1
|
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630. [PMID: 25636800 DOI: 10.1126/science.aaa2630] [Citation(s) in RCA: 1381] [Impact Index Per Article: 138.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.
Collapse
|
|
10 |
1381 |
2
|
Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29:538-50. [PMID: 18818105 DOI: 10.1016/j.immuni.2008.09.003] [Citation(s) in RCA: 1205] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/02/2008] [Accepted: 09/10/2008] [Indexed: 12/24/2022]
Abstract
Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.
Collapse
|
|
17 |
1205 |
3
|
Abstract
Cytosolic double-stranded DNA (dsDNA) stimulates the production of type I interferon (IFN) through the endoplasmic reticulum (ER)-resident adaptor protein STING (stimulator of IFN genes), which activates the transcription factor interferon regulatory factor 3 (IRF3); however, how STING activates IRF3 is unclear. Here, we showed that STING stimulates phosphorylation of IRF3 by the kinase TBK1 (TANK-binding kinase 1) in an in vitro reconstitution system. With this system, we identified a carboxyl-terminal region of STING that was both necessary and sufficient to activate TBK1 and stimulate the phosphorylation of IRF3. We also found that STING interacted with both TBK1 and IRF3 and that mutations in STING that selectively disrupted its binding to IRF3 abrogated phosphorylation of IRF3 without impairing the activation of TBK1. These results suggest that STING functions as a scaffold protein to specify and promote the phosphorylation of IRF3 by TBK1. This scaffolding function of STING (and possibly of other adaptor proteins) may explain why IRF3 is activated in only a subset of signaling pathways that activate TBK1.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
972 |
4
|
Abstract
Members of the nuclear factor kappa B (NF-kappaB) family of dimeric transcription factors (TFs) regulate expression of a large number of genes involved in immune responses, inflammation, cell survival, and cancer. NF-kappaB TFs are rapidly activated in response to various stimuli, including cytokines, infectious agents, and radiation-induced DNA double-strand breaks. In nonstimulated cells, some NF-kappaB TFs are bound to inhibitory IkappaB proteins and are thereby sequestered in the cytoplasm. Activation leads to phosphorylation of IkappaB proteins and their subsequent recognition by ubiquitinating enzymes. The resulting proteasomal degradation of IkappaB proteins liberates IkappaB-bound NF-kappaB TFs, which translocate to the nucleus to drive expression of target genes. Two protein kinases with a high degree of sequence similarity, IKKalpha and IKKbeta, mediate phosphorylation of IkappaB proteins and represent a convergence point for most signal transduction pathways leading to NF-kappaB activation. Most of the IKKalpha and IKKbeta molecules in the cell are part of IKK complexes that also contain a regulatory subunit called IKKgamma or NEMO. Despite extensive sequence similarity, IKKalpha and IKKbeta have largely distinct functions, due to their different substrate specificities and modes of regulation. IKKbeta (and IKKgamma) are essential for rapid NF-kappaB activation by proinflammatory signaling cascades, such as those triggered by tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS). In contrast, IKKalpha functions in the activation of a specific form of NF-kappaB in response to a subset of TNF family members and may also serve to attenuate IKKbeta-driven NF-kappaB activation. Moreover, IKKalpha is involved in keratinocyte differentiation, but this function is independent of its kinase activity. Several years ago, two protein kinases, one called IKKepsilon or IKK-i and one variously named TBK1 (TANK-binding kinase), NAK (NF-kappaB-activated kinase), or T2K (TRAF2-associated kinase), were identified that exhibit structural similarity to IKKalpha and IKKbeta. These protein kinases are important for the activation of interferon response factor 3 (IRF3) and IRF7, TFs that play key roles in the induction of type I interferon (IFN-I). Together, the IKKs and IKK-related kinases are instrumental for activation of the host defense system. This Review focuses on the functions of IKK and IKK-related kinases and the molecular mechanisms that regulate their activities.
