-100. Well-preserved SJCs, along with membrane vesicles, were recovered in the aqueous phase after low-speed centrifugation of the homogenate. The membranes were subsequently separated from the SJCs by centrifugation on a discontinuous sucrose density gradient. The purity and identity of subcellular fractions were monitored by thin sectioning electron microscopy, using specific and nonspecific staining methods. From the electron microscope studies we conclude that SJCs and their components occupy about 65% of the area covered by structures in this fraction. The assay of enzyme activities indicates that homogenization in Triton-Freon and subsequent steps of the isolation procedure affect the activities of Na, K-ATPase, cytochrome oxidase, and acid phosphatase to different extents, but do not cause total inactivation. Electrophoresis of the SJC-enriched fraction on sodium dodecyl sulfate-polyacrylamide gels has demonstrated that a polypeptide which co-migrates with tubulin is the major component in this fraction, and that a polypeptide co-migrating with actin is also present.
Collapse
|
research-article |
49 |
47 |