Collapse
|
Review |
19 |
914 |
5
|
Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24:93-103. [PMID: 16413926 DOI: 10.1016/j.immuni.2005.12.003] [Citation(s) in RCA: 809] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 11/28/2005] [Accepted: 12/18/2005] [Indexed: 11/16/2022]
Abstract
Nucleic acid recognition upon viral infection triggers type I interferon production. Viral RNA is detected by both endosomal, TLR-dependent and cytosolic, RIG-I/MDA5-dependent pathways. TLR9 is the only known sensor of foreign DNA; it is unknown whether innate immune recognition of DNA exists in the cytosol. Here we present evidence that cytosolic DNA activates a potent type I interferon response to the invasive bacterium Listeria monocytogenes. The noninvasive Legionella pneumophila triggers an identical response through its type IV secretion system. Activation of type I interferons by cytosolic DNA is TLR independent and requires IRF3 but occurs without detectable activation of NF-kappaB and MAP kinases. Microarray analyses reveal a unique but overlapping gene-expression program activated by cytosolic DNA compared to TLR9- and RIG-I/MDA5-dependent responses. These findings define an innate immune response to DNA linked to type I interferon production.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
809 |
6
|
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587:657-662. [PMID: 32726803 PMCID: PMC7116779 DOI: 10.1038/s41586-020-2601-5] [Citation(s) in RCA: 784] [Impact Index Per Article: 156.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023]
Abstract
The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.
Collapse
|
research-article |
5 |
784 |
7
|
Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014; 505:691-5. [PMID: 24284630 PMCID: PMC4077721 DOI: 10.1038/nature12862] [Citation(s) in RCA: 754] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022]
Abstract
The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
754 |
8
|
Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, Menachery VD, Rajsbaum R, Shi PY. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 2020; 33:108234. [PMID: 32979938 PMCID: PMC7501843 DOI: 10.1016/j.celrep.2020.108234] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and host immune response determine coronavirus disease 2019 (COVID-19), but studies evaluating viral evasion of immune response are lacking. Here, we use unbiased screening to identify SARS-CoV-2 proteins that antagonize type I interferon (IFN-I) response. We found three proteins that antagonize IFN-I production via distinct mechanisms: nonstructural protein 6 (nsp6) binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3 (IRF3) phosphorylation, nsp13 binds and blocks TBK1 phosphorylation, and open reading frame 6 (ORF6) binds importin Karyopherin α 2 (KPNA2) to inhibit IRF3 nuclear translocation. We identify two sets of viral proteins that antagonize IFN-I signaling through blocking signal transducer and activator of transcription 1 (STAT1)/STAT2 phosphorylation or nuclear translocation. Remarkably, SARS-CoV-2 nsp1 and nsp6 suppress IFN-I signaling more efficiently than SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Thus, when treated with IFN-I, a SARS-CoV-2 replicon replicates to a higher level than chimeric replicons containing nsp1 or nsp6 from SARS-CoV or MERS-CoV. Altogether, the study provides insights on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
710 |
9
|
Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2005; 439:208-11. [PMID: 16306936 DOI: 10.1038/nature04374] [Citation(s) in RCA: 674] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/13/2005] [Indexed: 11/09/2022]
Abstract
Type I interferon (IFN) production is a critical component of the innate defence against viral infections. Viral products induce strong type I IFN responses through the activation of Toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as protein kinase R (PKR). Here we demonstrate that cells lacking TRAF3, a member of the TNF receptor-associated factor family, are defective in type I IFN responses activated by several different TLRs. Furthermore, we show that TRAF3 associates with the TLR adaptors TRIF and IRAK1, as well as downstream IRF3/7 kinases TBK1 and IKK-epsilon, suggesting that TRAF3 serves as a critical link between TLR adaptors and downstream regulatory kinases important for IRF activation. In addition to TLR stimulation, we also show that TRAF3-deficient fibroblasts are defective in their type I IFN response to direct infection with vesicular stomatitis virus, indicating that TRAF3 is also an important component of TLR-independent viral recognition pathways. Our data demonstrate that TRAF3 is a major regulator of type I IFN production and the innate antiviral response.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
674 |
10
|
Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, Fan Y, Yang Y, Wang J, Glisson BS, Wistuba II, Sage J, Heymach JV, Gibbons DL, Byers LA. Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer. Cancer Discov 2019; 9:646-661. [PMID: 30777870 PMCID: PMC6563834 DOI: 10.1158/2159-8290.cd-18-1020] [Citation(s) in RCA: 627] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC in vivo models. CD8+ T-cell depletion reversed the antitumor effect, demonstrating the role of CD8+ T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of cGAS and STING successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.See related commentary by Hiatt and MacPherson, p. 584.This article is highlighted in the In This Issue feature, p. 565.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
627 |
11
|
Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2005; 7:40-8. [PMID: 16286919 DOI: 10.1038/ni1282] [Citation(s) in RCA: 623] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/01/2005] [Indexed: 11/09/2022]
Abstract
The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-beta through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-kappaB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-beta and NF-kappaB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
623 |
12
|
Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 2005; 107:2112-22. [PMID: 16269622 DOI: 10.1182/blood-2005-01-0428] [Citation(s) in RCA: 528] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To identify the molecular basis underlying the functions of tumor-associated macrophages (TAMs), we characterized the gene expression profile of TAMs isolated from a murine fibrosarcoma in comparison with peritoneal macrophages (PECs) and myeloid suppressor cells (MSCs), using a cDNA microarray technology. Among the differentially expressed genes, 15 genes relevant to inflammation and immunity were validated by real-time polymerase chain reaction (PCR) and protein production. Resting TAMs showed a characteristic gene expression pattern with higher expression of genes coding for the immunosuppressive cytokine IL-10, phagocytosis-related receptors/molecules (Msr2 and C1q), and inflammatory chemokines (CCL2 and CCL5) as expected, as well as, unexpectedly, IFN-inducible chemokines (CXCL9, CXCL10, CXCL16). Immunohistology confirmed and extended the in vitro analysis by showing that TAMs express M2-associated molecules (eg, IL-10 and MGL1), as well as CCL2, CCL5, CXCL9, CXCL10, and CXCL16, but no appreciable NOS2. Lipopolysaccharide (LPS)-mediated activation of TAMs resulted in defective expression of several proinflammatory cytokines (eg, IL-1beta, IL-6, TNF-alpha) and chemokines (eg, CCL3), as opposed to a strong up-regulation of immunosuppressive cytokines (IL-10, TGFbeta) and IFN-inducible chemokines (CCL5, CXCL9, CXCL10, CXCL16). Thus, profiling of TAMs from a murine sarcoma revealed unexpected expression of IFN-inducible chemokines, associated with an M2 phenotype (IL-10high, IL-12low), and divergent regulation of the NF-kappaB versus the IRF-3/STAT1 pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
528 |
13
|
Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010; 141:315-30. [PMID: 20403326 PMCID: PMC2919214 DOI: 10.1016/j.cell.2010.03.029] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 02/22/2010] [Accepted: 03/23/2010] [Indexed: 12/25/2022]
Abstract
RIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 63 (K63) of ubiquitin. RIG-I binds specifically to K63-polyubiquitin chains through its tandem CARD domains in a manner that depends on RNA and ATP. Mutations in the CARD domains that abrogate ubiquitin binding also impair RIG-I activation. Remarkably, unanchored K63-ubiquitin chains, which are not conjugated to any target protein, potently activate RIG-I. These ubiquitin chains function as an endogenous ligand of RIG-I in human cells. Our results delineate the mechanism of RIG-I activation, identify CARD domains as a ubiquitin sensor, and demonstrate that unanchored K63-polyubiquitin chains are signaling molecules in antiviral innate immunity.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
502 |
14
|
Sun Q, Sun L, Liu HH, Chen X, Seth RB, Forman J, Chen ZJ. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 2006; 24:633-42. [PMID: 16713980 DOI: 10.1016/j.immuni.2006.04.004] [Citation(s) in RCA: 486] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/18/2006] [Accepted: 04/25/2006] [Indexed: 12/15/2022]
Abstract
The mitochondrial antiviral signaling protein (MAVS) mediates the activation of NFkappaB and IRFs and the induction of interferons in response to viral infection. In vitro studies have also suggested that MAVS is required for interferon induction by cytosolic DNA, but the in vivo evidence is lacking. By generating MAVS-deficient mice, here we show that loss of MAVS abolished viral induction of interferons and prevented the activation of NFkappaB and IRF3 in multiple cell types, except plasmacytoid dendritic cells (pDCs). However, MAVS was not required for interferon induction by cytosolic DNA or by Listeria monocytogenes. Mice lacking MAVS were viable and fertile, but they failed to induce interferons in response to poly(I:C) stimulation and were severely compromised in immune defense against viral infection. These results provide the in vivo evidence that the cytosolic viral signaling pathway through MAVS is specifically required for innate immune responses against viral infection.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
486 |
15
|
Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell 2007; 129:1111-23. [PMID: 17574024 PMCID: PMC2020837 DOI: 10.1016/j.cell.2007.05.019] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/26/2007] [Accepted: 05/11/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the interferon-beta (IFN-beta) gene requires assembly of an enhanceosome containing ATF-2/c-Jun, IRF-3/IRF-7, and NFkappaB. These factors bind cooperatively to the IFN-beta enhancer and recruit coactivators and chromatin-remodeling proteins to the IFN-beta promoter. We describe here a crystal structure of the DNA-binding domains of IRF-3, IRF-7, and NFkappaB, bound to one half of the enhancer, and use a previously described structure of the remaining half to assemble a complete picture of enhanceosome architecture in the vicinity of the DNA. Association of eight proteins with the enhancer creates a continuous surface for recognizing a composite DNA-binding element. Paucity of local protein-protein contacts suggests that cooperative occupancy of the enhancer comes from both binding-induced changes in DNA conformation and interactions with additional components such as CBP. Contacts with virtually every nucleotide pair account for the evolutionary invariance of the enhancer sequence.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
484 |
16
|
Mibayashi M, Martínez-Sobrido L, Loo YM, Cárdenas WB, Gale M, García-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 2007; 81:514-24. [PMID: 17079289 PMCID: PMC1797471 DOI: 10.1128/jvi.01265-06] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/23/2006] [Indexed: 12/24/2022] Open
Abstract
The retinoic acid-inducible gene I product (RIG-I) has been identified as a cellular sensor of RNA virus infection resulting in beta interferon (IFN-beta) induction. However, many viruses are known to encode viral products that inhibit IFN-beta production. In the case of influenza A virus, the viral nonstructural protein 1 (NS1) prevents the induction of the IFN-beta promoter by inhibiting the activation of transcription factors, including IRF-3, involved in IFN-beta transcriptional activation. The inhibitory properties of NS1 appear to be due at least in part to its binding to double-stranded RNA (dsRNA), resulting in the sequestration of this viral mediator of RIG-I activation. However, the precise effects of NS1 on the RIG-I-mediated induction of IFN-beta have not been characterized. We now report that the NS1 of influenza A virus interacts with RIG-I and inhibits the RIG-I-mediated induction of IFN-beta. This inhibition was apparent even when a mutant RIG-I that is constitutively activated (in the absence of dsRNA) was used to trigger IFN-beta production. Coexpression of RIG-I, its downstream signaling partner, IPS-1, and NS1 resulted in increased levels of RIG-I and NS1 within an IPS-1-rich, solubilization-resistant fraction after cell lysis. These results suggest that RIG-I, IPS-1, and NS1 become part of the same complex. Consistent with this idea, NS1 was also found to inhibit IFN-beta promoter activation by IPS-1 overexpression. Our results indicate that, in addition to sequestering dsRNA, the NS1 of influenza A virus binds to RIG-I and inhibits downstream activation of IRF-3, preventing the transcriptional induction of IFN-beta.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
479 |
17
|
Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M, Smale ST. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 2009; 138:114-28. [PMID: 19596239 PMCID: PMC2712736 DOI: 10.1016/j.cell.2009.04.020] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/06/2009] [Accepted: 04/08/2009] [Indexed: 11/30/2022]
Abstract
We describe a broad mechanistic framework for the transcriptional induction of mammalian primary response genes by Toll-like receptors and other stimuli. One major class of primary response genes is characterized by CpG-island promoters, which facilitate promiscuous induction from constitutively active chromatin without a requirement for SWI/SNF nucleosome remodeling complexes. The low nucleosome occupancy at promoters in this class can be attributed to the assembly of CpG islands into unstable nucleosomes, which may lead to SWI/SNF independence. Another major class consists of non-CpG-island promoters that assemble into stable nucleosomes, resulting in SWI/SNF dependence and a requirement for transcription factors that promote selective nucleosome remodeling. Some stimuli, including serum and tumor necrosis factor-alpha, exhibit a strong bias toward activation of SWI/SNF-independent CpG-island genes. In contrast, interferon-beta is strongly biased toward SWI/SNF-dependent non-CpG-island genes. By activating a diverse set of transcription factors, Toll-like receptors induce both classes and others for an optimal response to microbial pathogens.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
452 |
18
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 2019; 24:101215. [PMID: 31121492 PMCID: PMC6529775 DOI: 10.1016/j.redox.2019.101215] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Mountainous evidence suggests that inflammation, cardiomyocyte apoptosis and pyroptosis are involved in the development of sepsis and sepsis-induced cardiomyopathy (SIC). Stimulator of interferon genes (STING) is an indispensable molecule that could regulate inflammation and immune response in multiple diseases. However, the role of STING in cardiovascular disease, especially SIC remains unclear. This study was designed to investigate the potential molecular mechanisms of STING in lipopolysaccharide (LPS)-induced cardiac injury using STING global knockout mice. In wild type mice and cardiomyocytes, LPS stimulation triggered the perinuclear translocation of STING, which further bound to Type-I interferons (IFN) regulatory factor 3 (IRF3) and phosphorylated IRF3. Phosphorylated (P-) IRF3 subsequently translocated into nucleus and increased the expression of NOD-like receptor protein 3 (NLRP3). Knockout of STING in mice significantly improved survival rate and cardiac function, apart from suppressing myocardial and serum inflammatory cytokines, apoptosis, as well as cardiomyocyte pyroptosis. In vitro experiments revealed that NLRP3 overexpression by adenovirus could offset protective effects of STING knockdown in LPS-induced cardiomyocytes. Additionally, LPS stimulation also promoted the production of intracellular reactive oxygen (ROS), which further induced the NLRP3 translocation to the cytoplasm from the nucleus. Dissociative TXNIP could directly interact with cytoplasmic NLRP3 and form inflammasome, eventually triggering cardiomyocyte injury. Collectively, our findings disclose that STING deficiency could alleviate LPS-induced SIC in mice. Hence, targeting STING in cardiomyocytes may be a promising therapeutic strategy for preventing SIC.
Collapse
|
research-article |
6 |
406 |
19
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, Hur S, Chang HY. N6-Methyladenosine Modification Controls Circular RNA Immunity. Mol Cell 2019; 76:96-109.e9. [PMID: 31474572 PMCID: PMC6778039 DOI: 10.1016/j.molcel.2019.07.016] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/25/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adenosine/administration & dosage
- Adenosine/analogs & derivatives
- Adenosine/immunology
- Adenosine/metabolism
- Adjuvants, Immunologic/administration & dosage
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Immunity, Innate
- Immunization
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-3/metabolism
- Interferons/immunology
- Interferons/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Polyubiquitin/immunology
- Polyubiquitin/metabolism
- Protein Multimerization
- RNA, Circular/administration & dosage
- RNA, Circular/immunology
- RNA, Circular/metabolism
- RNA-Binding Proteins/immunology
- RNA-Binding Proteins/metabolism
- Receptors, Immunologic
- Ubiquitination
Collapse
|
Comparative Study |
6 |
397 |
20
|
Arimoto KI, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 2007; 104:7500-5. [PMID: 17460044 PMCID: PMC1863485 DOI: 10.1073/pnas.0611551104] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) plays a pivotal role in the regulation of cytokine production induced by pathogens. The RIG-I also augments the production of IFN and other cytokines via an amplification circuit. Because the production of cytokines is closely controlled, up- and down-regulation of RIG-I signaling also needs strict regulation. The mechanism of this regulation, however, remains elusive. Here, we found that RIG-I undergoes proteasomal degradation after conjugation to ubiquitin by RNF125. Further, RNF125 conjugates ubiquitin to MDA5, a family protein of RIG-I as well as IPS-1, which is also a downstream protein of RIG-I signaling that results in suppressing the functions of these proteins. Because RNF125 is enhanced by IFN, these functions constitute a negative regulatory loop circuit for IFN production.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
385 |
21
|
Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 2013; 503:402-405. [PMID: 24196705 PMCID: PMC3928559 DOI: 10.1038/nature12769] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.
Collapse
|
research-article |
12 |
373 |
22
|
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-21. [PMID: 17442719 PMCID: PMC1933316 DOI: 10.1128/jvi.02581-06] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-beta promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
370 |
23
|
Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, Radtke F, Ablasser A. Signalling strength determines proapoptotic functions of STING. Nat Commun 2017; 8:427. [PMID: 28874664 PMCID: PMC5585373 DOI: 10.1038/s41467-017-00573-w] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/01/2017] [Indexed: 01/07/2023] Open
Abstract
Mammalian cells use cytosolic nucleic acid receptors to detect pathogens and other stress signals. In innate immune cells the presence of cytosolic DNA is sensed by the cGAS-STING signalling pathway, which initiates a gene expression programme linked to cellular activation and cytokine production. Whether the outcome of the STING response varies between distinct cell types remains largely unknown. Here we show that T cells exhibit an intensified STING response, which leads to the expression of a distinct set of genes and results in the induction of apoptosis. Of note, this proapoptotic STING response is still functional in cancerous T cells and delivery of small molecule STING agonists prevents in vivo growth of T-cell-derived tumours independent of its adjuvant activity. Our results demonstrate how the magnitude of STING signalling can shape distinct effector responses, which may permit for cell type-adjusted behaviours towards endogenous or exogenous insults.The cGAS/STING signalling pathway is responsible for sensing intracellular DNA and activating downstream inflammatory genes. Here the authors show mouse primary T cells and T leukaemia are hyperresponsive to STING agonist, and this strong STING signalling is associated with apoptosis induction.
Collapse
|
research-article |
8 |
366 |
24
|
Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010; 467:214-7. [PMID: 20829794 PMCID: PMC3051279 DOI: 10.1038/nature09337] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/06/2010] [Indexed: 12/17/2022]
Abstract
Dendritic cells serve a key function in host defence, linking innate detection of microbes to activation of pathogen-specific adaptive immune responses. Whether there is cell-intrinsic recognition of human immunodeficiency virus (HIV) by host innate pattern-recognition receptors and subsequent coupling to antiviral T-cell responses is not yet known. Dendritic cells are largely resistant to infection with HIV-1, but facilitate infection of co-cultured T-helper cells through a process of trans-enhancement. Here we show that, when dendritic cell resistance to infection is circumvented, HIV-1 induces dendritic cell maturation, an antiviral type I interferon response and activation of T cells. This innate response is dependent on the interaction of newly synthesized HIV-1 capsid with cellular cyclophilin A (CYPA) and the subsequent activation of the transcription factor IRF3. Because the peptidylprolyl isomerase CYPA also interacts with HIV-1 capsid to promote infectivity, our results indicate that capsid conformation has evolved under opposing selective pressures for infectivity versus furtiveness. Thus, a cell-intrinsic sensor for HIV-1 exists in dendritic cells and mediates an antiviral immune response, but it is not typically engaged owing to the absence of dendritic cell infection. The virulence of HIV-1 may be related to evasion of this response, the manipulation of which may be necessary to generate an effective HIV-1 vaccine.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
354 |
25
|
Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 2006; 103:12885-90. [PMID: 16912115 PMCID: PMC1568942 DOI: 10.1073/pnas.0603144103] [Citation(s) in RCA: 348] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) causes a recently emerged human disease associated with pneumonia. The 5' end two-thirds of the single-stranded positive-sense viral genomic RNA, gene 1, encodes 16 mature proteins. Expression of nsp1, the most N-terminal gene 1 protein, prevented Sendai virus-induced endogenous IFN-beta mRNA accumulation without inhibiting dimerization of IFN regulatory factor 3, a protein that is essential for activation of the IFN-beta promoter. Furthermore, nsp1 expression promoted degradation of expressed RNA transcripts and host endogenous mRNAs, leading to a strong host protein synthesis inhibition. SCoV replication also promoted degradation of expressed RNA transcripts and host mRNAs, suggesting that nsp1 exerted its mRNA destabilization function in infected cells. In contrast to nsp1-induced mRNA destablization, no degradation of the 28S and 18S rRNAs occurred in either nsp1-expressing cells or SCoV-infected cells. These data suggested that, in infected cells, nsp1 promotes host mRNA degradation and thereby suppresses host gene expression, including proteins involved in host innate immune functions. SCoV nsp1-mediated promotion of host mRNA degradation may play an important role in SCoV pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
348 |